
Type-Directed Language Extension
for Effectful Computations

Evgenii Kotelnikov
Chalmers University of Technology

Gothenburg, Sweden
evgenyk@chalmers.se

ABSTRACT
Computation types such as functors, applicative functors
and monads have become common abstractions for model-
ing effectful computations in functional programming lan-
guages. They are often used together with special language
extensions intended to simplify the syntax of monadic ex-
pressions. We can simplify it even more by employing types
rather than just mechanical syntactic transformation.
In this paper we present scala-workflow, a macro-based

extension to the Scala programming language that offers
uniform syntax for structuring effectful computations ex-
pressed as abstract interfaces with a stackable set of com-
binators. Unlike similar syntactic extensions, such as F#’s
computation expressions, Haskell’s do-notation and Scala’s
own for-expressions, scala-workflow allows users to trans-
parently blend pure and effectful functions in a bounded con-
text, as they are separated during macro expansion based
on the types of subexpressions.

Categories and Subject Descriptors
D.3.2 [Programming languages]: Language Classifica-
tion—Applicative (functional) languages; D.3.3 [Language
Constructs and Features]: Control structures

General Terms
Languages, Algorithms

Keywords
Scala, macros, effects, monads, functors

1. INTRODUCTION
Programs that involve effectful aspects of computation,

like non-determinism, concurrency, exceptions or IO, invite
programming languages to seek appropriate abstractions that
can capture them. Some languages prefer to have built-in
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Scala’14, July 28–29, 2014, Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2868-5/14/07 ...$15.00.
http://dx.doi.org/10.1145/2637647.2637648

single-purpose primitives. Others, and most notably func-
tional ones, employ a variety of generic algebraic structures
capable of expressing computational effects.
The concept of monads, originally introduced in the con-

text of computations by Moggi [16] gained significant at-
tention in the Haskell community and became the de-facto
standard way of structuring computations with effects in
Haskell [29]. McBride and Paterson introduced applicative
functors [15] (also known as sequences or idioms), that are
weaker than monads, but are more widespread. Both mon-
ads and idioms are supersets of functors [11], however the
latter are rarely used as effectful containers.
An entirely different approach to effectful computations

are type and effect systems [25]. In the context of Scala
there is ongoing work [22] on lightweight encoding of effect-
polymorphic function types in Scala annotations.
To facilitate effectful computations, functional program-

ming languages provide special extensions, aimed to simplify
the syntax of the application of effectful combinators. The
main idea underneath most of them is to extend the lan-
guage with special syntactic forms, that are mechanically
rewritten into calls of effectful combinators.
In this paper we present scala-workflow, a syntactic ex-

tension for the Scala programming language, available for
download at https://github.com/aztek/scala-workflow.
Unlike most similar extensions in other programming lan-
guages, scala-workflow does not simply expand the ex-
pression according to syntax-driven transformation rules,
but employs type information of subexpressions to direct
the rewriting process. Ultimately, scala-workflow allows
users to transparently blend effectful and pure computa-
tions, which otherwise would require manual separation and
more boilerplate code.
To illustrate this approach, let us give an example of com-

position of asynchronous computations built with Scala’s
concurrent.Future class. Here, two potentially slow com-
putations F() and G(x: Int), producing integers, are placed
inside the future call to create future objects.

val f: Future[Int] = future { F() }
def g(x: Int): Future[Int] = future { G(x) }

With scala-workflow the arithmetic expression that com-
bines the results of f and g can be expressed in direct style.
The result is a future object that waits for the execution of
f, supplies its incremented value to g and doubles the result.

context[Future] {
$(2 * g(f + 1))

}

35

The arithmetic expression is put inside the $ macro that
bounds the scope of rewriting and the context declaration
that specifies the type of computational effect. Whereas ad-
dition and multiplication, applied to future objects, do not
type check in ordinary Scala, they are correctly used with
our extension, because the macro expansion takes place be-
fore the type checking. The produced well-typed expression
uses calls to methods bind and map of the object future_
that implements the treatment of effects similarly to Future’s
own flatMap and map.

future_.bind(
(x$1: Int) ⇒

future_.map(
(x$2: Int) ⇒

2 * x$2
)(g(x$1 + 1))

)(f)

The $ macro notation is different from the usual way of
expressing composition of futures in Scala with for-compre-
hension, as illustrated by the snippet below.

for {
x ← f
y ← g(x + 1)

} yield 2 * y

Note that one has to separate monadic bindings from pure
multiplication and name intermediate results, which was not
needed with scala-workflow.
Unlike for-notation, scala-workflow is not tied to mon-

ads. An elaborate rewriting algorithm enables uniform syn-
tax for different computation types. For example, applica-
tive functors receive syntactic support with the same $ macro
as long as the expression inside does not require handling
effects that exceed their capabilities. The next snippet pro-
duces a stream, built by summing elements standing on the
same position in streams xs, ys and zs, using zipStream,
Scala’s counterpart of Haskell’s zipList idiom.

context(zipStream) {
$(xs + ys + zs)

}

The fitness of the computation type is checked statically
and the rewriting algorithm always rewrites the expression
in a way that requires the least powerful computation type
sufficient to express the computation.
In what follows, we first describe related work in Section 2.

