
CafeSat: A Modern SAT Solver for Scala

Régis Blanc
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

regis.blanc@epfl.ch

ABSTRACT
We present CafeSat, a SAT solver written in the Scala pro-
gramming language. CafeSat is a modern solver based on
DPLL and featuring many state-of-the-art techniques and
heuristics. It uses two-watched literals for Boolean con-
straint propagation, conflict-driven learning along with clause
deletion, a restarting strategy, and the VSIDS heuristics for
choosing the branching literal. CafeSat is both sound and
complete.

In order to achieve reasonable performance, low level and
hand-tuned data structures are extensively used. We re-
port experiments that show that significant speedup can be
obtained from translating a high level algorithm written in
a relatively idiomatic Scala style to a more C-like program-
ming style. These experiments also illustrate the importance
of modern techniques used by SAT solver. Finally, we eval-
uate CafeSat against the reference SAT solver on the JVM:
Sat4j.

Categories and Subject Descriptors
J6 [Computer-Aided Engineering]: Computer-Aided De-
sign

General Terms
Algorithms, Verification

Keywords
Boolean satisfiability, constraint solving, verification.

1. INTRODUCTION
The Boolean satisfiability problem (SAT) is one of the

most important problem in computer science. From a theo-
retical point of view, it is the first NP-complete problem. On
the practical side, it is used as a target low level encoding for
many applications. Since SAT solvers are well understood
and have been engineered over many years, applications of-
ten choose to rely on them rather than developing a custom

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Scala ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2064-1 ...$15.00.

solver for the domain. Often those SAT solvers are also
an important building block in the more general problem
of constraint solving, and in particular as a basis for SMT
solvers [4].

In the Boolean satisfiability problem, one is given a set
of clauses, where each clause is a set of literals. A literal is
either a propositional variable or the negation of a propo-
sitional variable. The goal is to find an assignment for the
variables such that for each clause, at least one of the literal
evaluates to true. This representation is called Conjunctive
Normal Form (CNF).

In this paper, we present CafeSat, a complete SAT solver
implemented in Scala. CafeSat is strongly inspired by Min-
iSat [3]. CafeSat implements many recent techniques present
in modern SAT solvers. CafeSat is built around the DPLL
scheme [2]. Boolean constraint propagation is implemented
using the 2-watched literal scheme introduced by Chaff [8].
The branching heuristics is VSIDS, also introduced by Chaff.
A key component of modern SAT solver is the conflict-driven
clause learning [10, 11], allowing for long backtracking and
restarting. CafeSat supports an efficient conflict analysis,
with the 1UIP learning scheme and a clause minimization
inspired from MiniSat.

Additionally, CafeSat exports an API for Scala. This en-
ables some form of constraint programming in Scala, as al-
read promoted by ScalaZ3 [6]. We illustrate its ease of use
in Figure 1. The code implements a sudoku solver. A su-
doku input is represented by a matrix of Option[Int]. We
then generate nine variables for each entry, and generate all
constraints required by the rules of sudoku. The constraints
state how variables from the same rows, columns and blocks
of a sudoku grid must relate to each other. Variables and
constraints can be naturally manipulated as would any reg-
ular boolean expression in Scala.

Our library provides a new boolean type and lifts the usual
boolean operations of Scala to enable a natural declaration
of constraints. Any SAT problem can be build by combining
fresh boolean variables with the above operations. We im-
plement a structure preserving translation to CNF [9]. This
transformation avoids the exponential blow up of the naive
CNF transformation by introducing a fresh variable for each
sub-formula and asserting the equivalence of the new vari-
able with its corresponding sub-formula.

We believe CafeSat could have applications in the Scala
world. The current release of the Scala compiler integrates a
small SAT solver for the pattern matching engine. It could
benefit from a self-contained and efficient solver written en-
tirely in Scala to avoid complex dependencies. Complex

def solve(sudoku: Array[Array[Option[Int]]]) = {
val vars = sudoku.map(.map(⇒ Array.fill(9)(boolVar())))
val onePerEntry = vars.flatMap(row ⇒

row.map(vs ⇒ Or(vs: ∗)))
val uniqueInColumns = for(c ← 0 to 8; k ← 0 to 8;

r1 ← 0 to 7; r2 ← r1+1 to 8)
yield !vars(r1)(c)(k) || !vars(r2)(c)(k)

val uniqueInRows = for(r ← 0 to 8; k ← 0 to 8;
c1 ← 0 to 7; c2 ← c1+1 to 8)

yield !vars(r)(c1)(k) || !vars(r)(c2)(k)
val uniqueInGrid1 =
for(k ← 0 to 8; i ← 0 to 2; j ← 0 to 2;

