
A New Concurrency Model for Scala Based on a
Declarative Dataflow Core

Sébastien Doeraene
École Polytechnique Fédérale de Lausanne

1015 Lausanne, Switzerland
sebastien.doeraene@epfl.ch

Peter Van Roy
Université catholique de Louvain

Place de l’université 1
1348 Louvain-la-Neuve, Belgium
peter.vanroy@uclouvain.be

ABSTRACT
Declarative dataflow values are single assignment variables
such that all operations needing their values wait automat-
ically until the values are available. Adding threads and
declarative dataflow values to a functional language gives
declarative concurrency, a model in which concurrency is
deterministic and explicit synchronization is not needed. In
our experience, this greatly simplifies the writing of con-
current programs (as explained in several chapters of CTM
[20]). We complete this model with lazy execution and
message-passing concurrency. Both extensions are tightly
integrated with the declarative dataflow core. Lazy execu-
tion is provided by extending declarative dataflow with a
by-need synchronization operation. Message passing is pro-
vided by adding streams equipped with a send operation,
where a stream is a list with an unbound single-assignment
variable. This paper presents the Ozma language, a conser-
vative extension of Scala that supports all these concepts.
We have made a complete implementation of Ozma by com-
bining the implementations of Scala and Oz. Evaluation
shows that this implementation supports the full semantics
of Scala with concurrent programs based on the new concur-
rency model. In particular, within the functional subset of
Scala the new concurrency model fully supports determinis-
tic concurrency.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.2 [Programming Languages]: Language Clas-
sifications—concurrent, distributed, and parallel languages,
data-flow languages

General Terms
Languages

Keywords
Ozma, Scala, Oz, deterministic concurrency, dataflow, con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Scala ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2064-1 ...$15.00.

current programming, lazy execution, message-passing con-
currency, nondeterminism

1. INTRODUCTION
Programming in concurrent, parallel, or distributed set-

tings always poses the same problem: how to synchronize
access to shared data by several concurrent computations?
One powerful solution is declarative dataflow, in which vari-
ables are single assignment and all operations that need val-
ues wait until the variables are bound. This paper presents
Ozma, a conservative extension to Scala that adds declar-
ative concurrency with single assignment dataflow values.
Ozma turns every val declaration of Scala into a dataflow
value, and every var into a mutable container that holds a
dataflow value. This is so close to the existing Scala lan-
guage that all existing Scala code can be used as part of
a concurrent program, without any code change. This al-
lows Ozma programs to take advantage of the full power of
declarative concurrency with existing Scala libraries.

When used within the functional subset of Scala, a pro-
gram executing within this model without raising any ex-
ceptions is deterministic. This is both a simplification and
a limitation. It simplifies concurrent programming because
race conditions are not possible. This follows from the use of
single-assignment variables: in a concurrent program, what
changes is not what value is assigned, but rather when the
value will be assigned. However, this simplification comes
with a strong limitation: programs that require nondeter-
minism cannot be expressed. For example, a simple client-
server application with two clients and one server cannot
be written in the declarative dataflow model. To overcome
this limitation, we add a nondeterministic operation, namely
communication channels with an asynchronous send opera-
tion. We use a simple form of channel called a port, which
is simply a stream equipped with a send operation, where a
stream is a list value whose tail is an unbound dataflow
value. Ports allow to introduce nondeterminism exactly
where needed, since any thread that knows the port’s ref-
erence can send to the port, which appends the element to
the port’s stream.

To complete the concurrency model, we extend the declar-
ative dataflow model with lazy execution. Lazy execution
is supported by a second synchronization operation, wait-
Needed, that waits until a dataflow value is needed by an
operation. The combination of the two synchronization op-
erations, namely waiting for a value and waiting until a value
is needed, gives a declarative model that combines both con-
currency and lazy execution.

Programming methodology based on the new model.
It may seem unusual to base a concurrency model on a de-

terministic concurrent core, especially considering that con-
current programs that interact with the real world need to
model nondeterminism. But this is no different than basing
a programming model on a deterministic functional core,
despite most real-world applications needing some non-pure
computations. Yet languages with a functional core are
widely accepted, because most of the program can still be
written in a functional style. To motivate the structure of
the Ozma concurrency model, we outline briefly how we
can apply the same methodology and layering of comput-
ing models to construct general concurrent programs.
The concurrent program starts as a sequential functional

program that calculates with lists and other functional data
structures. Note that it can be proved correct at this stage
using standard proof techniques of functional programs. We
modify the initial program in three steps to obtain the fi-
nal program. First, we introduce concurrency exactly where
needed by adding thread expressions. Second, we introduce
nondeterminism exactly where needed by replacing input
lists with ports (recall that ports are simply streams, i.e.,
lists, with a send operation). Finally, we introduce lazi-
ness exactly where needed by adding waitNeeded instruc-
tions in front of calculations that are optional, i.e., whose
result is only needed in certain circumstances. The final pro-
gram combines concurrency, nondeterminism, and laziness,
exactly where needed. The advantage of this methodology is
that the use of nondeterminism (and consequently mutable
state) is minimized to only those places where it is needed.
For example, in the client/server application mentioned be-
fore, nondeterminism is needed in one place only, namely
the point at which the server receives a request from one of
several clients. The rest of the application can be written
in a completely functional style, if desired, without limiting
the client/server functionality.
Note that each of these steps does not invalidate the cor-

rectness proof of the initial program, but just changes the
conditions under which this proof is applied (see Section 3
for explanation why this is so). In case of true multiagent
collaboration (i.e., concurrent entities working together to
maintain a global invariant), an additional proof is needed
for the collaboration. In simple cases, such as a client/server
application in which the clients interact independently with
the same server, this additional proof is not needed.

