
Parallel Incremental Whole-Program Optimizations for Scala.js

Sébastien Doeraene Tobias Schlatter

École polytechnique fédérale de Lausanne, Switzerland

sebastien.doeraene@epfl.ch schlatter.tobias@gmail.com

Abstract

Whole-program optimizations are powerful tools that can
dramatically improve performance, size and other aspects of
programs. Because they depend on global knowledge, they
must typically be reapplied to the whole program when small
changes are made, which makes them too slow for the devel-
opment cycle. This is an issue for some environments that
require, or benefit a lot from, whole-program optimizations,
such as compilation to JavaScript or to the Dalvik VM, be-
cause their development cycle is slowed down either by the
lack of optimizations, or by the time spent on applying them.

We present a new approach to designing incremental
whole-program optimizers for object-oriented and functional
languages: when part of a program changes, only the portions
affected by the changes are reoptimized. An incremental
optimizer using this approach for Scala.js, the Scala to
JavaScript compiler, demonstrates speedups from 10x to 100x
compared to its batch version. As a result, the optimizer’s
running time becomes insignificant compared to separate
compilation, making it fit for use on every compilation
run during the development cycle. We also show how to
parallelize the incremental algorithm to take advantage of
multicore hardware.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Incremental compilers, Optimiza-
tion

Keywords incremental, whole-program optimizations

1. Motivation

Whole-program optimizations are powerful, and are used
in most compilers nowadays, ahead-of-time and just-in-
time alike. However, as their name implies, they require
knowledge about the entire program. In other words, they
are not modular, since changing one part of the program

might require reoptimizing other, seemingly unrelated parts.
For example, consider these two simple Java classes:1

class A {

int x;

A(int x) {

this.x = x;

}

int getX() {

return this.x;

}

void print() {

System.out.println(getX());

}

}

class B {

void foo(A a) {

a.print();

}

}

While optimizing B.foo, we might decide to inline the
body of A.print(), because it is so short. To do this, though,
we need two pieces of global knowledge:

• The fact that no subclass of A overrides print(), other-
wise inlining would break dynamic dispatch.

• The actual body of A.print().

If A and B are stored in separate compilation units (files), it
might be that A is recompiled, but B is not. If the body of
A.print() changes from one compilation to the next, the
optimized version of B.foo is outdated. Another, more subtle
scenario is the addition of a new class C extending A and
overriding print. This would also invalidate the optimized
version of B. In general, other kinds of knowledge may be
needed, and all kinds of scenarios might invalidate many
sorts of optimizations. That is why whole-program optimizers
typically work in batch mode: they start the optimization of
an entire program from scratch on every compilation run,
even if only a small part is changed.

This is, however, wasteful. An optimizer should ideally
only reoptimize methods impacted by the change, instead
of the entire program. For other methods, it could reuse the

1We omit visibility modifiers, since they are irrelevant from an optimizer’s
point of view. Everything is implicitly public.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4444-9/16/11...
http://dx.doi.org/10.1145/2983990.2984013

59

optimized version from a previous run. This is similar to
compilers with separate compilation: they reuse compiled
versions of source files that have not changed to speed up
every compilation run. Analogously, such an incremental be-
havior could dramatically reduce the time spent on optimizing
the program during the development cycle.

But why is it important to have a fast optimizer? Of course
we want a fast resulting program for production, so we want
to run whole-program optimizations at that time. Surely we
do not need to do so every time we save-compile-test? We
can be content with the compiled, non-optimized program for
iterative development, can’t we?

Indeed, in most setups, this is enough, and we believe that
is why incremental whole-program optimizations have been
but scarcely addressed so far. However, in some cases, this
is not acceptable. For example, the compilation of Scala
to Android requires whole-program optimizations to be
performed on every run, because of limitations imposed by
the Dalvik VM.

In this paper, we focus on the case of Scala.js, which is a
cross-breed of two languages whose development cycles are
improbably dissimilar. On the one hand, Scala, with its slow
compiler, its huge standard library with many indirections
and higher-order methods, and a virtual machine with slow
startup times, yields a relatively slow cycle where we expect
the compiler (or the IDE) to detect as many errors as possible.
On the other hand, JavaScript has libraries that are as small
as possible, and a community expecting instantaneous save-
refresh cycles. The problem is, with a non-optimized huge
standard library compiled to JavaScript, the JavaScript virtual
machines take noticeable time just compiling it every time
the program is run. If optimizations are fast enough and bring
enough speed improvements to the interpreter startup time,
it is worth doing them on every development cycle. This
is precisely the case in Scala.js, with incremental whole-
program optimizations.

The approach can also be beneficial to other environments.
In general, we believe that any rich language with big libraries
compiling to a constrained environment can benefit from
incremental whole-program optimizations.

Writing incremental optimizers is not a new idea. For
example, Chambers et al. [4] developed a very general frame-
work which provides fully automatic incremental reoptimiza-
tions of the program. While their ultimate goal was to reduce
the time spent when reoptimizing the whole program, they
do not measure nor discuss the actual running time of their
compiler. What they measure instead is the selectivity of their
incremental framework, i.e., how accurate it is, and they show
that it reoptimizes very few methods. We think that this is
not the most appropriate metric: even a highly accurate incre-
mental framework is useless if deciding what to reoptimize
takes longer than reoptimizing the whole program. Consider
the extreme case, where the incremental optimizer first opti-
mizes the whole program to determine what has changed with

respect to the previous run. Such an incremental optimizer
would be optimally accurate, yet slower than a batch opti-
mizer. This absurd situation is of course not what we have in
the case of Chambers et al.’s framework. It was implemented
in the Vortex optimizing compiler and applied during the
development cycle of Cecil programs, including Vortex itself.
As mentioned by Dean in [6], the framework was selective
enough to be used for day to day development, suggesting
that it was indeed faster than a batch optimizer. However, we
believe that, in aiming for the wrong evaluation metric, they
might have missed opportunities on making their framework
even better.