r ← 0 to 2; c1 ← 0 to 1; c2 ← c1+1 to 2)
yield !vars(3∗i + r)(3∗j + c1)(k) ||

!vars(3∗i + r)(3∗j + c2)(k)
val uniqueInGrid2 =
for(k ← 0 to 8; i ← 0 to 2; j ← 0 to 2; r1 ← 0 to 2;

c1 ← 0 to 2; c2 ← 0 to 2; r2 ← r1+1 to 2)
yield !vars(3∗i + r1)(3∗j + c1)(k) ||

!vars(3∗i + r2)(3∗j + c2)(k)
val forcedEntries =
for(r ← 0 to 8; c ← 0 to 8 if sudoku(r)(c) != None)
yield Or(vars(r)(c)(sudoku(r)(c).get − 1))

val allConstraints =
onePerEntry ++ uniqueInColumns ++ uniqueInRows ++
uniqueInGrid1 ++ uniqueInGrid2 ++ forcedEntries

solve(And(allConstraints: ∗))
}

Figure 1: Implementing a sudoku solver with Cafe-
Sat API.

systems on the JVM such as Eclipse also start to include
SAT solving technology for their dependency management
engines [7].

Finally CafeSat, beside being a practical tool, is also an
experiment in writing high performance software in Scala.
Our goal it to prove — or disprove — that Scala is suitable to
write programs that are usually built in C++. The initial
results reported here show that it is necessary to sacrifice
some of the advanced features of Scala in order to attain
acceptable performance.

2. CAFESAT
In this section, we present the architecture and features

of CafeSat. We discuss the different heuristics implemented
and also describe some of the data structures used. The
solving component of CafeSat is currently about 1,300 lines
of code. This does not include the API layer. CafeSat is
open source and available on GitHub1. as part of a bigger
system, in development, intended to do constraint solving.
In this sytem, CafeSat will play a central role.

In general, we avoid recursion and try to use iterative
constructs as much as possible. We use native JVM types
whenever possible. We rely on mutable data structures to
avoid expensive heap allocations. In particular, we make
extensive use of Array with primitive types such as Int and
Double. Those types are handled well by the Scala compiler,
which is able to map them to the native int[] and double[]

on the JVM.
The input (CNF) formula contains a fixed number N of

variables, and no further variables are introduced in the
course of the algorithm. Thus, we can represent variables by

1https://github.com/regb/scabolic

integers from 0 to N − 1. Many properties of variables such
as their current assignment and their containing clauses can
then be represented using Array where the indices represent
the variable. This provides a very efficient O(1) mapping
relation. Literals are also represented as integers, with even
numbers being positive variables and odd numbers being
negative variables.

We now detail the important components of the SAT pro-
cedure.

2.1 Branching Decision
We rely on the VSIDS decision heuristic introduced ini-

tially by Chaff [8]. However, we implement the variation of
the heuristic described in MiniSat [3]. We keep variables in
a priority queue, sorted by their current VSIDS score. On a
branching decision, we extract the maximum element of the
queue that is not yet assigned. This is the branching literal.

We use a custom implementation of a priority queue that
supports all operations in O(logN), including a delete by
value of the variables (without any use of pointers). The
trick is to take advantage of the fact that the values stored
in the heap are integers from 0 to N − 1, and maintain an
inverse index to their current position in the heap. The heap
is a simple binary heap built with an array. In fact, we store
two arrays, one for variables and one for their corresponding
score. Having two separate arrays seem to be more efficient
than one array of tuples.

2.2 Boolean Constraint Propagation
CafeSat implements the 2-watched literals described by

the Chaff paper. We implement a custom LinkedList to
store the clauses that are currently watching a literal. An
important feature of our implementation is the possibility to
maintain a pointer to elements we wish to remove, so that a
remove operation can be done in O(1) while iterating over
the clauses. This is a typical use case for the 2-watched lit-
eral, where we need to traverse all clauses that are currently
watching the literal, find a new literal to watch, add the cur-
rent clause to the watchers of the new literal while removing
it from the previous one. All operations need to be very fast
because they are done continuously on all unit propagation
steps.

2.3 Clause Learning
In the original DPLL algorithm, the exhaustive search was

explicit, setting each variable to true and false successively
after exploring the subtree. A more recent technique con-
sists in doing conflict analysis and then learning a clause
before backtracking. The intuition is that this learnt clause
is a reason why the search was not able to succeed in this
branch. This learning scheme also enables the solver to do
long backtracking, returning to the first literal choice that
caused the clause to be unsatisfiable and not the most recent
one.

In CafeSat, we implement a conflict analysis algorithm
to learn new clauses. For this, we use the 1UIP learning
scheme [11]. We also apply clause minimization as invented
by MiniSat. We use a stack to store all assigned variable
and maintain a history. We also store for each variable the
clause (if any) responsible for its propagation. This implic-
itly stores the implication graph used in the conflict analysis.