Natural extension of Scala.
This paper presents the design, implementation, and eval-

uation of Ozma, an extension of Scala that supports a pow-
erful concurrent programming model based on a declara-
tive dataflow core. Ozma provides a new set of concurrent
programming techniques that naturally extend the existing
concurrency model of Scala. Scala has an Erlang-style ac-
tor process model, where actors are objects running concur-
rently to which messages can be sent [11]. Each actor has a
mailbox of incoming messages represented as a queue. This
concurrency model is well-integrated with the Scala object
model, however it is conceptually quite different from a func-
tional language. This is where Ozma completes the Scala
model: the declarative dataflow model of Ozma is a natural
extension of the functional style in Scala, just as the actor
model is a natural extension of the object-oriented style in
Scala. We say that the new concurrency model “lifts” the

duality of Scala (functions versus objects) to concurrent pro-
gramming (declarative concurrency versus message-passing
concurrency).

Implementation.
Ozma is compiled with a modified version of the Scala

compiler and runs on the Mozart Programming System,
which implements Oz [14, 13]. Full source code for Ozma is
available with an open-source license on GitHub [3]. This
implementation was not designed for performance, but for
completeness: it is an implementation of the complete Scala
language. Ozma can therefore be considered as a new im-
plementation of Scala, in addition to the two existing im-
plementations running on the JVM and .NET. The Ozma
implementation demonstrates that declarative dataflow con-
currency is possible and sound within Scala. Future develop-
ments will enhance the performance of Ozma by improving
the data representation; we expect that performance similar
to that of Oz on Mozart can be achieved.

Structure of the paper.
Section 2 compares Ozma with similar language design ef-

forts. Section 3 presents the concurrency concepts of Ozma.
Section 4 follows this by giving a precise semantics of Ozma
as an extension of Scala semantics. Section 5 explains how
Ozma was implemented as a combination of the Scala and
Oz implementations. Section 6 evaluates Ozma according
to several criteria, namely correctness, coverage, and perfor-
mance. Finally, Section 7 concludes by briefly summarizing
the work and its future development path.

2. RELATED WORK
Both deterministic concurrency and message-passing con-

currency have a long history. Two of the earliest references
of each are Kahn process networks from 1974 [10] and He-
witt’s Actor Model from 1973 [7]. See the textbook [20] for
more history and related work up to 2003. Since the 1970’s,
several attempts have been made to add forms of determin-
istic concurrency to existing languages.

The concept of declarative dataflow synchronization has
existed since the early 1980s. It was introduced in logic
programming through the Parlog and Mu-Prolog languages,
and was then extended to a full-blown concurrent execu-
tion model in Concurrent Prolog, which was used in the
Japanese Fifth Generation Computer project in the 1980s
[17]. It was introduced independently in functional pro-
gramming through the concept of I-structures, which was
influential in hardware dataflow architectures [1].

Another attempt to add a form of deterministic concur-
rency to programming is MultiLisp, a language intended for
writing parallel programs [6]. MultiLisp extends Lisp with a
concept called a future. The function call (future E) where
E is an expression does two things: it initiates a concurrent
evaluation of E and it immediately returns a placeholder for
the result of E. When another evaluation needs the value of
E, then it waits until the value is available.

The concept of future is becoming prevalent in Scala itself.
Scala 2.10 introduces futures and promises at the library
level: code that deals with asynchronous computations must
do so explicitly. Habanero-Scala presents a form of delim-
ited asynchronous computations for Scala [8]. Ozma goes
a step beyond these localized extensions by making futures

ubiquitous and transparent through dataflow values.
The language that has inspired Ozma the most is Oz, as

defined in [20]. Oz is based on the concurrent constraint pro-
gramming model [16] and was originally designed by Gert
Smolka and his students [18]. The port concept originated
in AKL [9] and the by-need synchronization (waitNeeded)
originated as an extension for declarative laziness [19]. All
three of the new concepts in Ozma, namely dataflow syn-
chronization, by-need synchronization, and ports, have cor-
responding concepts in Oz. The @tailcall transformation
was also inspired by Oz, but we have generalized it in Ozma
to support user-defined methods, which was of the utmost
importance since all structured values are user-defined in
Scala. Ozma brings all these features into Scala, and shows
that they can be made to fit perfectly well in a statically
typed, object-oriented language that also has its share of
mutable, imperative-style features.
Another language similar to Ozma is Flow Java [5], which

conservatively extends Java with single assignment variables
and dataflow synchronization. There are several differences
between Ozma and Flow Java. Flow Java adds only declar-
ative dataflow variables to Java and does not have any ex-
tensions for message passing nor for lazy execution. Flow
Java is an extension of Java, which does not have an obvi-
ous declarative subset, whereas Ozma extends Scala, which
does have a straightforward declarative (functional) subset.
This means that it is much easier to write declarative con-
current programs in Ozma than in Flow Java. Finally, the
run-time systems are quite different. Flow Java runs on top
of a modified JVM with support for single assignment vari-
ables, whereas Ozma uses the existing Mozart Programming
System. This means that Ozma can take advantage of the
lightweight threads of Mozart, whereas Flow Java must use
the Java thread implementation.
Finally, we mention the language Alice ML [15], which

is a language that combines many ideas from Oz and Stan-
dard ML. Alice ML has single assignment variables (without
aliasing), futures, and ports. Like Flow Java, it runs on a
dedicated virtual machine. Like Oz, Alice ML was not de-
signed specifically for deterministic concurrency, and like Oz
it supports this model because of its well-factored design.

3. CONCURRENT PROGRAMMING
IN OZMA

This section presents the new concurrency concepts that
Ozma adds to Scala. We give examples for each concept and
we explain the strong property that each concept satisfies.
Precise semantics of these concepts is given in Section 4.
We assume basic familiarity with Scala for the rest of the
paper. Before introducing the concurrency concepts, we ex-
plain briefly what we mean by declarative concurrency.