In contrast to those previous efforts, we directly focus
on evaluating and reducing the running time of the entire
pipeline: the detection part plus the reoptimization part. This
overall running time is ultimately what the developers care
about. To achieve this, we sacrifice the completely automatic
nature of the incremental analysis and instead developed a
methodology for designing modular incremental optimizers.
They are modular in the sense that the change detection
algorithm is isolated from the optimizer’s heuristics and
mechanisms and vice versa. It is therefore easy to reason
about the correctness of the incremental analysis on the one
hand, and the optimizer’s logic on the other hand.

1.1 Contributions

In this paper, we make the following contributions:

• We introduce a new approach to designing modular incre-
mental whole-program optimizers for object-oriented and
functional languages. Such optimizers detect what meth-
ods of the program need to be reoptimized when some
parts of the program change. The approach is based on
knowledge queries, which we introduce in Section 2. They
automatically create a modular interface between changes
in the program and the optimizations they invalidate.

• We show how the approach accommodates a variety
of type-based whole-program optimizations for object-
oriented and functional languages in Section 3: inlining
with static and dynamic dispatch, elimination of subtyping
checks, scalar replacement, and closure elimination.

• Using this approach, we implemented an incremental
whole-program optimizer for Scala.js [7]. Results pre-
sented in Section 6.1 show that incremental runs are 10 to
100 times faster than batch runs.

• We show how the general algorithm can be made parallel
in Section 5. Section 6.2 shows that the parallel algorithm
scales with the number of threads.

2. Knowledge Queries

As hinted in the previous section, the difficult part of an incre-
mental optimizer is to detect which methods need to be reop-
timized when certain parts of the compiled (non-optimized)

60

program change, i.e., tracking dependencies between opti-
mized methods and the program.

We introduce our approach by studying the simple case
of inlining static methods in Java. Static methods are always
referred to with their full name, and do not need polymorphic
dispatch resolution. In Section 3, we will progressively lift
those restrictions, and show how other kinds of optimizations
map into our approach.

2.1 A Pure and Restricted API

Our solution is based on one key idea: provide a restricted
API through which the optimizer can query facts about the
whole program. We call the functions in this API knowledge
queries. They must take immutable arguments and return
immutable results, which may depend only on the arguments
and the program. Knowledge queries are therefore functions
of their arguments and the program.

Our optimizer works on a per-method basis. An instance
of the optimizer is created for every method, and is tasked
to work solely on this method. Hence, we name it a method
optimizer. To gather any information about the program other
than the method itself, a method optimizer can only use
knowledge queries. Its result (the optimized method) must
therefore be a function of two things:

• the non-optimized method, and

• the results of knowledge queries.2

For example, consider a variant of the program from
the introduction where everything is static, and with an
additional method C.bar. Although our implementation
optimizes Scala.js code, we stick to Java code examples for
two reasons. First, for familiarity; and second, because the
optimizer’s intermediate representation is closer to Java than
Scala anyway.
class A {

static int x;

static int getX() {

return A.x;

}

static void print() {

System.out.println(A.getX());

}

}

class B {

static void foo() {

A.print();

}

}

class C {

static void bar() {

System.out.println("bar: " + A.getX());

}

}

2 Pragmatically, it could depend on other factors such as randomness or time
spent. The point is that it cannot depend on the program other than through
knowledge queries.

The method optimizer for B.foo initially knows nothing
about the program, except the body of that method. As it
processes the body, it finds the call A.print(), which it may
decide to inline. Typically, inlining decisions are based on
properties of the target method as much as the caller. The
optimizer already knows about the caller, but not the target.

Since static methods are linked statically, we know that
the target method must be the method print in the class A.
But that is all the optimizer can know about the target (since
it does not know the program) without calling a knowledge
query. Suppose we base our inlining decisions on the body of
the target method. In this case, we need the following query:
Tree getMethodBody(MethodID method);

where MethodID is the fully qualified name of a method in
the program (here, "A.print"). Once the optimizer knows
the body of A.print, it can decide whether to inline it or not
(e.g., based on its size). Smarter heuristics can be used, such
as those developed by Sewe et al. [16].

Note that if (and only if) it decides to inline A.print,
it will process that method’s body for optimizations too.
While doing that, it will encounter the call getX(), which it
will also consider for inlining. It will therefore also invoke
the query getMethodBody("A.getX"). It will not do so
if it decides not to inline A.print. The set of knowledge
queries performed by an optimizer may therefore depend on
its optimization decisions: it is not an inherent property of
the program.

2.2 An Automatic Dependency Tracker

Since the result of optimizing a methodm must be a function
of its non-optimized body and the knowledge queries, the lat-
ter are a natural and automatic dependency tracker, which we
can use for incremental reoptimization. If the non-optimized
version of m and the results of all knowledge queries per-
formed by its optimizer are the same for two successive
versions of the program, then the result of the optimizer must
be the same too. Hence, we need not reoptimize m for the
second run of the incremental optimizer: we may reuse the
optimized method from the previous run.3

This forms the basis for the incremental optimizer based
on knowledge queries:

• While optimizing a methodm, we log all the knowledge
queries invoked by the optimizer, and register them as
dependencies for the optimized m.

• On the next run of the incremental optimizer, we detect
which knowledge queries have different results than in the
previous run, and we invalidate all the optimized methods
that depend on them.

3 If we accept randomness and other independent factors, we must reformu-
late this as: the result for the previous run is a possible result for the second
run as well, which is also sufficient to allow us to reuse it.