Section 3 overviews the main features of scala-workflow.
Next, a number of use cases are detailed in Section 4. Sec-
tion 5 addresses further improvements and Section 6 con-
cludes the paper.

2. RELATED WORK
Perhaps the most famous syntactic extension for monadic

computations is Haskell’s do-notation [12]. It is based on
mechanical translation of monadic bindings within a do block
into calls of monadic >>= and >>. Pure and effectful bindings
end up syntactically separated, as the former are defined ex-
plicitly as let-expressions.
The do-notation influenced similar syntactic extensions in

other programming languages, such as perform-notation in
OCaml [5] or let!-notation in Common Lisp [23]. Scala

provides its counterpart known as for-expressions [17]. The
principal idea remains the same, however Scala supports
more versatile syntax and therefore employs a variety of
combinators, such as map, flatMap, withFilter and foreach.
Due to the lack of a built-in interface for monads in Scala,
for-expressions expect an object to implement methods with
appropriate names and types. Again, pure bindings are syn-
tactically distinguished from effectful ones.
A generalization of the list comprehension syntax [27],

known as monad comprehension [28] is available in Haskell.
It allows to shrink multiple monadic bindings into a one-
line expression, that can further be refined with projection
and grouping functions. This can be a better alternative to
do-notation for certain applications [8].
Together with the original definition of idiom, the nota-

tion of idiom brackets was introduced. They essentially un-
clutter the syntax of application of pure function to effect-
ful arguments. Idiom brackets are now available in Idris [2]
and Strathclyde Haskell Enhancement [14]. A proposal1 has
been made to add support for applicative syntax resembling
do-notation to GHC. scala-workflow trivially supports id-
iom brackets by implementing a more general notation.
Petricek and Syme proposed a more elaborate approach

to effectful syntax [20]. Their result, called computation
expression, is available as part of the F# programming lan-
guage [19]. The idea behind it is to extend the syntax
of the language with effectful counterparts of some of the
keywords, such as let, return and yield (correspondingly,
let!, return! and yield!) and use them to demarcate ef-
fectful computations in a context, bounded by the scope of
a computation builder. The content of the bounds is then
translated, again in a purely syntactic manner, to calls of
builder methods. What makes this approach more refined
is that the builder is merely a stackable set of methods,
that mirror the features of the language (for example, While
method for loops, TryWith for exceptions and Delay for lazy
computations). We borrow this idea in scala-workflow to
a certain extent, but put it in a setting where no extension
of the host language is needed.
A macro-based approach to the implementation of a syn-

tactic extension for asynchronous computations has been
taken in async [9] by Haller and Zaugg. The code is put
inside the async macro call with the await function call de-
noting asynchronous subexpressions. Crockett’s effectful
[6] library generalizes this approach to arbitrary monads.
The approach taken in scala-workflow essentially allows
to get rid of explicit annotations of effectful subexpressions
by inferring them automatically during macro expansion.
Both async and effectful, however, support wider subset
of language features of Scala, allowed in the annotated block
of code, including conditional expressions, loops and pattern
matching.
A somewhat generalized translation, discriminating pure

from effectful expressions, was implemented in Scala’s ex-
tension for delimited continuations [21]. It employs selec-
tive CPS transformation driven by type and effect system
based on @cps type annotations. Effectful monadic compu-
tations can be expressed in direct style with this framework,
provided that the user reflects monadic values explicitly by
passing continuations to underlying bind operations. The
translation procedure, presented in this work, employes a
1https://ghc.haskell.org/trac/ghc/wiki/
ApplicativeDo

36

similar style of type-directed transformation, however, is is
driven by effectful type constructors, marking effectful ex-
pressions, rather than type annotations. This approach en-
ables less boilerplate, but loses type safety of the input code.
Swamy et al. [24] introduced the type-directed extension

to ML for monadic programming. This work implements a
similar technique for Scala, but additionally employs special
analysis of dependencies between effectful expressions that
enables support of the whole hierarchy of computation types
rather than just monads.

3. OVERVIEW
The implementation of scala-workflow is built with Scala’s

compiler-time macro system. Shortly after its inception in
2012 [4], it has proved [3] to be a productive infrastructure
for a number of programming techniques, such as language
virtualization, deeply embedded DSLs and boilerplate gen-
eration. scala-workflow employs untyped macros, one of
the macro flavors of the Macro Paradise2 project. This ap-
proach is different from extensions to other languages, com-
monly implemented at the compiler level, and allowed us to
obtain a modular and extensible implementation.
The main language feature, provided by the library is

workflow brackets, syntactically represented as $ macro func-
tion. The code that is put inside the brackets is freed from
the boilerplate, needed for the treatment of effects, while
keeping its logical structure. This freedom allows it not to
pass type checking in Scala. The macro inserts all the nec-
essary combinators and expands into correct code.