3.1 Declarative concurrency
Before showing the concurrency techniques for Ozma, we

first explain what it means for the concurrent dataflow model
to be declarative and under what conditions it is declara-
tive. The concurrent dataflow model consists of functional
programs extended with dataflow values and synchroniza-
tion on dataflow values. To obtain declarative execution in
Ozma, we restrict programs to use only functions with val

declarations and we consider only executions that raise no
exceptions. Mutable assignment, such as var declarations,

is forbidden in the functional subset. It is clear that con-
currency together with mutable assignment or exceptions
can introduce nondeterminism, and hence is not declarative.
Intuitively, a concurrent dataflow program is declarative if
there is no observable determinism. To make this precise,
we give the following definition:

Definition 1 (Declarative concurrency). A con-
current dataflow program is declarative if for all possible in-
puts the following holds. For all possible executions with a
given input, one of two results is possible. (1) They all do
not terminate, or (2) they all eventually reach partial termi-
nation and give results that are logically equivalent.

To make the above definition self-contained, we define the
four new concepts it uses:

Definition 2 (Dataflow program). A dataflow pro-
gram is a function with one input argument and one output
argument, where the input and output arguments are partial
values. All calculations are done with dataflow values: all
results of function evaluations are bound to dataflow values
and all function arguments are dataflow values. Any func-
tion that needs its argument to be a value (constant) will wait
(not reduce) until the argument is bound to a value (dataflow
synchronization).

The restriction to a single input and output argument does
not lose generality, since it is always possible to group inputs
and outputs together inside compound values (e.g., tuples or
other instances of immutable classes).

Definition 3 (Partial value). A partial value is ei-
ther an unbound dataflow value or a dataflow value bound
to a primitive value, or an instance of a class such that each
field of this instance is also a partial value.

Partial values are an essential part of the execution of a
dataflow program. For example, an important partial value
is the stream, which represents a communication channel. A
stream is a list with an unbound dataflow value as its tail.
Extending the tail by binding it to a cons cell corresponds
to sending an element on the channel.

Definition 4 (Partial termination). We say that a
dataflow program exhibits partial termination with a given
input, if for that input the execution of the program eventu-
ally stops (no more execution steps are possible). The output
after partial termination is a partial value.

Partial termination generalizes complete termination: a pro-
gram that is partially terminated may continue execution if
the input argument is further bound, i.e., if any unbound
dataflow values in the input are further bound. For exam-
ple, a program whose input and output are streams may
have an unbounded number of partial terminations, namely
each time an element is added to the input stream.

Definition 5 (Logical equivalence). Given two ex-
ecutions of the same dataflow program with the same in-
put and the same initial unbound dataflow value as output.
When the two executions reach partial termination, we say
that the two outputs are logically equivalent if they are iden-
tical up to variable renaming. That is, it is possible to re-
name the variables in one output to be identical to the other
output.

For example, if the two outputs are 1 :: x and 1 :: y

where x and y are unbound dataflow values, then the two
executions are logically equivalent.
Given these definitions, we say that an Ozma program

that is defined using the language subset containing only fair
threads, functions, values (including instances of immutable
classes), and val declarations, is declarative concurrent if
during its execution it raises no exceptions. Note that the
converse is not true. There exist Ozma programs using, e.g.,
var declarations, that are declarative concurrent neverthe-
less. We now outline a proof of this property. A formal
proof is yet to be done, and is the subject of future work.
Consider any sequential execution of a pure functional

program that does not raise exceptions. Such an execution
is equivalent to an execution of the λ-calculus and is there-
fore confluent: all possible evaluation orders give the same
result. In the relevant subset of Ozma, this execution is
expressed using dataflow values and is therefore a dataflow
program. Each dataflow value has three well-defined points
in its lifetime: declaration, binding, and use. We assume
without loss of generality that a dataflow value has a single
declaration, a single binding, and possibly multiple uses. In
any execution without exceptions, multiple bindings will al-
ways be to the same value. Multiple bindings to different
values will raise an exception on all values different from the
first binding, and hence will not occur. Consider now the
dataflow value x in a sequential execution:

...
val x: Int // declaration of x
...
x = 23 // binding of x
...
y = x+1 // first use of x
z = x+2 // second use of x
...

For simplicity, this example binds x to an integer, but
the same reasoning applies to all values. Now consider a
concurrent execution with the same operations as the above
sequential execution. The concurrent execution is obtained
by executing an arbitrary number of function applications
in their own threads. This will delay all the operations in
the evaluation of these functions and the binding of the re-
sult. The declaration, binding, and uses of x may therefore
be delayed (occur in a later execution step) with respect to
the sequential execution, however, the order of these oper-
ations respects two rules. First, the declaration will always
occur before the binding and uses. This follows because of
causality: a function is only invoked with arguments that
exist. This is true whether or not the function is invoked
in its own thread. Second, all uses will always occur after
the binding. This follows because any attempt to use x be-
fore binding will cause the use to be delayed until the bind-
ing occurs (dataflow synchronization). Because the dataflow
value is single assignment, and because it is bound to the
same value as in the sequential program, we conclude that
all uses in the concurrent program will see the same binding
as in the sequential program. The result of the concurrent
program is therefore the same as the sequential program.

3.2 Adding concurrency to any functional
computation

In Ozma, any functional computation can be made con-
current, while preserving the final result, by introducing calls
to thread. Moreover, such a concurrent program is guar-
anteed not to have any race condition. This is the most

powerful property of declarative concurrency in Ozma: con-
currency is deterministic.

All values are implicitly dataflow values. A dataflow value
is similar to a regular value, except that it can be unbound.
Unbound values are not initialized yet, but can be aliased to
other unbound values. When a dataflow value gets bound,
all its aliases get bound to the same value, automatically.
Moreover, statements requiring a value to be bound wait
for it to be bound instead of crashing, providing automatic
builtin synchronization.

Initially unbound values can be declared explicitly. How-
ever, they are generally introduced implicitly through the
use of the primitive thread,

def thread(body: => A): A

which can be used like in

val x = thread(someComputation())

This primitive spawns a thread and immediately returns
an unbound value. This value will get bound to the result
of the threaded computation when it is finished. This be-
havior is similar to futures, e.g., in MultiLisp, but it is more
general since the concepts of dataflow value and thread are
separated.