61

getMethodBody("A.print")

getMethodBody("A.getX")

getMethodBody("B.foo")

getMethodBody("C.bar")

A.print

A.getX

B.foo

C.bar

Figure 1. Dependency graph if A.print is not inlined

getMethodBody("A.print")

getMethodBody("A.getX")

getMethodBody("B.foo")

getMethodBody("C.bar")

A.print

A.getX

B.foo

C.bar

Figure 2. Dependency graph if A.print is inlined

The recorded dependencies form a bipartite graph with
two kinds of nodes: knowledge queries (including their
arguments), and optimized methods.

Figure 1 shows the dependency graph that we get for the
program of the previous section if the optimizer for B.foo
decides not to inline A.print. If it does inline A.print, then
we get the graph of Figure 2, in which there is an additional
edge between B.foo and getMethodBody("A.getX").

2.3 Program Changes

We still miss one piece of the algorithm: how do we detect
which knowledge queries have different results? For this, we
compute program changes, and their impact on knowledge
queries.

A program change is a difference between the program
in the current run compared to the previous run. Program
changes can be of any granularity, but in practice we only
consider class-level and method-level changes. Tracking
dependencies at the instruction level is useless for one simple
reason: as programs get bigger, they contain arbitrarily more
classes and more methods, but the size of each method tends
to be bounded, due to established programming best practices.
This means that we need not scale with the size of methods,
but rather with the number of classes and methods in the
program. Section 4 shows how we compute the changes we
are interested in.

Intuitively, a program change impacts a knowledge query
if it changes the result of that query. Hence, for each change,
we have to compute which queries it impacts. All the methods
depending on those queries (which we get from the depen-
dency graph) must be invalidated.

A little bit more formally, we say that a program change
impacts a knowledge query if and only if there exists a
program P such that the result of that query is different for
P than on the program P � obtained by applying the change
to P . By this definition, and because of the commutativity of
difference, a program change always impacts the same set of
queries as its reciprocal.

The changes we need to detect are derived from the queries
used by the method optimizer. So far, we have only one query:
getMethodBody. The only program change we need to cover
is straightforward:

• Change the body of a method C.m.

which always impacts only getMethodBody(C.m). We will
see in Section 3 that not all knowledge queries translate that
straightforwardly to program changes.

Unlike the dependency tracking between the optimizer
and the knowledge queries, the relation between program
changes and their impacts is not automatic: it must be
reasoned about manually. However, the big advantage is that
the details of the optimizer, which are bound to be complex,
are completely abstracted away from that reasoning by the
knowledge queries, which are automatic. The knowledge
queries therefore create a truly modular interface between
the optimization logic and the incremental logic.

We conclude this section with the global view of the whole
incremental algorithm. It has two phases per run:

• Invalidation phase: diff the program compared to the
previous run to isolate program changes (see Section 4).
For each program change, compute the set of impacted
knowledge queries (see Section 3). Follow the edges in the
dependency graph to invalidate all the methods depending
on these queries.

• Optimization phase: run the method optimizer for every
invalidated method. First remove all edges in the graph
for this method. Then, optimize its body and record all
invoked knowledge queries as edges in the graph.

3. Knowledge Queries for OO and

Functional Languages

In the previous section, we introduced knowledge queries
with the case of inlining static methods only. We now add
language features and optimizations with two goals in mind:

• show how knowledge queries guide the design of incre-
mental optimizations, and

• show how a variety of whole-program optimizations
for object-oriented and functional languages fit in the
knowledge query approach.

First, we add language features, while still studying their
impact on inlining only, until we can handle all the features
of a JVM-style object system (which is what we get from the
Scala.js compiler): single inheritance, interfaces, dynamic
dispatch and run-time instance tests. Then, we introduce
support for other kinds of whole-program optimizations:
elimination of run-time type tests, scalar replacement and
closure elimination.

3.1 Inheritance

In Section 2, we have silently omitted to consider inherited
static methods. In Java, as well as most object-oriented

62

languages, static methods defined in a superclass A can
be called on a class B when B extends A. Most languages
also allow to reintroduce a static method with the same
name in a subclass. When calling B.foo, the actual target
is looked up in the parent chain of B on a first match basis.
Reintroduced methods therefore shadow methods coming
from the superclasses.

For example, consider the following snippet:
class A extends Object {

static int foo() {

return 3;

}

}

class B extends A {

}

class C extends B {

static int foo() {

return 5;

}

}

void bar() {

println(A.foo());

println(B.foo());

println(C.foo());

}

in which the method bar calls the method A.foo twice then
the method C.foo once. The call B.foo() resolves to A.foo,
and it is therefore not possible any more to identify the actual
target only looking at the call site. Some global knowledge is
required.

There are other cases where static call resolution applies:

• Non-virtual methods in C++.

• super calls and constructor calls in Java and Scala.

• In an optimizer, we can use static resolution even if the
language prescribes dynamic resolution, provided we
know the exact class of the receiver (e.g., because it is
allocated with new within the scope of the optimizer).

We will now extend the support for incremental inlining
from the previous section to handle such resolutions.

3.1.1 Eliciting Knowledge Queries

The first step is to determine what knowledge queries are
necessary. To do this, we simply update the method optimizer.
When it needs some information about the whole program,
we introduce a new knowledge query.

Here, we want to inline calls such as the following:
T.m();

Because of inheritance, m could be declared in a a superclass
of T. Finding the exact (unique) target depends on whole-
program knowledge. We therefore introduce a new knowl-
edge query:
MethodID resolveStaticCall(

ClassID class, String methodName);

The optimizer can use this knowledge query to retrieve the
actual target of a static call. This query will typically be
followed by the existing query getMethodBody(target)

to decide whether and how to inline that target.