3.1 Hierarchy of workflows
The key concept of scala-workflow is a workflow, that is

a structure that collects features of computation types. All
workflows are instances of the Workflow[F[_]] trait where
F[_] is a type constructor that encodes an effect produced
during a computation. The Workflow[F[_]] trait itself does
not provide any methods and is merely an initial point of
extension with new methods coming from derived traits. It
is the calls of these methods that get inserted during rewrit-
ing of the expression inside the workflow brackets. Every
method added to the Workflow[F[_]] corresponds to a lan-
guage feature that can be used in the expression.
Currently scala-workflow supports four traits, that ex-

tend the base trait. All of them make different kinds of
interplay between effectful computations admissible inside
the brackets.
Method point enables the brackets not to contain any

effectful computations at all. In such case the expression
inside the brackets simply becomes the argument of point.
Note, that point corresponds to Haskell’s monadic return
and applicative pure.
trait Pointing[F[_]] extends Workflow[F] {

def point[A](a: ⇒ A): F[A]
}

As a running example, consider the workflow instance
option of type Workflow[Option] that treats the partial
nature of computations with Option as effect.
Thus, the expression such as $(42) gets rewritten into

option.point(42), because 42 is a value, and thus a pure
expression.
2http://docs.scala-lang.org/overviews/macros/
paradise.html

Method map enables the brackets to contain exactly one
effectful expression. As the name suggests, this method cor-
responds to a functor’s map.

trait Mapping[F[_]] extends Workflow[F] {
def map[A, B](f: A ⇒ B): F[A] ⇒ F[B]

}

In the context of the option workflow, a safe floating point
division function divide can be seen as an effectful compu-
tation.

def divide(x: Double, y: Double): Option[Double] =
if (y == 0) None else Some(x / y)

To safely calculate an expression, such as 1 + n
m

for any
n and m, one can simply write $(1 + divide(n, m)). The
implementation of option propagates the effect of the ab-
sence of return value when m = 0, so that the whole expres-
sion would be evaluated to None in such case. The produced
expression is the following one.

option.map(
(x$1: Double) ⇒

1 + x$1
)(divide(n, m))

An expression with more than one effectful subexpression,
such as divide(n, m) + divide(p, q), can not appear in-
side the brackets of a workflow that only implements map.
Method app, however, allows the brackets to contain an

arbitrary positive number of independent effectful expres-
sions. It is a generalization of map, therefore Applying ex-
tends Mapping. It corresponds to Haskell’s applicative <*>
operator.

trait Applying[F[_]] extends Workflow[F]
with Mapping[F] {

def app[A, B](f: F[A ⇒ B]): F[A] ⇒ F[B]
}

Generally speaking, Applying is capable of lifting [10]
the application of a pure function over effectful arguments.
Thus, the expression $(divide(n, m) + divide(p, q)) can
be rewritten with a combination of app and map.

option.app(
option.map(

(x$1: Int) ⇒ (x$2: Int) ⇒
x$1 + x$2

)(divide(n, m))
)(divide(p, q))

To illustrate the concept of dependence between effect-
ful computations, consider an expression divide(divide(n,
m), k). Here, the result of the outermost divide can only
be obtained after the result of the innermost divide is known
and computational effect during its execution has been treat-
ed. This was not the case with the previous examples, where
the order of evaluation of effectful expressions was not spec-
ified. Methods app and map are not capable of expressing
this kind of structured evaluation.
Finally, method bind enables the brackets to contain a

pair of dependent effectful expressions. It corresponds to
Haskell’s (>>=) and Scala’s flatMap.

trait Binding[F[_]] extends Workflow[F] {
def bind[A, B](f: A ⇒ F[B]): F[A] ⇒ F[B]

}

37

Nested divide calls are allowed in a workflow with bind.

option.bind(
(x$1: Double) ⇒

divide(x$1, k)
)(divide(n, m))

It is of course easy to compose more common abstractions
of a functor, an idiom and a monad by mixing traits with ap-
propriate methods, effectively forming a hierarchy of these
structures. scala-workflow elaborates on it slightly more
by adding semigroupoids to the picture. This is a concept,
much like functors and monads, borrowed from category
theory [1]. Informally, semi-monads and semi-idioms are
respectively monads and idioms without the point method.

trait Functor[F[_]] extends Mapping[F]

trait SemiIdiom[F[_]] extends Functor[F]
with Applying[F]

trait Idiom[F[_]] extends SemiIdiom[F]
with Pointing[F] {

def map[A, B](f: A ⇒ B) = app(point(f))
}

trait SemiMonad[F[_]] extends SemiIdiom[F]
with Binding[F]

trait Monad[F[_]] extends Idiom[F]
with Binding[F] {

def app[A, B](f: F[A ⇒ B]) =
bind(a ⇒ bind((g: A ⇒ B) ⇒ point(g(a)))(f))

}

Note that we are able to provide default implementations
for map in Idiom and both map and app in Monad. Using
these aliases we can define workflows in the same manner
we would have defined idioms and monads in other func-
tional languages. The example below illustrates possible
implementation of option.

val option = new Monad[Option] {
def point[A](a: ⇒ A) = Option(a)
def bind[A, B](f: A ⇒ Option[B]) = {

case Some(a) ⇒ f(a)
case None ⇒ None

}
}

The important thing from the scala-workflow perspec-
tive, however, is that the option instance has methods point,
map and app (that is, it implements correspondent traits,
mixed to Workflow[Option]), because this is what will be
checked during expression rewriting.