Adding concurrency in this manner can be seen as re-
arranging the calculations of a program while keeping the
causality property of each value binding, i.e., the value is
calculated before it is used. It is clear that this does not
change the result of a calculation, since by induction the
variable is still bound to the same value, only at a different
point in the execution.

Example: concurrent map.
Consider the map function on lists,

def map[A, B](list: List[A], f: A => B): List[B] =
if (list.isEmpty) Nil
else f(list.head) :: map(list.tail, f)

which is a deterministic sequential computation. It can be
turned into a deterministic concurrent computation simply
by wrapping the call to f with a thread:

def concMap[A, B](list: List[A], f: A => B): List[B] =
if (list.isEmpty) Nil
else thread(f(list.head)) :: concMap(list.tail, f)

The resulting concMap is deterministic and its result is
always the same as the sequential version. However, all ap-
plications of f execute concurrently. Because dataflow vari-
ables are really ubiquitous, concMap can also reuse map, the
latter suddenly manipulating dataflow variables although it
was not designed with this in mind:

def concMap[A, B](list: List[A], f: A => B): List[B] =
map(list, x => thread(f(x)))

3.3 Converting any list function into a declar-
ative agent

Any function computing on lists that is tail-recursive mod-
ulo cons can be turned into a long-lived declarative concur-
rent agent, without memory leak, simply by executing it
in a thread. Here we define an agent as an active entity
that processes an input stream and/or produces an output
stream. We define a stream to be a list whose tail is un-
bound. Streams can grow indefinitely. They can be used as
communication channels between agents. One thread is pro-
cessing the stream using standard list operations, while an-
other thread is building the list. Communication is achieved

between the two threads by sharing the dataflow value that
references the stream.
To support this, Ozma implements a tail call optimiza-

tion for functions that are tail-recursive modulo cons, such
as map. It follows that any such function executes in con-
stant stack space and can run indefinitely without memory
leak. Section 4.7 explains the compiler transformation used
to achieve this.

Example: filter and map as agents.
The following code snippet is a simple program that dis-

plays squares of even numbers on the standard output.

def displayEvenSquares() {
val integers = thread(gen(0))
val evens = thread(integers filter (_ % 2 == 0))
val evenSquares = thread(evens map (x => x*x))
evenSquares foreach println

}

def gen(from: Int): List[Int] = from :: gen(from+1)

Wrapping the calls to gen, filter and map within threads
is sufficient to turn them into declarative agents. Note that
foreach is also an agent, living in the main thread. Declar-
ative agents are incremental: as new elements are added to
an input stream, new computed elements will appear on the
output stream.
Although the call to gen never terminates, the @tailcall

transformation described in Section 4.7 ensures that it pro-
duces partial results, which can be consumed concurrently
by the filter agent. The same applies to the other agents.

3.4 Adding laziness to any computation
Any computation, whether functional or not, can be made

lazy by introducing waitNeeded statements. This means
that the computation will be deferred until the value is
needed, i.e., until an instruction waits for the value. If this
never happens, then the computation is never executed.
The waitNeeded(x) statement blocks the current thread

until x becomes needed. Any number of waitNeeded calls
can be added to a program, and the program will give the
same result as before, provided no deadlock is introduced.
Deadlocks appear when there is a waitNeeded(x) call that
prevents the variable x to become needed (a circular need
dependency). The combination of declarative concurrency
and waitNeeded(x) retains the property of being determin-
istic. Calls to waitNeeded can be added in just the right
places to add exactly the degree of laziness desired.
There are two common patterns for waitNeeded that are

given their own names. byNeedFuture can be used as a
wrapper, like thread, to make its body be lazily computed.
.lazified can be used as prefix on list methods to obtain a
lazy version. These two patterns never introduce deadlocks
on their own, since by construction they cannot introduce
circular need dependencies.

Example: lazy filter and map as agents.
The previous example can be made lazy by introducing

byNeedFuture wrappers and .lazified prefixes. Explicit
thread creation is removed, since it is implied by these two
constructs.

def displayEvenSquares() {
val integers = gen(0)
val evens = integers.lazified filter (_ % 2 == 0)
val evenSquares = evens.lazified map (x => x*x)

evenSquares foreach println
}

def gen(from: Int): List[Int] = byNeedFuture {
from :: gen(from+1)

}

Now foreach imposes the control flow. Laziness prevents
the agents from getting ahead of the consumer. This pro-
vides better memory management, since it guarantees that
the whole program executes in constant memory space.

3.5 Managing nondeterminism with ports
A port is a referenced stream, where the reference is a

constant value. Sending a value to a port will append it to
the stream. Ports are used to add nondeterministic behavior
to a concurrent program exactly where it is needed. The
readers and writers of a port can themselves be deterministic
computations. The only source of nondeterminism is the
order in which values sent to a port appear on the port’s
stream.

This model permits to combine deterministic concurrency
with more traditional nondeterministic concurrency. This is
a powerful approach to write concurrent programs that de-
serves more recognition (see chapter 4 and subsequent chap-
ters of [20]). In our experience writing realistic programs,
few nondeterministic constructs are necessary, which makes
it much easier to show the correctness of the concurrent pro-
gram.

A port is created using the primitive Port.newPort, which
returns a port and a stream. Sending an element to the port
through its send method appends the element to the end of
the stream.