3.1.2 Impact of Program Changes on Queries

We now need to efficiently find queries that are impacted by
program changes. Let us start with an example. In one run of
the optimizer, the program looks like this:
class A extends Object {

static void foo() {

println("A");

}

}

class B extends A {}

class C extends B {}

class Main {

static void main() {

C.foo();

}

}

While optimizing Main.main, we consider the call C.foo()
for inlining. The semantics of static calls tell us that the actual
target method is A.foo. Therefore, resolveStaticCall(C,
"foo") returns "A.foo".

Now, in the next run, we add the method B.foo:
class B extends A {

static void foo() {

println("B");

}

}

Assuming we have a perfectly accurate incremental com-
piler, this change does not impact recompilation of Main,
since the public API of C has not changed.4 However, it
must prompt reoptimization of Main.main, since the ac-
tual target method changes: now it is B.foo. In other words,
the result of the knowledge query resolveStaticCall(C,
"foo") has changed from "A.foo" to "B.foo". Hence,
the addition of a new method B.foo impacts this knowl-
edge query. In general, adding a method X.m will impact
resolveStaticCall(Y, "m") for all classes Y extending
X, directly or indirectly. Since no other method in the program
asked for resolveStaticCall(C, "foo"), the addition of
"B.foo" does not trigger reoptimization of any other part of
the program.

Removing a method will have the same impact, since it is
the reciprocal of adding it.

In a program with inheritance, we identify the following
possible core changes:

• Change an existing method’s body

4 This depends on the format and specifications of the compiled files.
For example, it is not true for .o files in C++. For the invokespecial
instruction of the JVM, it is true.

63

• Add/remove a method in an existing class

• Add/remove an empty class without child classes (another
pair of reciprocal changes)

Note that other changes can be represented as composition of
these changes:

• Adding a non-empty class is equivalent to adding it empty,
then adding methods.

• Similarly, removing a non-empty class is equivalent to
removing its methods, then removing it.

• Changing a class’ parent, i.e., moving it in the hierarchy,
is equivalent to deleting the class and all its subclasses
from the previous parent, and adding them back to the
new parent.

Further, note that when a class is removed (including when it
is moved), all its subclasses are removed as well.

We have already seen the impact of the two first core
changes. Adding an empty class C that does not have any child
class does not impact either getMethodBody (since it does
not have any method) nor resolveStaticCall (because no
existing code could possibly have a call C.m(), since C did
not exist in the previous run). It follows that removing an
empty class, which is the reverse operation, does not have
any impact either.

As a recap, we have the following:

• Changing the body of C.m impacts
getMethodBody("C.m").

• Adding or removing a method C.m impacts
resolveStaticCall(D, "m") for all D extends C.

That is it. With a simple two-step design, we added support
for inheritance. First, we listed knowledge queries needed by
the optimizer. Then, we identified which program changes
can impact these queries.

3.2 Polymorphic Dispatch

So far, we have limited our discussion to static calls. However,
Java, Scala, and other object-oriented languages have virtual
calls, where dynamic dispatch is required. The exact target
of a call is not known at compile-time, since it depends on
the run-time type of the receiver. To support inlining with
polymorphic dispatch, we again find out what knowledge
queries are needed, and what program changes impact them.

3.2.1 Eliciting Knowledge Queries

When encountering a dynamic call of the form x.m(), the
optimizer has to determine the target of that call. Unlike with
static calls, there can be multiple targets, if x is of a type C
that has several subclasses overriding m. We therefore need
the following new knowledge query:
Set<MethodID> resolveDynamicCall(

ClassID class, String methodName);

With the set of possible targets, the optimizer can decide
whether or not to inline (e.g., if the set is a singleton).
As was the case with static calls, it can follow up with
getMethodBody to obtain the body of a given target to inline.

3.2.2 Impact of Program Changes on Queries

Consider the following base program with an instance method
foo:
class A extends Object {

void foo() {

println("A");

}

}

class B extends A {}

class C extends B {}

and consider the calls a.foo() and c.foo(), with a (resp. c)
statically typed as A (resp. C). The corresponding knowledge
queries, resolveDynamicCall(A, foo) and
resolveDynamicCall(C, foo), both return the singleton
{"A.foo"}.

We now add a method B.foo. Similarly to the query
resolveStaticCall, resolveDynamicCall(C, foo) is
impacted, since its result becomes {"B.foo"}. However,
in this case the query resolveDynamicCall(A, foo) is
also impacted, with a result of {"A.foo", "B.foo"}. This
follows from the fact that B <: A. So a value statically typed
as A can hold an instance of class B.

In general, adding (or removing) a method X.m impacts
the queries resolveDynamicCall(Y, m) for all Y such that
either Y <: X or X <: Y.

3.3 Interfaces

The addition of interfaces (without default methods) compli-
cates dynamic calls. Now, in a dynamic call x.m(), x can
be statically typed as an interface I. Consider the following
program:
interface I {

void foo();

}

class A extends Object {

void foo() {

println("A");

}

}

class B extends A {}

class C extends B implements I {}

and the call x.foo() where x is statically typed as an I.
The result of the query resolveDynamicCall(I, "foo")

would return the singleton {"A.foo"}.
Let us now add a method B.foo. This changes the result

of the query from {"A.foo"} to {"B.foo"}, even though
neither B <: I nor I <: B. Here, the query is impacted
because there exists a subclass C of B that implements I.