3.2 Context declaration
While workflow brackets scope the bounds of expression

rewriting, a context declaration scopes the bounds of work-
flow instance application.
A context declaration is a macro context, that tells work-

flow brackets inside of it which workflow instance will pro-
vide methods, generated after expression rewriting. The
first argument of context is either a workflow instance ex-
plicitly, or a type constructor, such that there is a workflow

instance available in the implicit scope. The second argu-
ment is an expression, where all workflow brackets will be
rewritten to method calls of the declared workflow instance.
To trigger rewriting of the expression in the brackets,

the example from the previous section should be put inside
context declaration.

context(option) {
$(1 + divide(n, m))

}

scala-workflow is shipped with a library of workflow in-
stances for commonly used classes, including that of type
Workflow[Option]. Moreover, most of the instances are de-
fined with the implicit keyword. The following snippet
summons option from the implicit scope and is equivalent
to the previous one.

context[Option] {
$(1 + divide(n, m))

}

In some cases the whole body of context is directly a block
of code put in the workflow brackets. Alias macro workflow
is defined specifically for that. Similarly to context it takes
either the workflow instance object or the type constructor
reference. Once again, the following snippet is equivalent to
the previous ones.

workflow[Option] {
1 + divide(n, m)

}

The choice between the context and the workflow is en-
tirely up to the user. Examples in Section 4 feature both
declarations.

3.3 Expression rewriting
Translation of the expression inside the $ macro into calls

of workflow methods is done in two stages. First, the bind-
ings elimination algorithm replaces all effectful subexpres-
sions inside the expression with synthetic unique identifiers,
building the graph of dependencies between subexpressions
along the way. Then the rewriting algorithm generates ap-
propriate workflow method calls based on the number and
connection between collected effectful bindings.
The bindings elimination algorithm works with a given

expression in a given workflow context. It takes the untyped
syntax tree of the expression (it might not necessarily type
check in regular Scala) and produces a graph of variable
bindings together with a type-correct expression modulo the
absence of effects. Steps of the algorithm:

1. Traverse nodes of the syntax tree in post-order (sub-
nodes are visited before the root). The initial scope of
effectful bindings is empty.

2. While visiting the node, check its type in the lexical
scope of bindings. If the type corresponds to the type
of the effect in the given workflow context (that is, it
is F[A] for some A in the context Workflow[F[_]]),
generate a unique identifier, save the binding between
identifier and the node and replace the node with the
identifier reference. Otherwise, leave the node as it is.

3. Traverse the outermost nodes until the top level of the
expression is reached.

38

As a working example consider a computation in the option
workflow, that, as discussed previously, can be expressed
with methods map and app.

workflow(option) {
2 * divide(1, 3) + 4 * divide(5, 6)

}

The binding elimination algorithm starts with the leaves,
numbers in this case. All of them are of type Int, so it
continues. Type checking divide(1, 3) returns the type
Option[Double], that corresponds to the effectful type con-
structor Option. The newly created identifier x$1 has the
type Double and points to the expression divide(1, 2).
The rewritten expression 2 * x$1 has the type Double. In
the same way, divide(5, 6) yields the new binding x$2 of
the type Double. The rewritten expression 4 * x$2 has the
type Double and so does the whole expression altogether.
The result of the algorithm is a partially rewritten expres-
sion and a table of bindings.

2 * x$1 + 4 * x$2

Id Type Body
x$1 Double divide(1, 3)
x$2 Double divide(5, 6)

The synthetic variables are independent: x$1 does not ap-
pear in the body of x$2 and x$2 does not appear in the body
of x$1. The rewriting algorithm then produces a combina-
tion of methods appropriate to express the computation, app
and map in this case.

option.app(
option.map(

(x$1: Int) ⇒ (x$2: Int) ⇒
2 * x$1 + 4 * x$2

)(divide(5, 6))
)(divide(1, 3))

In the second example consider a snippet of code in the
option workflow that involves the result of one effectful com-
putation that is needed for another one. It requires option
to support bind and map to rewrite this expression.

workflow(option) {
2 * divide(divide(3, 4), 5)

}

The binding elimination algorithm type checks the num-
bers first, then generates the new identifier x$1 of type
Double for the node divide(3, 4). Type checking the ex-
pression divide(x$1, 5) returns Option[Double], which
produces another binding x$2. Eventually, the whole par-
tially rewritten expression type checks to Double.

2 * x$2

Id Type Body
x$1 Double divide(2, 3)
x$2 Double divide(x$1, 4)

Note that this time x$2 depends on x$1, in order to eval-
uate x$2 we have to evaluate x$1 first. The notion of depen-
dency between effectful expressions requires the bind oper-
ator and the rewriting algorithm produces a combination of
bind and map.

option.map(
(x$2: Double) ⇒

2 * x$2
)(option.bind(

(x$1: Int) ⇒
divide(x$1, 5)

)(divide(3, 4)))

The rewriting algorithm is limited to the language features
of Scala admissible inside the expression. The currently sup-
ported subset includes atomic values, function applications
and blocks of val-expressions.
The translation of the expression consists of a series of

type checking and rewritings. Should there be a type error
during the translation, scala-workflow aborts the compi-
lation and tries to present the error clearly and with suffi-
cient detail. As an example, the snippet below mistakenly
multiplies a string by a number. A type error occurs when
two bindings are eliminated, leaving the expression partially
rewritten.

workflow(option) {
"2" * divide(divide(3, 4), 5)

}

The error message presents the expression that failed to
type check, all the bindings, their types and the expressions
they point to.

error: type mismatch;
found : Double
required: Int

"2".$times(x$2)

where

x$1: Double <- divide(3, 4)
x$2: Double <- divide(x$1, 5)