Example: partial barrier synchronization.
A barrier is an abstraction that starts n tasks concurrently

and then synchronizes on their completion. In a partial bar-
rier, we wait for only m ≤ n tasks to be completed. The
following code snippet implements partial barrier synchro-
nization with a port, whose stream contains the results of
completed tasks. The function returns the results of the m
first tasks that are completed. The call to take(stream, m)

implicitly waits for m elements to appear on the stream.

def partialBarrier[A](m: Int,
tasks: List[() => A]): List[A] = {

val (stream, port) = Port.newPort[A]
for (task <- tasks)
thread { port.send(task()) }

take(stream, m) // take the first m elements
}

def take[A](s: List[A], m: Int): List[A] =
if (m == 0) Nil
else s.head :: take(s.tail, m-1)

val M = 1 // or 2 or 3
val results = partialBarrier(M, List(

() => { sleep(1000); println("a"); "a" },
() => { sleep(3000); println("b"); "b" },
() => { sleep(2000); println("c"); "c" }

))
println(results)

This displays “List(a)” right after displaying “a”. Setting
M to 2 changes this behavior so that “a” and “c” are dis-
played before “List(a, c)”.

Figure 1: Possible status transitions for dataflow val-
ues

4. SEMANTICS
Ozma is a conservative extension of Scala: all legal Scala

programs are also legal Ozma programs. Therefore it suf-
fices to give an extension of the Scala language specification
that makes precise the semantics of Ozma’s extensions [12].
Since Scala has only a natural-language semantics and no
formal semantics, it is impossible to give a completely for-
mal semantics of Ozma. However, since Ozma is related to
Oz, which does have a formal semantics, we refer interested
readers to [20, chapter 13].

4.1 Value status
The most important semantic change introduced in Ozma

is the dataflow value. In Ozma, every val is a dataflow value,
and every var is a mutable container for a dataflow value.
Dataflow values are defined by their status. At any point
during a program’s execution, a dataflow value must have
exactly one of the following statuses: unbound (which is the
initial state of all values), unbound and needed, determined
and needed, or failed and needed. A value is said to be
bound when it is not unbound, i.e., when it is determined or
failed. The status of a dataflow value can change over time,
but is monotonic. The possible status transitions of a value
are shown in Figure 1.
When a value is determined, it holds the actual value it

has been bound to. An actual value is either a primitive
value (integer, float, boolean, character, or unit) or a refer-
ence value (null or a reference to an object).
When a value is failed, it holds a throwable value (whose

type conforms to Throwable). The dynamic type of such a
wrapping is Nothing (the bottom type of Scala), so that it
conforms to any type and can be stored in any value.
In addition, each value is associated with a set of threads

waiting for the value to be bound (the wait-for-bound set)
and a set of threads waiting for it to be needed (the wait-
for-needed set).

4.2 Primitive operations on value status
Initially, a value is unbound, and the two wait-for sets are

empty. The following primitive operations are defined on a
value x. All operations on a value are atomic, unless and
until they suspend the current thread.

waitBound(x) waits for x to be bound.

• If x is unbound (needed or not): add the current thread
to the wait-for-bound set of x, set the status of x to
unbound and needed, and suspend the thread.

• If x is determined: do nothing and return immediately.

• If x is failed: throw the exception wrapped inside x.

waitQuiet(x) is a variant of waitBound(x) that does not
modify the status of x, i.e. it does not mark x as needed. It
also returns normally if x is a failed value.

waitNeeded(x) waits for x to be needed.

• If x is not needed (and a fortiori unbound): add the
current thread to the wait-for-needed set of x, and sus-
pend the thread.

• Otherwise: do nothing and return immediately.

x = y unifies x and y.

• If either x or y is unbound (or both): make x and
y aliases of each other, with the more specific of the
statuses of x and y (the farthest to the right in the
schema), and the union of the sets waiting for them.
From that point on, x and y share their status, and
any operation on x applies to y and conversely. If the
resulting value is needed (resp. bound), resume all
threads in the wait-for-needed (resp. wait-for-bound)
set and empty it.

• If both x and y are failed: throw either the exception
wrapped in x or in y (the choice is nondeterministic).

• If one of x or y is failed and the other is determined:
throw the exception wrapped in the failed value.

• If both x and y are determined: check the two values
for reference equality (the eq method). If x eq y, do
nothing. If x ne y, throw a failure exception.

The two following primitive functions build bound values.

makeDeterminedValue(v) creates a new determined value
that holds the actual value v, and returns that value. v
can be a literal constant, a new instance, or the result of a
primitive arithmetic or logic operation. This primitive is not
available at the user level.

makeFailedValue(x) creates a new failed value that holds
the throwable x, and returns that value. The static type of
x must conform to Throwable.

4.3 Builtin synchronization
A number of language constructs implicitly wait on un-

bound values. That is to say, they behave as if they first did
a waitBound(x). The following operations behave this way:

• Calling a method with receiver x waits for x.

• Boolean || and && block on their left operand, and
on their right operand if and only if the actual value
of the first one could not determine the result of the
operation.

• eq and ne normally wait for their operands, but can
continue without blocking if the operands are aliases
of each other.

• Other comparisons, boolean operations, and arithmetic
operations wait for both their operands.

• if statements, while and do..while loops wait for
their condition each time it is evaluated.

• match statements wait for the expression to match.

Example: integer addition.
The method Int.+(x: Int): Int is typically consid-

ered as a primitive. In Ozma, it is a little more than a
primitive, since it provides automatic synchronization. It
can be defined as follows:

def Int_+_Int(x: Int, y: Int): Int = {
waitBound(x)
waitBound(y)
actual val v = primitive_Int_+_Int(x, y)
makeDeterminedValue(v)

}

The other language constructs listed above have similar
definitions.

4.4 Status of boxed values
In Scala, values of primitive types are sometimes boxed

and then unboxed. This happens when they are bound to a
value of type Any or of a generic type. This is also the case
in Ozma. Boxing and unboxing, being supposedly transpar-
ent for the user, raise an issue regarding unbound values,
because they should respect transitivity of aliasing. It is
tempting to define aliasing so that it follows boxes natu-
rally. This would solve the problem at the semantics level,
but would be impractical to implement efficiently.
We define the behavior of boxing and unboxing opera-

tions as follows. For a boxing or unboxing of the Unit

value, the operation always immediately returns a deter-
mined boxed/unboxed Unit, whatever the status of the ar-
gument is. For all other primitive types, the results of the
operations y = box(x) and y = unbox(x) follow these rules.