In general, adding (or removing) a method X.m now also
impacts resolveDynamicCall(I, m) for all I such that

64

there exists a class Z such that Z <: X and Z <: I. Taking
a step back, the rule for classes that we saw in the previous
section is a special case of this one. We therefore combine
both rules as one: adding (or removing) a method X.m impacts
resolveDynamicCall(Y, m) for all classes and interfaces
Y such that there exists a class Z such that Z <: X and Z <:

Y. This looks heavy to compute, but we can easily reformulate
it as follows: for all subclasses Z of X, for all ancestors Y of Z,
Y.m is impacted. If we maintain a data structure that allows
us fast access to all subclasses of a class, and all ancestors of
a class, the computation becomes straightforward.

We are not done with interfaces, though. The addition
of interfaces to the language also introduces a new kind of
program change:

• Add/remove an interface I to the ancestors of a class C
(pair of reciprocal changes).

Adding I to the ancestors of C implies that, now, C <: I.
A variable x of type I can therefore hold a value of class
C, where previously it could not. In terms of dynamic calls,
this means that the target of x.m() can change for any m.
This change (and its reciprocal) will thus impact the queries
resolveDynamicCall(I, m) for all m.

Note that it is not necessary to track the methods defined
in the interface itself with this approach.

3.4 Other Object-Oriented Features

There are a couple of other typical object-oriented features
that do not require any additional support.

Multiple inheritance is entirely covered by the above
treatment of interfaces, as far as knowledge queries are
concerned.

Overloading is a compilation issue. When they reach the
optimizer, overloaded methods have already been disam-
biguated, either with mangled names (e.g., in C++ or the
Scala.js IR) or because they are identified by their full signa-
ture (such as on the JVM).

Similarly, operator overloading is transformed by the
compiler into method calls, and is therefore covered.

3.5 Eliminate Subtyping Checks

Now that we have a full JVM-like language, we can move
on to support other kinds of optimizations, besides inlining.
We begin with eliminating runtime subtyping checks, i.e.,
instanceof and casts. Due to other whole-program opti-
mizations, such as inlining, we can be left with tautological
subtyping checks, such as
interface Foo {}

class Bar implements Foo {}

Bar x = ...

(Foo) x

Because Bar <: Foo, the cast is redundant, and can be
eliminated, giving x. Similarly, a test x instanceof Foo

can be optimized as true (taking care of preserving the side-

effects of computing x). However, to do this, we need to know
that Bar <: Foo, which is global knowledge of the program.
It must therefore be requested as a knowledge query.

3.5.1 Eliciting Knowledge Queries

When encountering x instanceof Foo, with x of type Bar,
the optimizer must test whether Bar <: Foo. The obvious
knowledge query is therefore the following:
boolean isSubclass(ClassID subclass,

ClassID superclass);

with the understanding that a ClassID can also refer to an
interface.

3.5.2 Impact of Program Changes on Queries

The query isSubclass(subclass, superclass) only
depends on the list of all ancestors (classes and interfaces) of
subclass. More specifically, whether superclass is in this
list or not. Because the parent chain of a class cannot change
(it would be removed and added instead), only interfaces can
be added to or removed from the ancestor list. We extend the
program change we introduced with interfaces:

• Add/remove an interface I to the ancestors of a class or
interface J (pair of reciprocal changes).

which now also impacts the query isSubclass(J, I).

3.6 Scalar Replacement

Scalar replacement, also known as stack allocation, is an
optimization that replaces a reference value (to an object
allocated on the heap) by a set of values for all fields of the
given object. For example, replacing:
class Point {

double x, y;

Point(x, y) {

this.x = x;

this.y = y;

}

double abs() {

return Math.sqrt(x*x + y*y);

}

}

void foo(double y) {

Point point = new Point(5, y);

println(point.x);

println(point.abs());

}

by
void foo(double y) {

double point_x = 5;

double point_y = y;

println(point_x);

println(Math.sqrt(point_x*point_x +

point_y*point_y));

}

Note that we inlined the call to point.abs(). If we cannot
inline point.abs(), the optimization is canceled, since the

65

Point must be allocated to call abs. Instead, we could use
partial escape analysis as developed by Stadler et al. [18].

This optimization improves several aspects:

• Memory consumption and GC pressure, because less
objects are allocated

• Execution speed, because less pointer indirections are
involved

• It is an enabler for other optimizations, because we can
often have more precise static information on the fields
(e.g., here, we can constant-fold point_x).

Scalar replacement obviously needs global knowledge:
what fields are defined in the class Point, as well as the body
of its constructor. We can use knowledge queries to introduce
this optimization in an incremental framework.

3.6.1 Eliciting Knowledge Queries

Although scalar replacement has several implications down
the line, its need for global knowledge is actually confined
to the new invocation. Indeed, once the allocation is replaced
by individual variables, the fact that point has been scalar-
replaced into point_x and point_y becomes part of the
local state of the optimizer.

To keep things minimal, we decompose an allocation such
as new C(args) into the allocation of the object of class C
itself, and the call to its constructor. The latter is a standard
application of a static call, as described in Section 3.1. The
interesting part is the allocation. To replace it, we only need
to know its fields. The body of the constructor itself is not
needed, as it is part of the static call. We therefore derive the
following knowledge query:
List<Field> getScalarReplacement(

ClassID class);

where Field is a description of a field, with its type and
potentially other properties, such as mutability.

3.6.2 Impact of Program Changes on Queries

We introduce the following program change:

• Change the fields of a class C (including those inherited)

which impacts the query getScalarReplacement(C).

3.7 Closure Elimination

Closure elimination is an important optimization for lan-
guages with higher-order functions, obviously including func-
tional languages. We do not need any other query (and there-
fore no other program change) to support this optimization.
Indeed, closure elimination derives from inlining, local con-
stant propagation, and either beta-reduction or scalar replace-
ment, depending on whether the IR supports closures directly
or encodes them as anonymous classes. All of these optimiza-
tions are either local optimizations, or we have already shown
how to support them. Hence, closure elimination is trivially
supported by our approach.