2.4 Clause Deletion

We use an activity based heuristic similar to the one used
for decision branching to select which clauses to keep and
which ones to drop. We set a maximum size to our set
of learnt clauses, and whenever we cross this threshold, we
delete the clauses with the worst activity score. To ensure
completeness and termination, we periodically increase this
threshold.

Our current implementation simply stores a list of clauses
and sorts them each time we need to remove the least active
ones. We assume that clause deletion only happens after
a certain number of conflicts, so it is not a very frequent
operation. Besides, it could be cheaper to only sort the list
each time it is needed, than to maintain the invariant in a
priority queue for each operation.

2.5 Restarting Strategy
We use a restart strategy based on a starting interval that

slowly grows over time. The starting interval is N which is
the number of conflicts until a restart is triggered. A restart
factor R will increase the interval after each restart. This
increases in the restart interval guarantees completeness of
the solver. In the current implementation, N = 32 and
R = 1.1.

3. EXPERIMENTS
We ran a set of experiments to evaluate the impact of

various optimizations that have been implemented over the
development of CafeSat. The goal is to give some insight
on how incremental refinement of a basic SAT solver can
lead to a relatively efficient complete solver. We selected
a few important milestones in the development of CafeSat,
and compared their performance on a set of standard bench-
marks.

Our results are summarized in Table 1. The experiments
have been run on an Intel core I5-2500K with 3.30GHz and 8
GiB of RAM. A timeout was set to 30 seconds. The running
time is shown in seconds. The versions are organized from
the most ancient to the most recent one, their description is
as follows:

naive. Based on the straightforward implementation tech-
niques using AST to represent formulas, and recursive
functions along with pattern matching for DPLL and
BCP.

counters. Uses specialized clauses. Each variable is associ-
ated with adjacency lists of clauses containing the vari-
able. It uses counters to quickly determine whether a
clause becomes SAT or leads to a conflict.

conflict. Introduces conflict-driven search with clause learn-
ing. This is a standard architecture for modern SAT
solver. However the implementation at this stage suf-
fers from a lot of overhead.

2-watched. Implements the BCP based on 2-watched lit-
erals.

minimization. Focuses on a more efficient learning scheme.
The conflict analysis is optimized and the clause learnt
is minimized. It also introduces clause deletion.

optimization. Applies many low level optimizations. A
consistent effort is invested in avoiding object allo-
cation as much as possible, and overhead is reduced

Benchmark CafeSat Sat4j
% Suc. Time (s) % Suc. Time (s)

uf50 100 0.0014 100 0.0008
uf100 100 0.0040 100 0.0032
uuf100 100 0.0069 100 0.0063
uf125 100 0.0136 100 0.0119
uf200 100 0.5526 100 0.2510
uf250 63 4.5972 100 2.3389
bmc 92 3.9982 100 1.4567

Table 2: CafeSat vs Sat4j: Showdown.

thanks to the use of native Array with Int as much as
possible. We implemented dedicated heap and stack
data structures, as well as a linked list optimized for
our 2-watched literal implementation.

The benchmarks are taken from SATLIB [5]. We focus
on uniform random 3-SAT instances, as SATLIB provides
a good number of them for many different sizes. Thus, we
are able to find benchmarks that are solvable even with the
very first versions, and this results in better comparisons.

From these results we can see that the naive version is
able to solve relatively small problems and has little over-
head. On the other hand, it is unable to solve any problem
of consequent size. The introduction of the conflict analy-
sis (version conflict) had actually a lot of overhead in the
analysis of the conflict and thus did not bring any perfor-
mance improvement. The key step is the optimization of this
conflict analysis (version minimization), this diminishes the
overhead on the conflict analysis, thus reducing time spent in
each iteration, and minimizing the learning clause. Smaller
clause implies more triggers for unit propagation and a bet-
ter pruning of the search space.

It is somewhat surprising that the addition of the 2-watched
literal scheme has little effect on the efficiency of the solver.
The implementation at that time was based on Scala List

standard library. The optimization version introduces ded-
icated data structure to maintain watcher clauses. These
results show that without a carefully crafted implementa-
tion, even smart optimizations do not always improve per-
formance.

To give some perspective on the performance of CafeSat,
we also ran some comparison with a reference SAT solver.
We chose Sat4j [1] as it is a fast SAT solver written for
the JVM. CafeSat (as well as Sat4j) is currently unable to
compete with SAT solvers written in C or C++. Thus, our
short term goal will be to match the speed of Sat4j.

The experiments are summarized in Table 2 with the per-
centage of successes and average time. We set a timeout
of 20 seconds. The average time is computed by consider-
ing only instances that have not timeouted. We used the
most recent version of CafeSat and turned off the restart-
ing strategy. We compared with Sat4j version 2.3.3, which,
as of this writing, is the most recent version available. We
use a warm-up technique for the JVM, consisting in solv-
ing the first benchmark from the set 3 times before starting
the timer. The bmc benchmarks are formulas generated
by a model checker on industrial instances. They are also
standard problem from SATLIB. They contain up to about
300,000 clauses.