1. If x is determined, then y is immediately determined
and holds the corresponding boxed or unboxed actual
value (as defined in the Scala specification).

2. If x is failed, then y is immediately unified to x, i.e., it
becomes the same failed value.

3. If x is unbound, then y is unbound and, at all times:

(a) if x is needed, then eventually y is needed,

(b) if y is needed, then eventually x is needed,

(c) if x is bound, then eventually rule 1 or 2 applies.

4.5 Lazy execution
Lazy execution is built on top of the primitive waitNeeded.

We define the function byNeedFuture as a convenient wrap-
per to declare values that should be computed only when
they become needed.

def byNeedFuture[A](body: => A): A = {
val result: A
thread {

waitNeeded(result)
result = try body

catch { case th => makeFailedValue(th) }
}
result

}

in which the try...catch ensures proper exception propa-
gation between threads, through the use of failed values. It
is often used to wrap the body of a function:

def someComputation(x: Int) = byNeedFuture {
x + 1

}

Lazy execution in Ozma is more powerful than lazy val-
ues in Scala. In Scala, a lazy value is evaluated as soon as
it is accessed for the first time. In Ozma, the result of a
lazy computation is an unbound dataflow value, which can
be aliased to other values and passed around through the
program. It gets evaluated only when the value is actually
needed.

4.6 Ports
Ports consist of two primitives: newPort and send. new-

Port creates a new port handle, and returns a pair of (a) the
stream for use by the consumer and (b) an instance of Port
for use by the producers. The stream is initially unbound,
and the Port instance has a reference to it. This reference
is internally mutable.

class Port[-A] private (...) {
def send(element: A): Unit

}

object Port {
def newPort[A]: (List[A], Port[A])

}

Calling the port’s send method, port.send(element), ex-
ecutes the three following operations as one atomic opera-
tion:

• Create a new unbound value tail of type List[A],

• Bind the stream referenced by the port to a new list
pair element :: tail,

• Replace the reference of the port so that it points to
the new tail, tail.

That is, port.send(element) appends element to port’s
stream.

4.7 @tailcall transformation
This final section defines a transformation that the com-

piler is required to apply. This transformation is essential to
guarantee the absence of memory leaks and even progress
with various programming techniques of the model. For
example, a special case of this transformation allows tail-
recursive functions modulo cons to be tail call optimized,
which was explained to be essential in Section 3.3. The
@tailcall transformation is therefore an integral part of
Ozma semantics.

Let there be a method m with parameters p1 to pn, and
one or more parameters pi are annotated with the @tailcall
annotation, e.g.:

def m(p1: T1, ..., @tailcall pi: Ti, ...,
@tailcall pj: Tj, ..., pn: Tn): T

Let A be the set of indices corresponding to @tailcall-
annotated parameters. Here A = {i, j}.

Somewhere in the program (possibly in this particular
method), there is a call to m in tail position, with actual
parameters a1 to an, e.g.

def someMethod() {
doSomething()
if (cond) m(a1, ..., ai, ..., aj, ..., an)

}

Let B be the set of indices corresponding to actual pa-
rameters that are themselves a call to a method (including
accessor methods). An expression is a method call if and
only if it is not one of (a) a constant literal, (b) a local
value or variable, (c) a class literal classOf[C], or (d) an
arithmetic or logic operation. For example, in this code:

val someLocal = 5
m(5, someField, someLocal.toString, someLocal,

classOf[String], someField+1)

B = {2, 3} because someField is a call to the accessor
method of someField and someLocal.toString is a call to
the toString method. The four other parameters are exam-
ples of the four categories of expressions that are not method
calls.
Now let C = A ∩ B be the set of indices that corre-

spond to both a @tailcall-annotated formal parameter and
a method call actual parameter. If C = ∅, then nothing spe-
cial happens. If C ̸= ∅, then let i be the right-most element
of C, i.e., the maximum element:1

i ∈ C ∧ ∀j ∈ C : i ≥ j .

By definition of B, ai is of the form meth(params...). Then
the call to m is replaced by a block equivalent to

{
val arg: Ti
result = m(a1, ..., arg, ..., an)
meth(params..., arg)

}

where result is an output parameter that takes the role of
the return value. This transformation makes the call to meth
be tail call, thereby allowing for further tail call optimization
with usual techniques. Note that this is valid only if m
can execute without blocking on arg, which is true for list
creations.
In the last method call, arg is passed meth as an output

parameter. This is not valid user-level Ozma code, it is
internal only. Likewise, all methods are internally rewritten
as taking an output parameter rather than returning a value.
For example, the method meth, initially defined as

def meth(params...): R = body

would be rewritten in the following internal form:

def meth(params..., out result: R): Unit = result = body

@tailcall and case classes.
The @tailcall annotation can be used to mark some or all

of the parameters of a method as unbound safe. This means
that the method can execute and return without blocking
when that parameter is unbound. Because the @tailcall
transformation is most useful with case class constructors,
they receive particular attention from the compiler, so that
the user need not state the annotation explicitly. When
defining a case class without any constructor code, all the
parameters of the constructor are automatically @tailcall-
annotated by the compiler. In the following code snippet,
which defines a stateless binary tree of integers,

abstract sealed class Tree
case object Leaf extends Tree
case class Node(value: Int, left: Tree,

right: Tree) extends Tree

the parameters value, left and right of the construc-
tor of Node automatically receive the @tailcall annotation.
This allows the following implementation of insertion with
conservation of ordering to be @tailcall-transformed, so
that it becomes fully tail-recursive:
1This strategy is arbitrary: other priority conventions may
be used instead. We chose right-to-left priority because usu-
ally, right-most parameters are more subject to recursion
than others. A trivial example is the :: class where re-
cursion always happens on the tail of the list, which is the
right-most parameter.

