
Counter-Example
Complete Verification for
Higher-Order Functions

N. Voirol, E. Kneuss, V. Kuncak
EPFL

Scala Symposium 2015

Program Verification

● Aims to guarantee (or disprove) properties
about programs

● Performed statically at compile time
○ Benefits from other analyses (typing, CFG, etc.)
○ Independent of program inputs

● Can be viewed as an extremely precise and
powerful type system

Verification Systems

Interesting properties :
● Soundness = proofs (or disproofs) are valid
● Completeness = if a proof (or disproof)

exists, it will be reported
● Performance
● Expressivity

Merge Sort Implementation
def split(list: List[Int]): (List[Int], List[Int]) = list match {
 case Cons(h1, Cons(h2, xs)) =>
 val (t1,t2) = split(xs)
 (Cons(h1, t1), Cons(h2, t2))
 case _ => (list, Nil())
}

def merge(l1: List[Int], l2: List[Int]): List[Int] = (l1, l2) match {
 case (Cons(h1, t1), Cons(h2, t2)) =>
 if (h1 < h2) Cons(h1, merge(t1, l2))
 else Cons(h2, merge(l1, t2))
 case _ => l1 ++ l2
}

def mergeSort(list: List[Int]): List[Int] = list match {
 case Cons(h1, t1 @ Cons(h2, t2)) =>
 val (l1, l2) = split(list)
 merge(mergeSort(l1), mergeSort(l2))
 case _ => list
}

Verifying Sortedness
def isSorted(list: List[Int]): Boolean = list match {
 case Cons(h1, t1 @ Cons(h2, xs)) => h1 <= h2 && isSorted(t1)
 case _ => true
}

Result of mergeSort for any input must be
sorted (i.e. isSorted must return true)

Verification Condition

● Boolean property on program
● Encoded into quantifier-free (QF) formula

∀list: List[Int]. isSorted(mergeSort(list))
- or equivalently -

!isSorted(mergeSort(list)) ∈ UNSAT

Program Verification in Leon

● Transform boolean expression into formula
verification condition p → formula f

● Use SMT solver to verify ¬f
○ ¬f ∈ UNSAT

no inputs can break condition

○ ¬f ∈ SAT
produces a breaking model : counter-example

Leon Verification System

http://localhost:9999/#link/bef9b30976eca65f39569c4d08efa1bd-1
http://localhost:9999/#link/bef9b30976eca65f39569c4d08efa1bd-1
http://localhost:9999/#link/bef9b30976eca65f39569c4d08efa1bd-1

First-Order Verification in Leon

● Encoding to formulas well supported for
many language features

● How to encode recursive definitions?
def size[T](list: List[T]): BigInt = (list match {
 case Cons(x, xs) => 1 + size(xs)
 case Nil() => 0
}) ensuring (_ >= 0)

Naive Recursive Definitions

Just use universal quantification :
∀list: List[T]. size(list) = list match {
 case Cons(x, xs) => 1 + size(xs)
 case Nil() => 0
}

Unfortunately not (yet) well supported by SMT solvers

Unfolding Procedure in Leon
● Progressively inline function calls
● Instrument decision tree so execution tree

can be limited to subset that doesn’t
depend on further inlinings

● At each inlining step :
○ if ¬f with blocked branches ∈ SAT

model is a counter-example

○ if ¬f ∈ UNSAT
VC is valid

counter-example
No valid path possible

Unfolding Procedure - Example I

size(list) < 2
Verification Condition

size(list) = list match {
 case Cons(h1, t1) => 1 + size(t1)
 case Nil() => 0
} size(t1) = t1 match {

 case Cons(h2, t2) => 1 + size(t2)
 case Nil() => 0
}

size(Cons(h1, Nil())) = 1

size(Nil()) = 0
size(t2) = t2 match {
 case Cons(h3, t3) => 1 + size(t3)
 case Nil() => 0
} size(t3) = ...

size(Cons(h1, Cons(h2, Nil())) = 2
Breaks VC!

Unfolding Procedure - Example II
Verification Condition

size(list) < 0
size(list) = list match {
 case Cons(h1, t1) => 1 + size(t1)
 case Nil() => 0
}

First call is simply inlined to avoid circular logic

size(t1) = t1 match {
 case Cons(h2, t2) => 1 + size(t2)
 case Nil() => 0
}

size(t1) >= 0

No result of size(t1) can break VC!

Why Higher-Order Functions?

● Important feature of functional languages
● Interesting extension to first-order case

○ can’t statically track closure definitions for unfolding
○ decision tree branches that need blocking can’t be

statically determined
○ no natural encoding in the formula domain

HOF Examples

First-Class Functions - Approach

Key observation:
we cannot track arbitrary closures through the
program …
… but we can track the set of all closures
generated or input into the program

Use dynamic dispatch!

First-Class Functions - Dispatching

f(x) =

x+1 if f = Ident[(x: Int) => x + 1]

x+2 if f = Ident[(x: Int) => x + 2]

2 if f = Ident[(x: Int) => 2]

uninterpreted otherwise

Set of all closures is Λ = { (x: Int) => x + 1, (x: Int) => x + 2, (x: Int) => 2 }

When new closures are discovered during unfolding,
add them to Λ and expand results of f(x)

First-Class Functions - Blocking

How do we know when the right closure has
been inlined for a given application?

Block tree branch as long as f ∉ Λ

Note that the procedure doesn’t support inputs that are containers for first-class
functions (such as List[Int => Int]) as these can’t be added to Λ

Theoretical Results

Proved for boolean and function types
● Soundness for proofs

If the procedure reports valid, there exists no counter-example to the VC

● Soundness for counter-examples
If the procedure reports a counter-example, evaluating the VC with it as
input will result in false

● Completeness for counter-examples
If there exists an input to the VC such that evaluation results in false, the
procedure will eventually report a counter-example

Demo

Conclusion

● Higher-order functions can be supported in
Leon without resorting to sacrifices and/or
tradeoffs

● Limitations interesting avenues for extension
○ Unfolding data-structures to accept first-class

function containers (and more)
○ Limited universal quantification support for

specifications