4. Diffing the Program Between Runs

In the previous sections, we showed how knowledge queries
apply to a variety of whole-program optimizations. To do so,
we relied on program changes as small differences between
two versions of a program. As a recap, here are the various
kinds of changes we relied upon:

• Change the body of a method C.m

• Add/remove a method C.m

• Add/remove an empty class C without child classes

• Add/remove an interface I to the list of ancestors of a
class or interface J

• Change the fields of a class C

If the earlier steps of the compiler were incremental them-
selves, they could communicate these changes directly to
the incremental optimizer. However, this is not the case in
Scala.js: the smallest unit of change that the optimizer re-
ceives is a compiled class (or interface), each being stored
in a compiled file. In this section, we sketch how to diff two
object-oriented programs so that we can derive a list of the
above changes.

To guarantee the correctness of the incremental optimizer,
we need to make sure that we produce an exhaustive list of
program changes. If we miss one, we might not detect the
impact of changes on some knowledge queries, which in turn,
would cause some optimized method not to be invalidated
when they should, making the optimizer unsound. Note that
it is not necessary for correctness to produce a minimal list of
program changes, i.e., we are allowed to emit more changes
than necessary, although that would invalidate more methods
than required. We do not argue for the precision of our diff,
and instead focus on the overall running time in Section 6.

Since every program change is related to some class or
interface C or J, we can divide and conquer the problem by
class/interface. For each class or interface in the program, we
seek to produce an exhaustive list of program changes related
to it.

To compute our structured diff, we maintain two data
structures. First, a map from each class/interface J to the set
of its ancestors. Second, a tree of the classes in the program
mirroring the class hierarchy. Each class keeps track of:

• its parent and child classes, forming the tree structure

• its methods and their bodies

• its fields, including inherited ones

Note that, together, those two data structures completely
define the entire program. Computing the program changes
caused by changes to these structures therefore takes all
possible changes to the program into account. Other than
in the ancestor map, interfaces and their member methods
are not part of this program representation, because they are

66

neither used by the optimizer nor the code generator that
follows it, and are therefore irrelevant at this point.

If mixed with other changes, additions and removals of
classes are hard to get right, especially because of classes that
move around the hierarchy. Therefore, the diffing algorithm
uses 4 main steps:

1. Class deletions: remove classes that existed in the previous
run, but do not exist in the new version of the program.
Recall that this includes classes that are moved in the
hierarchy.

2. Changes to the sets of ancestors.

3. Class changes: add and remove methods, change method
bodies, and change fields.

4. Class additions: add classes that did not exist in the
previous run, but do exist in the new version of the
program. Again, this includes classes that have moved.

This separation also allows for a simple and efficient imple-
mentation of the batch mode (the first run, when we come
from an empty program): simply run the last step.

Note that there is no step dealing with interface addition
and removal. It turns out this is not necessary, since no
program change is dependent on those changes.

Steps for Class Additions and Removals. The first step is
a post-order traversal of the hierarchy tree. For each deleted
class C, we first remove all its methods (emitting “Remove a
method C.m” changes), then remove the class itself (emitting
“Remove an empty class C without child classes”). Since
classes moving around the hierarchy are considered deleted
then added, we know that if class C is deleted, so are all its
subclasses. Therefore, in a post-order walk, it indeed has no
child classes anymore. There cannot be any other program
change for C, so we have exhaustively listed all program
changes for C.

Similarly, the last step for class additions is a pre-order
traversal of the hierarchy tree. By a similar argument, we
list “Add an empty class C without child classes” and “Add a
method C.m” program changes for C, and no other.

Ancestors Update Step. In this step, we update the sets of
ancestors of all classes and interfaces in the program. Since
classes are not removed, added or moved during this step,
only interfaces can be added to or removed from the sets of
ancestors. For each class or interface J in the new program,
we compute its new set of ancestors by transitively following
the direct parent class and/or implemented interfaces. Unless
J did not exist in the previous program, we diff this set with
the old set of ancestors. For each difference I, which must be
an interface, we emit the program change “Add/remove an
interface I to the list of ancestors of J”.

Since the interfaces implemented by a class do not influ-
ence its methods nor its fields, a change of ancestors need
never emit program changes other than “Add/remove an in-

terface I”. Therefore the emitted list of program changes for
changing the ancestor list is exhaustive.

Class Changes Step. The third step is more complicated,
and takes care of all the changes in classes that are neither
removed, nor added (nor moved around the hierarchy). Obvi-
ously, in this step, no program change “Add/remove an empty
class C without child classes” is emitted.

For the other program changes, we walk the class hierarchy
data structure. For each class node C in the class hierarchy,
we compute the values of its new constituents, and emit the
appropriate program changes. Note that, in this step, the
parent class and the list of child classes cannot change.

The new values of the constituents of a class C are com-
puted from a mix of information coming from the compiled
file for C, and other parts of the class hierarchy data structure.
By diffing the old and new values, we know what program
changes to emit. Here is what happens for each of the three
constituents of C:

• The parent class and child classes are never modified,
since during step 3, no class is added, removed, or moved
around the hierarchy.

• The set of methods depends only on the content of the
compiled file for C. Diffing the set itself emits “Add/re-
move a method C.m” changes, while for the bodies of
changed methods, we emit “Change the body of a method
C.m”.

• The list of fields depends on the fields of the parent class
in addition to those directly declared in C. If the list of
fields changes at all, we emit “Change the fields of a class
C”.