def insert(tree: Tree,
value: Int): Tree = tree match {

case Leaf => Node(value, Leaf, Leaf)
case Node(v, left, right) =>
if (value <= v)
Node(v, insert(left, value), right)

else
Node(v, left, insert(right, value))

}

The transformation gives the following result:

def insert(tree: Tree, value: Int,
out result: Tree) = tree match {

case Leaf => result = Node(value, Leaf, Leaf)
case Node(v, left, right) =>
if (value <= v) {
val arg: Tree
result = Node(v, arg, right)
insert(left, value, arg)

} else {
val arg: Tree
result = Node(v, left, arg)
insert(right, value, arg)

}
}

which is clearly tail-recursive. In the standard library, the
following case classes have @tailcall annotations: :: (sub-
class of List), Some (subclass of Option), Left and Right

(subclasses of Either), and all tuple classes.

Example.
In the previous code snippet, the last two calls to the

constructor of Node fulfill the requirements for @tailcall
transformation. Indeed, in both cases, A = {1, 2, 3} since
all parameters are @tailcall-annotated. m is the insert
method, and meth is successively the two recursive calls to
insert. In the first case, B = {2}, because v and right are
local values, hence C = {2}, and i = 2. In the second case
B = {3} = C, and i = 3. Since C ̸= ∅, the transformation
applies. This gives the following transformation. A first
rewriting to internal form makes the result explicit through
an output parameter.

def insert(tree: Tree, value: Int,
out result: Tree) = tree match {

case Leaf => result = Node(value, Leaf, Leaf)
case Node(v, left, right) =>
if (value <= v)
result = Node(v, insert(left, value), right)

else
result = Node(v, left, insert(right, value))

}

Then, the two last statements are rewritten using the tail
call transformation.

5. IMPLEMENTATION
Unlike the standard Scala implementation, Ozma runs on

the Mozart VM instead of the Java VM. We chose this de-
sign because the Mozart system, which implements Oz, has
efficient support for lightweight threads and dataflow values.
This design decision has several important consequences.

Scala is defined to be compilable to efficient code on the
JVM. However, the Mozart VM behaves very differently.
For example, the object models of the two VMs differ sig-
nificantly. The implementation of Ozma reduces the gap
between them by providing an encoding scheme of Java-
like classes for use in Oz code. This encoding adds support
for the meta-object protocol, method overloading, classpath-
based class loading, and so forth.

The Ozma compiler.
The Ozma compiler is written in Scala as a pure extension

via subclassing of nsc, the official Scala compiler. nsc is
organized as a series of phases that successively transform
the Abstract Syntax Tree (AST) towards a simple form that
can be compiled easily into JVM bytecode. In the Ozma
compiler we modify the set of phases to support dataflow
values, and we replace the entire back-end so that it outputs
an AST for Oz code instead of JVM class files. The Oz AST
is then compiled into Mozart bytecode by the standard Oz
compiler.

Compiling single assignment values.
The compilation of single assignment values has conse-

quences in several phases. In Scala, declaring a local value
without initializing it is illegal. An early phase of the Ozma
compiler, singleass, patches such values so that they can
get through the rest of the compiler without problem. Any
single assignment value, of the form:

val value: Type

is patched by this phase to become:

@singleAssignment var value: Type =
scala.ozma.newUnbound[Type]

It is difficult to get past error checking in subsequent
phases of the compiler, which do not know about single as-
signment values. We mark the value as mutable (i.e. being a
var) so that assignment to this value is considered valid. In
order for the back-end to remember that it has to be com-
piled as a single assignment value, we give it a dedicated
annotation, namely @singleAssignment. Finally, we give it
a dummy right-hand-side to bypass some error checking.
Single assignment values being known as variables by the

rest of the compiler is actually fine, except for one phase.
The lambdalift phase must be patched, by using a subclass
and overriding some methods, in order to behave correctly
in the presence of single assignment values.

6. EVALUATION

Correctness of the compiler.
We tested the compiler for correctness and absence of

memory leaks on a large set of examples covering Oz pro-
gramming techniques that were translated to Ozma [3]. We
have also compiled and run the entire Scala library, which
is used by these examples.
The current implementation is possibly faulty for some

instances of match constructs. The earlier phases of the
compiler transform these into jumps, which cannot be repre-
sented using Oz ASTs. We have written a partial translation
function for such jumps, which compiles correctly the Scala
library, but we are not convinced that it works for all ASTs
produced by match expressions. A future implementation
targeting Scala 2.10 could fix this, because jumps emitted
by its new pattern matcher are much more regular and easy
to translate.

Coverage of concurrency techniques.
Ozma supports all of the most useful concurrency features

of Oz. Shared-state concurrency exists in Scala, so it exists
also in Ozma. There are two concepts that we lose in Ozma
with respect to Oz, namely full unification and distributed

Ozma Oz lists Oz classes
GenList 12,636 50 309
MapFilter 26,342 318 1,229
ThreadedMapFilter 29,080 274 1,044

Table 1: Performance measurements (ms)

Figure 2: Performance measurements

programming. Full unification lets the aliasing operation
dive inside functional data structures (named records in Oz)
to any nesting depth. Ozma does not have records, but only
objects. Experience shows that unification is only rarely
needed for concurrent programming. Instead, unification
is useful for constraint programming, which is supported
by Oz. Distribution in Oz implements full network trans-
parency and provides modular primitives for fault tolerance
[2].

Performance.
The main goal of Ozma is support for concurrent pro-

gramming, not performance. We focused our efforts towards
providing a complete, working implementation of the entire
Scala semantics and its Ozma extension.

Table 1 shows the execution time of three programs in
three setups, and Figure 2 shows the same results using a
logarithmic scale. GenList creates a list of 1,000,000 ele-
ments. MapFilter creates the same list, then applies a fil-
ter and a map on it. ThreadedMapFilter does the same,
but in three different threads. The programs are written
in Ozma, in Oz using standard lists, and in Oz using user-
defined classes for lists. In each case, the experiment in run
50 times and averaged, on an Intel Core i7 CPU, 1,73 GHz,
on Linux Debian Jessie 64 bits.

