ABSTRACT
Connected data such as social networks or business process interactions are frequently modeled as graphs, and increasingly often, stored in graph databases. In contrast to relational databases where SQL is the proven query language, there is no established counterpart for graph databases.

One way to explore and extract data from a graph database is to specify the structure of paths (partial traversals) through the graph.

We show how such traversals can be expressed by combining graph navigation primitives with familiar grammar constructions such as sequencing, choice and repetition – essentially applying the idea of parser combinators to graph traversals.

The result is trails [6], a Scala combinator library that provides an implementation for the neo4j graph database [7] and for the generic graph API blueprints [8].

Categories and Subject Descriptors
H.2.3 [Information Systems]: Database Management—Query Languages; D.1.1 [Software]: Programming Techniques—Applicative (Functional) Programming

General Terms
Languages, Algorithms

Keywords
Scala, graph traversal, parser combinators, graph database, domain specific language

1. INTRODUCTION
Enter the tangled world of Carol where everything centers on friendship and pets. The following graph shows four people, their relationships and their pets:

Carol has a dog and now she is thinking about a cute name. Of course the name should be unique, at least within her circle of friends. She asks herself: "What names did my friends and their friends etc. give their pets?" Here is how she would state that same question after having read this paper:

val friends = V("Carol") ∼ (out("loves") | out("likes")).+
val petNames = friends ~> out("pet") ^^ get[String]("name")

This code defines a traversal through the given graph by specifying the ‘grammar’ of the paths to be followed. It consists of graph navigation steps (V, out) and combinators (∼, ~>, 1, +). Applying petNames yields four results:

(Carol likes Dave ‒→ pet Fluffy, "Fluffy")
(Carol loves Bob ‒→ pet Murphy, "Murphy")
(Carol loves Bob, loves Alice, loves Carol likes Dave ‒→ Fluffy, "Fluffy")
(Carol loves Bob, loves Alice, loves Bob ‒→ pet Murphy, "Murphy")

Each result contains the full path of the traversal plus a designated value, in our case, the name property of the pet.

In this paper we describe how this works:

• We develop the datatype of a graph traverser (2.1).
• We describe a set of functions that allows us to combine graph navigation primitives (2.2) into expressive traversal descriptions (2.3).
• We extend the library by cycle detection (3.1), labeling functionality (3.2) and subqueries (3.3) to allow even more elegant traversals.
2. GRAPH TRAVERSAL COMBINATORS

Step-by-step we develop a graph traversal library. First we shape the type of a traverser.

2.1 The type of traversers

In a first approximation, a traverser \(Tr_1 \) is a function that takes a graph as the input and returns a path as the result. \(Path \) is a list of graph elements that alternate between nodes and edges.

\[
\text{type } \text{Tr}_1 = \text{Graph} \to \text{Path}
\]

There may be more than one path that fits the specification of a traverser – or none at all. We account for this by letting the result be a Stream of paths, as proposed by Wadler [3]. \(\text{Stream} \) allows us to lazily yield result paths on demand rather than to eagerly compute all results.

\[
\text{type } \text{Tr}_2 = \text{Graph} \to \text{Stream}[\text{Path}]
\]

A traverser may start with an empty path, but usually it describes an extension of the preceding path. To model this scenario we extend the type of traverser and add the preceding path as a further input parameter:

\[
\text{type } \text{Tr}_3 = \text{Graph} \to \text{Path} \to \text{Stream}[\text{Path}]
\]

In the end, a traverser might return an arbitrary value besides the path, for example, the value of a property:

\[
\text{type } \text{Tr}_4[\star A] = \text{Graph} \to \text{Path} \to \text{Stream}([\text{Path}, A])
\]

There is no reason to restrict \(\text{Tr}_3 \) to \text{Graph} and \text{Path}. We will see that a traverser may read from any environment \text{E}, it may transform some state \text{S} and it may yield potentially multiple results:

\[
\text{type } \text{Tr}_5[-\text{E}, \text{S}, +\text{A}] = \text{E} \to \text{S} \to \text{Stream}([\text{S}, \text{A}])
\]

In this sense, it is a very general structure. In fact, Hutton’s and Meijer’s monadic parsers [1] are using this type for parsing strings. This is because a List[Char] is a graph:

```
                L
               /|
              i s t   C
             /|
            h a r
```

When parsing text, the state is the string being consumed. In contrast, when traversing a graph, we build up the path, which is the sequence of visited nodes and edges. Depending on the head of a path there are different steps we can next take. On an edge, for example, it makes no sense to ask for outgoing edges which are only available on nodes.

