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Program Verification

● Aims to guarantee (or disprove) properties 
about programs

● Performed statically at compile time
○ Benefits from other analyses (typing, CFG, etc.)
○ Independent of program inputs

● Can be viewed as an extremely precise and 
powerful type system



Verification Systems

Interesting properties :
● Soundness = proofs (or disproofs) are valid
● Completeness = if a proof (or disproof) 

exists, it will be reported
● Performance
● Expressivity



Merge Sort Implementation
def split(list: List[Int]): (List[Int], List[Int]) = list match {
  case Cons(h1, Cons(h2, xs)) =>
    val (t1,t2) = split(xs)
    (Cons(h1, t1), Cons(h2, t2))
  case _ => (list, Nil())
}

def merge(l1: List[Int], l2: List[Int]): List[Int] = (l1, l2) match {
  case (Cons(h1, t1), Cons(h2, t2)) =>
    if (h1 < h2) Cons(h1, merge(t1, l2))
    else Cons(h2, merge(l1, t2))
  case _ => l1 ++ l2
}

def mergeSort(list: List[Int]): List[Int] = list match {
  case Cons(h1, t1 @ Cons(h2, t2)) =>
    val (l1, l2) = split(list)
    merge(mergeSort(l1), mergeSort(l2))
  case _ => list
}



Verifying Sortedness
def isSorted(list: List[Int]): Boolean = list match {
  case Cons(h1, t1 @ Cons(h2, xs)) => h1 <= h2 && isSorted(t1)
  case _ => true
}

Result of mergeSort for any input must be 
sorted (i.e. isSorted must return true)



Verification Condition

● Boolean property on program
● Encoded into quantifier-free (QF) formula

∀list: List[Int]. isSorted(mergeSort(list))
- or equivalently -

!isSorted(mergeSort(list))  ∈  UNSAT



Program Verification in Leon

● Transform boolean expression into formula
verification condition p → formula f

● Use SMT solver to verify ¬f
○ ¬f  ∈  UNSAT

no inputs can break condition

○ ¬f  ∈  SAT
produces a breaking model : counter-example



Leon Verification System

http://localhost:9999/#link/bef9b30976eca65f39569c4d08efa1bd-1
http://localhost:9999/#link/bef9b30976eca65f39569c4d08efa1bd-1
http://localhost:9999/#link/bef9b30976eca65f39569c4d08efa1bd-1


First-Order Verification in Leon

● Encoding to formulas well supported for 
many language features

● How to encode recursive definitions? 
def size[T](list: List[T]): BigInt = (list match {
  case Cons(x, xs) => 1 + size(xs)
  case Nil() => 0
}) ensuring (_ >= 0)



Naive Recursive Definitions

Just use universal quantification :
∀list: List[T]. size(list) = list match {
  case Cons(x, xs) => 1 + size(xs)
  case Nil() => 0
}

Unfortunately not (yet) well supported by SMT solvers



Unfolding Procedure in Leon
● Progressively inline function calls
● Instrument decision tree so execution tree 

can be limited to subset that doesn’t 
depend on further inlinings

● At each inlining step :
○ if ¬f with blocked branches  ∈  SAT

model is a counter-example

○ if ¬f  ∈  UNSAT
VC is valid

counter-example
No valid path possible



Unfolding Procedure - Example I

size(list) < 2
Verification Condition

size(list) = list match {
  case Cons(h1, t1) => 1 + size(t1)
  case Nil() => 0
} size(t1) = t1 match {

  case Cons(h2, t2) => 1 + size(t2)
  case Nil() => 0
}

size(Cons(h1, Nil())) = 1

size(Nil()) = 0
size(t2) = t2 match {
  case Cons(h3, t3) => 1 + size(t3)
  case Nil() => 0
} size(t3) = ...

size(Cons(h1, Cons(h2, Nil())) = 2
Breaks VC!



Unfolding Procedure - Example II
Verification Condition

size(list) < 0
size(list) = list match {
  case Cons(h1, t1) => 1 + size(t1)
  case Nil() => 0
}

First call is simply inlined to avoid circular logic

size(t1) = t1 match {
  case Cons(h2, t2) => 1 + size(t2)
  case Nil() => 0
}

size(t1) >= 0

No result of size(t1) can break VC!



Why Higher-Order Functions?

● Important feature of functional languages
● Interesting extension to first-order case

○ can’t statically track closure definitions for unfolding
○ decision tree branches that need blocking can’t be 

statically determined
○ no natural encoding in the formula domain



HOF Examples



First-Class Functions - Approach

Key observation:
we cannot track arbitrary closures through the 
program … 
… but we can track the set of all closures 
generated or input into the program

Use dynamic dispatch!



First-Class Functions - Dispatching

f(x) =

x+1 if f = Ident[(x: Int) => x + 1]

x+2 if f = Ident[(x: Int) => x + 2]

2 if f = Ident[(x: Int) => 2]

uninterpreted otherwise

Set of all closures is Λ = { (x: Int) => x + 1, (x: Int) => x + 2, (x: Int) => 2 }

When new closures are discovered during unfolding,
add them to Λ and expand results of f(x)



First-Class Functions - Blocking

How do we know when the right closure has 
been inlined for a given application?

Block tree branch as long as f ∉ Λ

Note that the procedure doesn’t support inputs that are containers for first-class 
functions (such as List[Int => Int]) as these can’t be added to Λ



Theoretical Results

Proved for boolean and function types
● Soundness for proofs

If the procedure reports valid, there exists no counter-example to the VC

● Soundness for counter-examples
If the procedure reports a counter-example, evaluating the VC with it as 
input will result in false

● Completeness for counter-examples
If there exists an input to the VC such that evaluation results in false, the 
procedure will eventually report a counter-example



Demo



Conclusion

● Higher-order functions can be supported in 
Leon without resorting to sacrifices and/or 
tradeoffs

● Limitations interesting avenues for extension
○ Unfolding data-structures to accept first-class 

function containers (and more)
○ Limited universal quantification support for 

specifications