Since the list of methods of C does not influence fields
in C and conversely, nor the set of ancestors, there is no
other program change that need emitting, therefore we have
exhaustively listed the appropriate program changes. Since
only those two constituents can change in step 3, the above
changes entirely characterize the changes in class C, and
the algorithm produces an exhaustive list of all the program
changes for C. Finally, since we process all classes in this
way, and since we have initially divided the set of all program
changes per class C or class/interface J, we conclude that we
produce an exhaustive list of all the program changes for the
entire program.

Note that there are data dependencies between the pro-
cessing of each class, since some parts of the algorithm read
data from the rest of the class hierarchy data structure, which
imposes constraints on the order in which we process classes.
When processing a class node in the class hierarchy, we per-
form the following kinds of data manipulations:

• Read the file for that class, and that class only.

• Read data in its parent classes in the class hierarchy.

• Read and write data stored in this class.

67

In particular, observe that:

• we do not read data from child classes, nor any other
classes not in the parent chain, and

• we modify data only in the class node being processed.5

Therefore, there are only top-down data dependencies, i.e.,
from parent classes to their children. A pre-order traversal
of the class hierarchy guarantees that each class is processed
after all its parent classes, and that all data dependencies are
satisfied.

Adding multiple inheritance to the language (or default
methods à la Java 8) turns the hierarchy tree into a directed
acyclic graph. A class must therefore be processed only when
all its parents have been processed. Adding or removing a
parent class must be viewed as moving the class in the graph,
and must therefore be deleted and added again. The algorithm
is otherwise unaffected.

5. Parallel Implementation

To take advantage of multicore architectures, we parallelized
the incremental algorithm. The two phases of the algorithm
(invalidation and reoptimization) must run sequentially with
respect to each other, i.e., the invalidation phase must com-
plete before the reoptimization phase can start. However, we
can parallelize within each phase. Doing so turns out to be
very easy.

5.1 Parallelizing the Invalidation Phase

The first phase is trivial to parallelize. We already established
that data dependencies flow top-down in the class hierarchy.
Moreover, this phase does not modify the dependency graph.
We can therefore parallelize trivially down the inheritance
tree (or down the graph if we have multiple inheritance).

5.2 Parallelizing the Reoptimization Phase

The second phase is a bit less easy to parallelize, but not much.
We receive a set of methods that need to be reoptimized from
the first phase. Recall that every method is processed by a
different optimizer instance, which holds only state local
to itself. Any knowledge of the program it needs must be
requested through knowledge queries. Moreover, the result
of every query does not change during one run. We would
therefore like to run all optimizer instances in parallel.

Since knowledge queries read data that are immutable for
the duration of the second phase, the computation of their
result need not be synchronized. The dependency graph is
the only shared mutable state.

Since an optimizer for a given method m only removes
and adds edges (m, q), i.e., for its own method, different
optimizers cannot act on the same edges. Moreover, during
this phase, the graph is never read, only written to. It is
therefore sufficient to implement the graph with a concurrent

5Recall that, during step 3, no class is added or removed, hence the list of
child classes is not modified.

data structure that supports atomic addition and removal of
edges, while keeping the order of operations coming from a
single thread. This can easily be done with the non-blocking
concurrent hash tries developed by Prokopec et al. [14].

6. Results

We evaluated the implementation of the parallel incremental
algorithm in Scala.js along the following two axes:

• How the incremental version improves over the batch
version of the same program.

• How the parallel implementation scales with the number
of threads.

When benchmarking, we measure the running times of the
invalidation phase and the reoptimization phase separately.
Since the invalidation phase would not be needed at all if the
algorithm did not have to support incremental compilation,
we compare the time of the reoptimization phase in batch
mode to the cumulative time in incremental mode. This is
actually slightly biased in favor of the batch mode, since part
of the job of the invalidation phase is also to construct the
class hierarchy data structure, used to resolve calls, and in
general answer knowledge queries.

6.1 Batch Mode vs Incremental Mode

Comparing the running time of the batch and incremental
modes is the most important aspect of our contribution. We
have measured this with two very different approaches: on
the one hand, in a controlled environment with synthesized
changes, and on the other hand, in real life by actual users of
the optimizer during their day-to-day development.

6.1.1 Measures in a Controlled Environment

To evaluate the speedup obtained from running the incre-
mental optimizer rather than a batch optimizer, we took the
codebase of Papa Carlo [8]. This codebase contains 4974
reachable methods (the number of methods that the batch
mode has to optimize), which is a relatively small though
non-trivial Scala.js codebase. In batch mode, we link the full
program with a clean optimizer. In incremental mode, we
first optimize a slightly changed version of the program (with
a fresh optimizer) and then optimize the original version of
the program. This ensures that the resulting program is the
same for batch and incremental mode.

We performed the measurements on an Intel Core i7-
3770K clocked in at 3.5GHz, allocating 4GB of RAM to
the JVM running the experiments. This CPU has 4 cores able
to run 8 threads.

We compare the running time of the batch mode against
the following synthesized incremental changes to the pro-
gram:

1. Modify the body of an inlineable method

2. Modify the body of a non-inlineable method

68

1 thread 8 threads

●

●

●

●
●

●

●

●
●

●

●

●

0

10

20

30

Inc. 1 Inc. 2 Inc. 3 Inc. 4 Inc. 1 Inc. 2 Inc. 3 Inc. 4

sp
ee

d
u
p

Figure 3. Speedups in incremental mode with respect to batch mode

meth. time [ms] speedup MAD [ms]
Batch 4974 246 (97) 1 (1) 3.2 (27.3)
Inc. 1 2 11 (11) 23 (9) 1.7 (1.6)
Inc. 2 1 8 (11) 31 (9) 0.1 (1.2)
Inc. 3 8 25 (19) 10 (5) 5.1 (4.9)
Inc. 4 17 8 (9) 29 (10) 0.2 (1.9)

Table 1. Batch mode vs incremental mode for various
changes. Running with 1 thread (8 threads).