To accommodate this fact, we differentiate between the input state type \text{I} and the output state type \text{O}. This allows us to statically express whether a traverser expects a node or an edge and thereby rejecting meaningless patterns during compilation.

\[
\text{type } \text{Tr}_6[-\text{E}, -\text{I}, +\text{O}, +\text{A}] = \text{E} \to \text{I} \to \text{Stream}([\text{O}, \text{A}])
\]

The above is the type of traversers we will use in the following discussion. It is worth noting that it combines three well known monads:

- **Nondeterminism**: The multiple results of a traverser, represented as a Stream.
- **Indexed-State**: The state which is threaded through – potentially changing its type from \text{I} to \text{O}.
- **Reader**: The read-only environment \text{E} which is passed to each traverser.

Given the type \text{Tr}, we can explore primitive graph navigation traversers as well as grammar-like combinators.

2.2 Traverser primitives

The two most basic traversers are success and fail. success creates a traverser that always succeeds with the given value \(a \), leaving the state untouched. fail is a traverser that contains no results – a dead end, which allows no further traversal:

\[
\text{def success}[\text{E}, \text{S}, \text{A}](a: \text{A}) \Rightarrow \text{Tr}[\text{E}, \text{S}, \text{S}, \text{A}] =
- \Rightarrow s \Rightarrow \text{Stream}((s, a))
\]

\[
\text{def fail}[\text{E}, \text{S}, \text{A}]: \text{Tr}[\text{E}, \text{S}, \text{S}, \text{A}] =
- \Rightarrow - \Rightarrow \text{Stream}()
\]

In a similar fashion, we define the traversers getEnv to read the environment, getState to read the state and setState to write the state. Below are their signatures:

\[
\text{def getEnv}[\text{E}, \text{S}]: \text{Tr}[\text{E}, \text{S}, \text{S}, \text{E}]
\]

\[
\text{def getState}[\text{E}, \text{S}]: \text{Tr}[\text{E}, \text{S}, \text{S}, \text{S}]
\]

\[
\text{def setState}[\text{E}, \text{I}, \text{O}](o: \text{O}) \Rightarrow \text{Tr}[\text{E}, \text{I}, \text{O}, \text{Unit}]
\]

Until now, the presented traversers have not been specific to graph traversal but were primitive building blocks for more specific traversers. We will now focus on the graph-specific navigation traversers for directed graphs which consist of nodes and edges, each with associated key-value pairs. The environment and its corresponding graph-element types are fixed to an implementation-dependent graph API. The accompanying state carries the type of the head of its path\(^1\) as a phantom type:

\[
\text{import org.neo4j.\{graphdb => neo4j\}}
\]

\[
\text{type GraphAPI = neo4j.GraphDatabaseService}
\]

\[
\text{type Elem = neo4j.PropertyContainer}
\]

\[
\text{type Node <: Elem = neo4j.Node}
\]

\[
\text{type Edge <: Elem = neo4j.Relationship}
\]

\[
\text{case class State[+Head <: Elem](path: List[Elem])}
\]

To navigate the graph we propose a few primitives whose names are borrowed from Gremlin [9]. Navigation primitives extend their input path by appending the elements they yield. The following traversers need to be implemented for each specific graph database:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{V, V(id)}</td>
<td>all nodes, node identified by id</td>
</tr>
<tr>
<td>\text{E, E(id)}</td>
<td>all edges, edge identified by id</td>
</tr>
<tr>
<td>\text{outE, outE(t)}</td>
<td>all out-edges, out-edges with tag t(^2)</td>
</tr>
<tr>
<td>\text{inE, inE(t)}</td>
<td>all in-edges, in-edges with tag t(^2)</td>
</tr>
<tr>
<td>\text{outV, inV}</td>
<td>start node, end node of an edge</td>
</tr>
</tbody>
</table>

As an example, we will look at \text{outE}'s function signature:

\[
\text{def outE(tagName: String)} \Rightarrow \text{Tr}[\text{GraphAPI, State[Node], State[Edge], Edge}]
\]

Which has the following expanded return type:

\[
\text{GraphAPI} \Rightarrow \text{State[Node]} \Rightarrow \text{Stream}([\text{State[Edge], Edge}])
\]

This function takes a graph and a path that ends in a \text{Node} and from there it steps onto all outgoing edges with the

\(^1\) In principle, it is sufficient to track only the current position in the graph, however, we are often interested in the trace. \(^2\) \text{neo4j} and blueprints support tagged edges, in contrast to untagged nodes.
given *tagName*. This leads to paths which end in an *Edge*. Together, this edge is then returned with the extended path.