Type error during rewriting of expression
within Option context

workflow(option) {
^

3.4 Composition of workflows
It is usually the case that type constructor F[_] encodes

a single effect produced by a computation. Multiple effects
can be expressed with composition of effectful type construc-
tors. At the same time, expressing composition of workflows
might not be an easy task.
Syntactically, scala-workflow provides the binary opera-

tor $ as a uniform notion for composition of workflows. That
is, if f is Workflow[F[_]] and g is Workflow[G[_]], f $ g
is Workflow[F[G[_]]3.
However, composition of workflows requires knowledge

about their structure, therefore the $ operator is defined
separately for every computation type rather than generally
in the Workflow[_] trait.
Composition of functors is separated from the interface of

a functor and defined in the FunctorComposition trait, that
is mixed to the Functor trait.
3Hereinafter, the notation for composition of type construc-
tors is deliberately shortened for typographical reasons. The
correct notation would use type level λ-function and in this
case would be {type λ[α] = Workflow[F[G[α]]]}#λ.

39

trait FunctorComposition[F[_]] { f: Functor[F] ⇒
def $ [G[_]](g: Functor[G]) =

new Functor[F[G[_]]] {
def map[A, B](h: A ⇒ B) = f map (g map h)

}
def & [G[_]](g: Functor[G]) = g $ this

}

Method & behaves as $ with the arguments flipped. For
any functors f and g, f $ g is equivalent to g & f.
Traits SemiIdiomComposition and IdiomComposition are

defined in the same way. The fact that functors, semi-idioms
and idioms form a hierarchy has a pleasant side effect here.
It is possible to compose workflows of different classes; the
resulting workflow will implement the weaker class of the
two. The dynamic dispatch mechanism in Scala guarantees
to choose the method from the right trait. For example, if
f is Functor[F[_]] and g is Idiom[G[_]], f $ g becomes
Functor[F[G[_]]], since functors are weaker than idioms.
While it is possible to provide a generic implementation

for composition of pairs of functors, semi-idioms and idioms,
no such implementation exists for pairs of arbitrary semi-
monads and monads. A common strategy in the latter case
employs monad transformers [13]. To maintain a uniform
syntax of workflow composition we would like, in a simi-
lar manner, to define the MonadComposition trait, provid-
ing methods $ and &. The implementation of one of these
methods would work as a monad transformer. However,
some transformers, such as StateT, do not build a direct
composition of type constructors and therefore cannot be
expressed in this notation. In such cases composition must
be expressed manually using a different operator.
Most monads only have a transformer for one of the meth-

ods $ and &. For that reason, scala-workflow refines the
interface of monad composition by introducing the notion of
left-composable and right-composable monads.

LeftMonad[F[_]] denotes a monad, capable of provid-
ing an implementation of the $ method. Its counterpart
RightMonad[F[_]] provides the & method.

trait LeftMonad[F[_]] extends Monad[F] {
def $ [G[_]](g: Monad[G]): Monad[F[G[_]]]
override def $ [G[_]](g: RightMonad[G]) =

$(g.asInstanceOf[Monad[G]])
}
trait RightMonad[F[_]] extends Monad[F] {

def & [G[_]](g: Monad[G]): Monad[G[F[_]]]
override def & [G[_]](g: LeftMonad[G]) =

&(g.asInstanceOf[Monad[G]])
}

The definition of a monad that supports composition is
done in one place, implementation of the monad transformer
is provided as part of the interface. For example, reader[E]
and accumulator[M] workflows (counterparts of Haskell’s
Reader and Writer monads) are defined as LeftMonad and
RightMonad correspondingly.
Finally, the MonadComposition trait implements methods

$ and &, provided that the argument is a monad, capable to
compose or be composed.

trait MonadComposition[F[_]] { f: Monad[F] ⇒
def $ [G[_]](g: RightMonad[G]) = g & this
def & [G[_]](g: LeftMonad[G]) = g $ this

}

For every two monads f and g, composition f $ g is a
monad only when either f is left-composable or g is right-
composable. Similarly, f & g is a monad when f is right-
composable or g is left-composable.
The exact same notion of left- and right- composability is

implemented for semi-monads.
Once again, the hierarchy of functors, idioms and monads

allows to compose workflows of all these classes using the
same syntax. The resulting workflow will implement the
weaker interface of the two operands. As an example, con-
sider the composition of the workflow map[T], that captures
computations over values of hash maps with keys of type T
and option. While option implements RightMonad, map[T]
is only a functor, so composition map[String] $ option is
a functor as well. It corresponds to the type constructor
Map[String, Option[_]].

4. USE CASES
We argue that scala-workflow can assist in a number

of applications. In this section we present a series of case
studies, employing features of the extension.