These results show that Ozma is 2 orders of magnitude
slower than Oz using user-defined lists using classes. The
latter being itself 1 order of magnitude slower than using na-
tive Oz lists. The Mozart VM aggressively optimizes built-in
lists, which explains the second observation. Ozma is even
slower because of the multiple indirections in the Scala li-
brary (which are inlined away in Scala/JVM, but not in
Ozma).

In the two Oz programs, the threaded versions of MapFil-
ter is slightly faster. This has nothing to do with parallelism,
as the Mozart VM is single-core only. But in this case mem-

ory at the head of the intermediate lists can be reclaimed
as the three agents move forward, which yields better per-
formance of the garbage collection (which is a double-space-
copy GC). The Ozma program exhibits slightly worse per-
formance with the threaded version, however, although the
reason is unclear.
The main performance issue is that Ozma uses Oz classes

and objects for all data types, including lists, records and
anonymous functions. Now, the Mozart VM aggressively op-
timizes native lists, records and anonymous functions, but
does a very poor job at running heavily object-oriented code.
Future development of Ozma should address this issue by
compiling lists and anonymous functions down to their na-
tive counterpart.

7. CONCLUSIONS AND FUTURE WORK
We present a new language, Ozma, a conservative ex-

tension of Scala that offers a new concurrency model con-
sisting of three parts: a declarative dataflow core with a
message-passing extension and a lazy execution extension.
Ozma is implemented as a combination of a Scala com-
piler front end and an Oz compiler back end and run-time
system. Ozma extends Scala with deterministic concur-
rency, declarative agents, lazy execution, and nondetermin-
istic agents using ports. These techniques support a method-
ology for building concurrent programs that starts with a
correct functional program and successively adds concur-
rency, nondeterminism, and laziness exactly where they are
needed. Future work includes improving performance, sup-
porting fault-tolerant network transparent distributed pro-
gramming, and porting to the JVM. Ozma has elicited inter-
est from the Scala community; we mention in particular two
invited talks at the QCon industrial software development
conference [21], and at the Strange Loop conference [4]. We
hope that the design of Ozma will have a positive influence
on the future evolution of Java and Scala.

8. REFERENCES
[1] Arvind and Thomas R. E.: I-Structures: An efficient

data type for functional languages. Technical Report
210, MIT, Laboratory for Computer Science,
Cambridge, MA (1980)

[2] Collet, R.: The Limits of Network Transparency in a
Distributed Programming Language. PhD thesis,
Université catholique de Louvain (2007)

[3] Doeraene S.: Ozma: Extending Scala with Oz
Concurrency. Master’s thesis, Université catholique de
Louvain. Full source code available at
https://github.com/sjrd/ozma (2011)

[4] Doeraene, S.: Ozma: Extending Scala with Oz
Concurrency. Invited talk, Strange Loop, St Louis,
MI, URL: thestrangeloop.com, (Sep. 2012)

[5] Drejhammar, F., Schulte, C., Haridi, S., Brand, P.:
Flow Java: Declarative concurrency for Java. In

Proceedings of the Nineteenth International
Conference on Logic Programming, Springer LNCS,
vol. 2916, pp. 346–360. (2003)

[6] Halstead, R.H. Jr.: MultiLisp: A language for
concurrent symbolic computation. In ACM
Transactions on Programming Languages and
Systems, 7(4), pp. 501-538 (Oct. 1985)

[7] Hewitt, C., Bishop P., Steiger, R.: A universal
modular ACTOR formalism for artificial intelligence.
In 3rd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 235-245 (Aug. 1973)

[8] Imam, S., Sarkar, V.: Habanero-Scala: Async-Finish
Programming in Scala.

[9] Janson, S., Montelius, J., Haridi, S.: Ports for objects
in concurrent logic programs. In Research Directions
in Concurrent Object-Oriented Programming, pp.
211-231 (1993)

[10] Kahn, G.: The semantics of a simple language for
parallel programming. In IFIP Congress, pp. 471-475
(1974)

[11] Odersky M.: Scala By Example. École Polytechnique
Fédérale de Lausanne (2010)

[12] Odersky M.: The Scala language specification, version

2.9. École Polytechnique Fédérale de Lausanne (2011)

[13] Mozart Consortium: Mozart Programming System.
URL: www.mozart-oz.org (2011)

[14] Programming Methods Laboratory: The Scala
Programming Language. URL: www.scala-lang.org
(2011)

[15] Rossberg, A.: Typed Open Programming: A
Higher-Order, Typed Approach to Dynamic
Modularity and Distribution. PhD thesis, Universität
des Saarlandes (2007)

[16] Saraswat, V.A.: Concurrent Constraint Programming.
MIT Press, Cambridge, MA (1993)

[17] Shapiro, E.: The family of concurrent logic
programming languages. In ACM Computing Surveys,
21(3), pp. 413-510 (Sept. 1989)

[18] Smolka, G.: The Oz programming model. In
Computer Science Today, Springer LNCS, vol. 1000,
pp. 324-343 (1995)

[19] Spiessens, A., Collet, R., Van Roy, R.: Declarative
Laziness in a Concurrent Constraint Language. In 2nd
International Workshop on Multiparadigm Constraint
Programming Languages, part of 9th International
Conference on Principles and Practice of Constraint
Programming (CP2003) (Sep. 2003)

[20] Van Roy, P., Haridi, S.: Concepts, Techniques, and
Models of Computer Programming. MIT Press,
Cambridge MA (2004)

[21] Van Roy, P.: Ozma: Extending Scala with Oz
Concurrency. Invited talk, QCon International
Software Development Conference, San Francisco, CA,
URL: qconsf.com, (Nov. 2011)