In order to access properties on nodes and edges, the function *get* must be implemented as well:

```scala
def get[A](key: String)(e: Elem): A
```

These primitives will be combined into powerful traversal definitions.

2.3 Traverser combinators

We now want to combine these primitive traversers into complex path expressions, which results again in traversers. This property is key to their compositional nature.

The following table shows the name of those combinators as well as the sugar we provide to concisely express traversals:

<table>
<thead>
<tr>
<th>Function</th>
<th>Sugar</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seq</code></td>
<td><code>a ∼ b</code></td>
<td>First <code>a</code> then <code>b</code></td>
</tr>
<tr>
<td><code>choice</code></td>
<td>`a</td>
<td>b`</td>
</tr>
<tr>
<td><code>opt</code></td>
<td><code>a .?</code></td>
<td>Repeat 0..1</td>
</tr>
<tr>
<td><code>many</code></td>
<td><code>a .*</code></td>
<td>Repeat 0..n</td>
</tr>
<tr>
<td><code>many1</code></td>
<td><code>a .+</code></td>
<td>Repeat 1..n</td>
</tr>
</tbody>
</table>

flatMap is used to sequentially combine any two traversers. It passes through the same environment to both traversers, threads the state through the first traverser into the second one and returns the final states together with the results:

```scala
def flatMap[E,S,A,B](tr: => Tr[E,S,S,B])
(f: A => B): Tr[E,S,S,A] = flatMap(tr)(a => success(f(a)))
def flatMap[E,S,A,B](tr: => Tr[E,S,S,B])
(f: A => B): Tr[E,S,S,Stream[A]] = for(a <- tr; as <- many(tr)) yield a #:: as
```

Note that the inner *flatMap* is called on *Stream*, and how the different input and output state types I, M and O line up - from `[_,I,M,_,_]` and `[_,M,O,_,_]` to `[_,I,0,_,_]`. To allow recursive definitions, all combinators take their traverser arguments by-name.

The function *Tr* together with *flatMap* and *success* becomes a structure that is slightly more general than monadic, due to the state types [4]. Luckily, Scala’s for-comprehension does not worry about this.

Now *map* and *filter*, using *flatMap*, *success* and *fail*, can be implemented as follows:

```scala
def map[E,S,A,B](tr: => Tr[E,S,S,A])
(f: A => B): Tr[E,S,S,B] = flatMap(tr)(a => success(f(a)))
def filter[E,S,A](tr: => Tr[E,S,S,A])
(f: A => Boolean): Tr[E,S,S] = flatMap(tr)(a => if(f(a)) success(a) else fail)
```

There is another, less powerful but often sufficient way to sequentially combine two traversers. *seq* does not use the result of the first traverser to obtain the subsequent traverser as in *flatMap* but simply returns both values in a fancy-looking tuple named `∼`:

```scala
case class ∼[A,B](a: A, b: B)
def seq[E,M,O,A,B](
  fst: => Tr[E,M,M,A],
  snd: => Tr[E,M,O,B]): Tr[E,M,O,∼[A,B]] =
  for(a <- fst; b <- snd) yield new (∼[a,b])
```

The related functions `∼`, `→` and `<←` return the whole tuple, the right-hand-side and the left-hand side. These functions as well as the infix sugar for `map` `^^` are courtesy of Scala’s parser combinators [2, 727–755]. They allow the writing of good-looking sequential compositions of traversers such as `out` which first navigates from a node to an outgoing edge and from there to the target node:

```scala
def out(tagName: String)
: Tr[GraphAPI,State[Node],State[Node],Node]=
  out(tagName) ~> in()
```

In addition to the above sequencing function, a means is needed to express branching: *choice*. Since we are interested in all matching result paths this combinator follows both arguments using the same state and concatenates `#::` their results. This is different to typical combinator parsers which for reason of speed often try the second alternative only if the first one fails:

```scala
def choice[E,I,O,A](
  either: => Tr[E,I,O,A],
  or: => Tr[E,I,O,A]) =
  e => i => either(e)(i) #::: or(e)(i)
```

Now we have all the ingredients to implement `opt`, `many` and `many1`. Note that they restrict their argument traverser to start and end on the same state type `S`. The implementations are straightforward:

```scala
def opt[E,S,A](tr: => Tr[E,S,S,A])
: Tr[E,S,S,Option[A]] =
  choice(success(None), map(tr)(Some[A](_)))
def many[E,S,A](tr: => Tr[E,S,S,A])
: Tr[E,S,S,Stream[A]] =
  choice(success(Stream())), many1(tr)
def many1[E,S,A](tr: => Tr[E,S,S,A])
: Tr[E,S,S,Stream[A]] =
  for(a <- tr; as <- many(tr)) yield a #:: as
```

This concludes the basic functionality of our graph traversal combinators. Improvements to this minimalistic design are discussed in the next section.