Our solver is competitive with Sat4j on the instances of
medium sizes, however it is still a bit slow on the biggest

Version naive counters conflict 2-watched minimization optimization

Benchmark Succ. Time Succ. Time Succ. Time Succ. Time Succ. Time Succ. Time
uf20 100 0.171 100 0.046 100 0.085 100 0.090 100 0.052 100 0.052
uf50 100 0.171 100 0.127 100 0.325 100 0.336 100 0.084 100 0.081
uuf50 100 0.507 100 0.179 100 0.658 100 0.701 100 0.111 100 0.095
uf75 100 3.948 100 0.444 100 1.170 100 1.320 100 3.138 100 0.122
uf100 30 27.05 99 4.006 91 7.567 93 5.844 100 0.225 100 0.183
uuf100 44 25.42 94 10.81 45 25.06 53 18.24 100 0.369 100 0.275
uf125 0 NA 55 18.73 43 20.07 52 18.02 100 0.393 100 0.317
uf200 0 NA 0 NA 7 28.30 7 28.48 60 6.688 100 2.131
uf250 0 NA 0 NA 0 NA 0 NA 22 25.46 64 16.01

Table 1: Benchmarking over versions of CafeSat.

instances. That CafeSat is slower than Sat4j should not
come as a shock. Sat4j has been under development for
more than 5 years and is considered to be the best SAT
solver available on the JVM.

4. CONCLUSION
We presented CafeSat, a modern SAT solver written in

Scala. CafeSat offers solid performance and provides Scala
programmers with a library for constraint programming.
This library makes access to SAT solving capabilities very
easy in the Scala ecosystem offering a native solution with
the usual feeling of a Scala DSL.

CafeSat is a DPLL based SAT solver. It is both sound
and complete. It integrates many state-of-the-art techniques
and heuristics that are currently in use in some of the most
popular SAT solvers.

We used an extensive set of standard benchmarks to evalu-
ate the improvement of CafeSat over time. These results give
some insight on the importance of good heuristics and care-
ful hacking. We also compared CafeSat to Sat4j, and despite
Sat4j being superior, our new solver shows some promising
initial results.

We plan to build a complete constraint solver on top of
CafeSat. To that end, we will extend CafeSat with incre-
mental SAT solving. We also aim to provide a constraint
programming API to use our extended system. We hope
to make CafeSat a solid infrastructure on which Scala pro-
grammers can build.

5. ACKNOWLEDGMENTS
The author would like to thank Viktor Kuncak and Alexan-

dre Duc for comments on this report, as well as Philippe
Suter for precious advices on implementation details.

6. REFERENCES
[1] D. L. Berre and A. Parrain. The Sat4j Library,

Release 2.2. JSAT, 7(2-3), 2010.

[2] M. Davis, G. Logemann, and D. Loveland. A Machine
Program for Theorem-Proving. Commun. ACM, 5(7),
July 1962.

[3] N. Eén and N. SÃűrensson. An Extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Theory
and Applications of Satisfiability Testing, volume 2919
of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004.

[4] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. DPLL(T): Fast Decision Procedures. In

R. Alur and D. Peled, editors, Computer Aided
Verification, volume 3114 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2004.

[5] H. H. Hoos and T. StÃijtzle. SATLIB: An Online
Resource for Research on SAT. IOS Press, 2000.

[6] A. S. Köksal, V. Kuncak, and P. Suter. Scala to the
Power of Z3: Integrating SMT and Programming. In
CADE, 2011.

[7] D. Le Berre and P. Rapicault. Dependency
Management for the Eclipse Ecosystem: Eclipse p2,
Metadata and Resolution. In Proceedings of the 1st
international workshop on Open component
ecosystems, IWOCE ’09, New York, NY, USA, 2009.
ACM.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th annual Design
Automation Conference, DAC ’01, New York, NY,
USA, 2001. ACM.

[9] D. A. Plaisted and S. Greenbaum. A
Structure-preserving Clause Form Translation. J.
Symb. Comput., 2(3), Sept. 1986.

[10] J. a. P. M. Silva and K. A. Sakallah. GRASP: a New
Search Algorithm for Satisfiability. In Proceedings of
the 1996 IEEE/ACM international conference on
Computer-aided design, ICCAD ’96, Washington, DC,
USA, 1996. IEEE Computer Society.

[11] L. Zhang, C. F. Madigan, M. H. Moskewicz, and
S. Malik. Efficient Conflict Driven Learning in a
Boolean Satisfiability Solver. In Proceedings of the
2001 IEEE/ACM international conference on
Computer-aided design, ICCAD ’01, Piscataway, NJ,
USA, 2001. IEEE Press.