4.1 Boilerplate elimination
Following the example given in [15] for idiom brackets, we

present an enhanced implementation of an evaluator for a
language of expressions, that abstracts the variable environ-
ment and the propagation of failure of environment lookup.
The definition of the abstract syntax of expressions with

variables and addition is given as an algebraic data type.

sealed trait Expr
case class Var(id: String) extends Expr
case class Val(value: Int) extends Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr

Variables are fetched from the environment of type Env.
Function fetch looks up a variable in the environment and
either returns an integer or fails, which is encoded as a value
of type Option[Int].

type Env = Map[String, Int]
def fetch(x: String)(env: Env) = env.get(x)

The evaluator of the expression in the given environment
is simply a function of type Expr ⇒ Env ⇒ Option[Int].

def eval(expr: Expr)(env: Env): Option[Int] =
expr match {

case Var(x) ⇒ fetch(x)(env)
case Val(n) ⇒ Some(n)
case Add(x, y) ⇒ for {

lhs ← eval(x)(env)
rhs ← eval(y)(env)

} yield lhs + rhs
}

This implementation can be improved. Note, that one
has to explicitly pass the environment around and to have
rather awkward syntax to propagate failure in the Add case.
Both concerns can be addressed by encapsulation the boil-
erplate in an appropriate workflow. Here function[A] rep-
resents a workflow of a function with a fixed argument of
type A, equivalent to Haskell’s (a ->) monad. We compose
function[Env] and option to build a workflow for type con-
structor Env ⇒ Option[_].

40

The body of the function can now be put inside context
declaration.

def eval: Expr ⇒ Env ⇒ Option[Int] =
context(function[Env] $ option) {

case Var(x) ⇒ fetch(x)
case Val(n) ⇒ $(n)
case Add(x, y) ⇒ $(eval(x) + eval(y))

}

This new notation enables separation of concerns between
evaluation strategy, environment handling and failure prop-
agation, as the latter two are hidden in the implementation
of corresponding workflow objects. This effectively reduces
the amount of boilerplate code in this example.

4.2 Domain-specific languages
scala-workflow can be used as a syntactic enhancement

for embedded domain-specific languages. In this example,
it assists a simple framework for demand-driven functional
reactive programming [7].
The Cell trait defines a unit of data, that can be assigned

with := and fetched with !. Cells can depend on each others
values, much like they do in spreadsheets.

trait Cell[T] {
def ! : T
def := (value: T)

}

Cell has an instance of Idiom, such that point creates a
source cell, that stores a value and allows to change it and
app creates an observer cell, that takes the value of some
other cell to compute its own. Reassigning observer cells
does not make sense, hence the exception.

val frp = new Idiom[Cell] {
def point[A](a: ⇒ A) = new Cell[A] {

private var value = a
def := (a: A) { value = a }
def ! = value

}
def app[A, B](f: Cell[A ⇒ B]) =

a ⇒ new Cell[B] {
def ! = f!(a!)
def := (value: T) {

throw new UnsupportedOperationException
}

}
}

A value, independent of values of any cells, put inside $,
will be translated to point and effectively act as a source
cell, whereas an expression that combines values of cells be-
comes an observer cell.

context(frp) {
val a = $(10)
val b = $(5)
val c = $(a + b * 2)
println(c!)
b := 7
println(c!)

}

Dereferencing a cell makes it reevaluate the whole tree of
dependent cells. The snippet above will print 20 and 24.

4.3 Transparent exception handling
Consider an example of a program that parses XML doc-

ument fetched from the web. Each step of the program can
end in an error. The provided address might not be a valid
URL, we might not be able to fetch the page over the net-
work or the contents of the page might not be correct XML.
One way to implement these failing functions is through the
use of exceptions, that guarantee that the execution will not
go further than the point of the error.

def fetchXML(address: String): XML = {
val url = URL.fromString(address)
val page = Page.fetch(url)
val contents = page.getContents
XML.fromString(contents)

}

Unlike Java, Scala does not support checked exceptions,
therefore the compiler is unable to distinguish between func-
tions that do and do not throw exceptions (in other words,
effectful and pure). Following the spirit of statically typed
functional programming, one might want to promote the
effect of the exception to the type level. For that reason
Scala 2.10 offers the scala.util.Try monad, that stores ei-
ther the result of a computation or a Throwable object that
represents a failure. Achieving the lofty goal of making ex-
ception effects explicit, however, stumbles on the syntactic
awkwardness of monadic exception handling.
In the following snippet, effectful methods URL.fromString,

Page.fetch and XML.fromString are assumed to return val-
ues wrapped in Try instead of throwing an exception.

def fetchXML(address: String): Try[XML] =
for {

url ← URL.fromString(address)
page ← Page.fetch(url)
contents = page.getContents
xml ← XML.fromString(contents)

} yield xml

It takes more that just a syntactic transformation to han-
dle Try. One has to inspect the types of val expressions to
separate effectful binds from pure values assignments and
insert either ← or = operators. Moreover, one has to exces-
sively name the intermediate results of the computation.
Putting the code in the workflow[Try] context makes the

code syntactically equivalent to its exception-based version.

def fetchXML(address: String): Try[XML] =
workflow[Try] {

val url = URL.fromString(address)
val page = Page.fetch(url)
val contents = page.getContents
XML.fromString(contents)

}

The workflow definition workflow[Try] syntactically re-
sembles try keyword. One can further apply Try’s recover
method to mirror the whole try/catch expression. The re-
sult of the function, however, would still be wrapped in Try.