3. EXTENSIONS

We now make our traversers cycle-aware and add the ability to label values, which can then be referred to in queries. Finally we show how to implement subqueries.

3.1 Cycle Detection

Consider the following traverser:

V("Alice") ~> (out("loves") | out("likes"))".+

Since there is no inherent ordering of the edges, a possible sequence of result paths could look like this:

```
Alice −−−→ Bob
Alice −−−→ Bob −−−→ Alice −−−→ Bob
Alice −−−→ Bob −−−→ Carol
```

The given implementation would never stop generating longer and longer expansions of the cycle and never yield the following path: Alice −−−→ Bob −−−→ Carol −−−→ Alice.

Note that the queried graph does not need to contain cycles: e.g. (out("pet") ~ in("pet"))".+ is problematic by itself.
In general the application of many and many1 may cause problems. Clearly this behavior is undesirable. Cycles should be detected and handled appropriately. Our implementation adheres to the following definition: If, within an application\(^3\) of many or many1, the repeated traverser yields the same snippet a second time, then it is a cycle. Consistent with our definition this path, Carol \(\xrightarrow{\text{loves}}\) Bob \(\xrightarrow{\text{loves}}\) Alice \(\xrightarrow{\text{likes}}\) Carol \(\xrightarrow{\text{loves}}\) Bob \(\xrightarrow{\text{pet}}\) Murphy, is discarded from the result mentioned in the introduction due to the repeated \(\xrightarrow{\text{loves}}\) Bob snippet. Detecting cycles requires the snippets to be tracked, therefore we extend the state:

```scala
case class State[+Head <: Elem]
  (path: List[Elem], cycles: Set[List[Elem]])
```

For the sake of simplicity our implementation follows cycles only once, which might be returned as part of the result as well.

3.2 Labels

As a further extension, we allow the values that are emitted by a traverser to be labeled. This requires additional state of type `Map[String,List[Any]]` which maps a label to a list of values. Why use a list of values and not just a single value? The answer is that labeling inside a repetition might produce more than one value, or perhaps none at all. For example an application of labels is looking for unhappy lovers – people who love another person but that person does not return this love:

```scala
val unhappyLovers = for {
  beloved <- V.as("lvr") ~ out("loves") ~> out("loves")
  lover <- label("lvr") if !lover.contains(beloved)
} yield lover
```

Executing this query on the introductory graph yields the single node Carol.

3.3 Subqueries

The last extension we implement are subqueries. Essentially subqueries are traversers whose values are preserved while their state changes are discarded. Thus subqueries allow to 'match' patterns without having the matched paths polluting the result. Here is the definition of `sub` which runs its argument `tr` as a subquery and in turn yields the stream of `tr`'s results:

```scala
def sub[E,I,O,A](tr: Tr[E,I,O,A]) :
  Tr[E,1,1,Stream[A]] =
  e => i => Stream((i, tr(e)(i).map(_._2)))
```

Using `sub` we can search for beloved pet owners:

```scala
val belovedPetOwners = for {
  petOwner <- V
  pets <- sub(out("pet")) if pets.nonEmpty
  lover <- in("loves")
} yield (petOwner, lover)
```

This yields (Carol \(\xrightarrow{\text{loves}}\) Bob, (Bob, Carol)) and (Alice \(\xrightarrow{\text{loves}}\) Bob, (Bob, Alice)). Note that the pets do not show up in the result.

4. CONCLUSION

We have developed a simple combinator library to concisely express graph traversals. It is currently being evaluated and extended in the context of a business intelligence project [10]. Ongoing work can be observed on the trails webpage [6].

5. RELATED WORK

To access information stored in graph databases we have found low-level APIs, imperative, embedded graph traversal languages such as the Gremlin family [9] and declarative approaches e.g. Cypher [11] or SPARQL [12]. While others stress expressiveness or good computational complexity [5] trails focuses on simplicity – in terms of an educative value, implementation and application.

6. ACKNOWLEDGMENTS

We would like to thank Marko Rodriguez as well as the anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper.

7. REFERENCES

\(^3\)Top-level applications only, not mutual recursive calls.