4.4 Imperative functional programming
Programs in functional languages can gain clarity with

imperative syntax using scala-workflow. This example
shows how computations, interspersed with logging can be
expressed in a purely functional manner and at the same

41

time have the same syntactical structure as imperative code
with log writes as side effects.
We represent logging as a workflow for type constructor

(_, List[String]), where the first argument of the pair is
the result of a computation and the second one is a list of
log messages. A built-in implementation of such workflow is
accumulator[M]. It is similar to Haskell’s Writer monad.

val logging = accumulator[List[String]]

Every function that intends to write to a log inside a
logging workflow should produce a pair of the result value
and a list of messages, generated during its computation.

def mult(x: Int, y: Int) =
(x * y, List(s"Calculating $x * $y"))

A function that does not perform any computation and
simply writes to the log has the type (Unit, List[String]).

def info(message: String) = (Unit, List(message))

Now, wrapping the code in a logging workflow allows to
intersperse pure and effectful functions.

val (result, log) = workflow(logging) {
info("Assigning x to 2")
val x = 2
info("We are about to multiply by 3")
val triple = mult(3, x)
info("We are about to calculate something complex")
val cube = mult(mult(x, x), x)
val sum = cube + triple
info("Actually, only half of it was needed")
sum / 2

}

The outcome of the evaluation is a pair of the result value
7 and the accumulated list of log messages.

List("Assigning x to 2",
"We are about to multiply by 3",
"Calculating 3 * 2",
"We are about to calculate something complex",
"Calculating 2 * 2",
"Calculating 4 * 2",
"Actually, only half of it was needed")

Note, that we got imperative-looking code implemented
in a purely functional subset of the language. No mutable
state or side effects were involved in this example.

5. FUTURE WORK
There is a number of directions, where scala-workflow

can be further improved. They are left for future work.
Up-to-date implementation. As it was mentioned be-

fore, the current implementation of scala-workflow em-
ploys untyped macros. Their distinctive feature is that the
macro expansion is performed before type checking, which is
crucial for the type-driven algorithm. Unfortunately for us,
untyped macros were discontinued4 and are no longer sup-
ported in Macro Paradise. A sensible replacement should
be macro annotations, that are also expanded before type
checking. However, being on the cutting edge of Macro Par-
adise development, they are not mature enough to support
4http://scalamacros.org/news/2013/08/05/
macro-paradise-2.0.0-snapshot.html

scala-workflow as of now. Specifically, there are prob-
lems with visibility of declarations from the current scope of
the macro, that present an obstacle for the implementation.
They are expected to be solved in the future.5
An annotation-based implementation will replace context

and workflow macros with synonymous annotation macros.

@workflow[List] val x = List(1, 2) * List(4, 5)

The syntax of composition of workflows will remain the
same, since a workflow object could be passed explicitly as
an annotation argument.

@context(function[Env] $ option)
def eval: Expr ⇒ Env ⇒ Option[Int] = {

case Var(x) ⇒ fetch(x)
case Val(n) ⇒ $(n)
case Add(x, y) ⇒ $(eval(x) + eval(y))

}

Wider subset of Scala. The current implementation
is rather conservative with respect to Scala features it sup-
ports. This is a deliberate choice, however in the future we
hope to support a wider subset of Scala features, such as
loops, exceptions and lazy evaluations. A possible imple-
mentation would include adding more basic workflow traits
with corresponding rewriting rules, similarly to F#.
Context inference. scala-workflow generally reduces

the amount of boilerplate code needed to support effectful
computations. It can be reduced even more in the case of
simple one-line expressions. For example, it could have been
inferred that the expression List(1, 2, 3) + 4 should be
evaluated in the Workflow[List] context and avoid wrap-
ping $(List(1, 2, 3) + 4) in the context declaration ex-
plicitly. However, a few problems need to be solved.
It is generally not clear which type constructor should be

chosen in case it is a subtype of another type constructor.
For example, the expression Some(42) would be expected to
be evaluated in the Workflow[Option], yet it has the type
Some[Int], which is a subtype of Option[Int].
Moreover, when the type of the expression is built from a

type constructor applied to more than one argument it might
be ambiguous, which of them should be fixed. For example,
an expression of type Either[A, B] can be evaluated both
in the workflow of Either[A, _] and Either[_, B].
Workflow inference. As noted before, Scala’s standard

library does not explicitly have a Monad interface, but rather
the expansion of for-expressions expects an object to have
map, flatMap and filter methods. Hence, scala-workflow
has to have a trivial workflow implementation for every class
with a monadic interface that follows this convention, which
affects extensibility of the library. An alternative approach
could be to automatically infer a SemiMonad instance in case
the map and flatMap methods are present in the class.
Other formalisations of effects. Despite the focus on

the abstract methods of the Workflow trait rather than spe-
cific algebraic structures, scala-workflow is still heavily in-
fluenced by the famous functor/idiom/monad hierarchy of
computation types. It would be interesting to see if our
approach to syntactic extensions could be adapted to other
formalisations of effects, particularly to comonads [26] and
codo-notation [18], and also if both formalisations can be
unified in one extension.
5http://scalamacros.org/news/2014/04/21/
macro-paradise-2.0.0-final.html

42

6. CONCLUSIONS
The main contribution of this work is scala-workflow, a

macro-based syntactic extension for Scala.
The choice of an abstract Workflow interface instead of

predefined interfaces for computation types enables a uni-
form syntax for all computation types that can be expressed
with methods available for extension. It also leaves space for
further extensions, that can facilitate support of Scala fea-
tures, not available with the current implementation.
The type-directed expression rewriting algorithm allows

users to transparently blend effectful and pure functions in
a bounded context. This offers a trade-off between an ex-
plicit structure of effects and syntactic flexibility. We argue
that the latter can provide better separation of concerns,
because the program maintains its logical structure, while
effect handling ends up being hidden inside a workflow in-
stance implementation.
The most similar approach was taken in F#’s computa-

tion expressions. The key distinction of scala-workflow is
that it does not need an extended set of keywords for mark-
ing effectful computations. Moreover, it is implemented not
as a compiler extension, but rather as a macro-based library,
that operates with syntax trees and the type checker API.

scala-workflow primarily aims to enhance the syntax of
effectful computations. At the same, a type constructor in
the given workflow implementation is not required to seman-
tically capture computational effects, it can simply represent
a generic data structure. This makes scala-workflow suit-
able for a wide range of monadic and applicative domain-
specific languages.

7. ACKNOWLEDGMENTS
This work was partially supported by the Swedish VR

grant D0497701. The author would like to thank Philipp
Haller and anonymous reviewers for their valuable comments
and suggestions to improve the quality of this paper.

8. REFERENCES
[1] M. Barr and C. Wells. Category Theory for Computing

Science. Prentice-Hall International Series in
Computer Science. Prentice Hall, New York, 1990.

[2] E. Brady. Idris, a general-purpose dependently typed
programming language: Design and implementation.
Journal of Functional Programming, 23(05):552–593,
2013.

[3] E. Burmako. Scala macros: Let our powers combine!
In Proceedings of the 4th Workshop on Scala. ACM,
2013.

[4] E. Burmako and M. Odersky. Scala Macros, a
Technical Report. In Third International Valentin
Turchin Workshop on Metacomputation, number
EPFL-CONF-183862. Citeseer, 2012.

[5] J. Carette, L. E. van Dijk, and O. Kiselyov. Syntax
extension for monads in OCaml.
http://www.cas.mcmaster.ca/˜carette/pa_monad,
2008.

[6] T. Crockett. Effectful — A syntax for type-safe
effectful computations in Scala.
https://github.com/pelotom/effectful, 2013.

[7] C. M. Elliott. Push-pull functional reactive
programming. In Haskell, pages 25–36, 2009.

[8] G. Giorgidze, T. Grust, N. Schweinsberg, and
J. Weijers. Bringing back monad comprehensions. In
Haskell, pages 13–22, 2011.

[9] P. Haller and J. Zaugg. SIP-22 — Async.
http://docs.scala-lang.org/sips/pending/async.html.

[10] R. Hinze. Lifting Operators and Laws. Available at
http://www.comlab.ox.ac.uk/ralf.hinze/Lifting.pdf,
2010.

[11] M. P. Jones. A system of constructor classes:
Overloading and implicit higher-order polymorphism.
In FPCA, pages 52–64, 1993.

[12] S. P. Jones, J. Hughes, L. Augustsson, D. Barton,
B. Boutel, W. Burton, J. Fasel, K. Hammond,
R. Hinze, P. Hudak, et al. Report on the programming
language Haskell 98, 1999.

[13] D. J. King and P. Wadler. Combining monads. pages
134–143, 1992.

[14] C. McBride. The Strathclyde Haskell Enhancement.
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/,
2009.

[15] C. McBride and R. Paterson. Applicative
programming with effects. J. Funct. Program.,
18(1):1–13, 2008.

[16] E. Moggi. Notions of computation and monads. Inf.
Comput., 93(1):55–92, 1991.

[17] M. Odersky, P. Altherr, V. Cremet, B. Emir,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,
and M. Zenger. The Scala language specification, 2004.

[18] D. A. Orchard and A. Mycroft. A notation for
comonads. In IFL, pages 1–17, 2012.

[19] T. Petricek and D. Syme. Syntax Matters: Writing
abstract computations in F#. Pre-proceedings of TFP,
2012.

[20] T. Petricek and D. Syme. The f# computation
expression zoo. In PADL, pages 33–48, 2014.

[21] T. Rompf, I. Maier, and M. Odersky. Implementing
first-class polymorphic delimited continuations by a
type-directed selective CPS-transform. ACM Sigplan
Notices, 44(9):317–328, 2009.

[22] L. Rytz, M. Odersky, and P. Haller. Lightweight
polymorphic effects. In ECOOP, pages 258–282, 2012.

[23] D. Sorokin. Monad Macros in Common Lisp.
http://common-lisp.net/project/cl-monad-
macros/monad-macros.htm,
2010.

[24] N. Swamy, N. Guts, D. Leijen, and M. Hicks.
Lightweight monadic programming in ml. In ICFP,
pages 15–27, 2011.

[25] J.-P. Talpin and P. Jouvelot. The type and effect
discipline. In LICS, pages 162–173, 1992.

[26] T. Uustalu and V. Vene. Comonadic notions of
computation. Electr. Notes Theor. Comput. Sci.,
203(5):263–284, 2008.

[27] P. Wadler. List comprehensions. The Implementation
of Functional Programming Languages, pages 127–138,
1987.

[28] P. Wadler. Comprehending monads. In LISP and
Functional Programming, pages 61–78, 1990.

[29] P. Wadler. Monads for functional programming. In
Advanced Functional Programming, pages 24–52, 1995.

43