3. Add a method used in a polymorphic dispatch

4. Mark an existing class as eligible for scalar replacement

These changes may seem arbitrary, and it might appear that
using the history of a version control system (VCS) would
give more realistic results. However, this is a fallacy, because
commits in a VCS are much too coarse, with respect to what
our incremental optimizer is trying to achieve. In a typical
development workflow, we run a compile-optimize-run/test
cycle many times to eventually create a single commit. It
is common practice to perform continuous testing (running
unit tests on every file save) of the optimized build with
Scala.js, since it requires no setup.6 The time between two
cycles might go from a few seconds to a couple of minutes,
while the time between two commits can cover much longer
development times. VCS commits are therefore not good
representatives at all. These very small synthesized changes
are in fact much closer to the reality.

Figure 3 shows the speedups of incremental mode with
respect to batch mode for the sequential version of the
algorithm and the parallel version with 8 threads (absolute
running times of batch mode are in Figure 5).

Table 1 shows the number of methods that were invali-
dated, median running time, speedup factor and median abso-
lute deviation (MAD) for the running time.

6 The build command sbt ˜test performs optimized continuous testing by
default.

For the single-thread case, we observe speedups up to a
factor of 30 for Inc. 2 and Inc. 4. The lowest gain can be
seen on Inc. 3, which only exhibits a speedup of 10x. Multi-
threaded setups offer smaller speedups, because there is more
contention on the parallelization of the first phase, which
causes the batch optimizer to benefit more from multiple
threads, relatively to the incremental optimizer. Improving the
parallelism of the first phase will be future work, this mostly
involves improving current work stealing techniques. It is
remarkable that despite this, we can still observe speedups
up to a factor 10.

6.1.2 Real Life Benchmarks

The previous section analyzed reproducible benchmarks in
a very controlled environment. However, the real purpose
of our incremental optimizer is to reduce the time actual
developers have to spend waiting during their development
cycle. We have therefore benchmarked the optimizer in real
life situations: the developers of 6 Scala.js codebases have
used an instrumented version of the optimizer for several days
during their day-to-day programming tasks. The instrumented
optimizer measured the running times of both the incremental
and batch optimizer on the codebase every time it was invoked
(up to several times per minute on some codebases).

These benchmarks were run in unknown and uncontrolled
environments, during normal development tasks. We there-
fore expect that other processes were running at the same time.
Moreover, every measure is unique and non reproducible.

Although non reproducible, we consider these measure-
ments much more important in practice, since they are real
life usages of the optimizer.

Table 2 lists the 6 codebases that have been benchmarked.
The number of methods is a rough approximation, since it
changes from one measurement to the next, and serves only
as an estimate of the size of the codebase. Figure 4 shows, for
each codebase, the speedup of the incremental optimizer wrt.
the batch optimizer. Table 3 shows the associated numeric
data.

69

name # methods # data points
A scalajs-games demo 5,000 414
B react-ext test suite 9,500 31
C ScalaCSS playground 9,000 54
D Scala.js land 5,500 42
E Scala.js land admin 9,500 32
F Anon. web app client 20,000 41

Table 2. Codebases benchmarked in real life.

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

1

10

100

A B C D E F

S
p
ee

d
u
p

Figure 4. Speedup in incremental mode wrt. batch mode
(log scale, higher is better)

Batch [s] Inc [ms] speedup
A 0.17 ± 0.0 10.5 ± 4 16 ± 9
B 3.08 ± 0.3 24.5 ± 27 59 ± 68
C 4.43 ± 0.3 65.9 ± 63 67 ± 83
D 0.28 ± 0.2 35.0 ± 19 8 ± 5
E 0.44 ± 0.4 42.9 ± 44 12 ± 10
F 3.74 ± 0.4 92.9 ± 47 39 ± 30

Table 3. Measurements on real life codebases (median ±
MAD)

threads time [ms] speedup MAD [ms]
1 4755.9 1.0 127.0
2 2689.1 1.8 194.8
4 2467.3 1.9 228.8
8 2465.7 1.9 169.8

Table 4. Scaling with the number of threads – batch mode

On these benchmarks, we can observe speedups from 10x
to 100x, which is a huge improvement given that these are
real life measurements.

6.2 Scaling with the Number of Threads

We also compare the batch mode running times with different
numbers of threads. These measurements were performed on
the same Intel Core i7-3770K clocked in at 3.5GHz, on the
Scala.js test suite. This codebase contains 12,311 reachable
methods.

●● ●

●

●

●

0

2

4

6

1 2 4 8

threads

ex
ec

u
ti

o
n
 t

im
e

[s
]

Figure 5. Batch mode running times

Benchmark without opt. with opt. speedup
Richards 3.47 1.04 3.34
Tracer 4.63 1.11 4.17
DeltaBlue 5.49 1.24 4.42

Table 5. Run-time performance of the emitted programs.
The reported figures are the running times normalized against
the hand-written JavaScript version (lower is better). The last
column shows the speedup brought by the optimizer (higher
is better).

The results are shown in Figure 5 and Table 4. We report
the median running times, the speedup factor compared
to sequential execution and the median absolute deviation
for the running time. A decent amount of scaling can be
observed, although it seems there is little to be gained beyond
two threads. We believe bigger gains can be obtained with
further work, replacing the simple usage of the Scala parallel
collections by more targeted work stealing.

6.3 Performance of the Resulting Programs

It might be argued that the set of optimizations we have dis-
cussed and implemented are not representative of real-world
optimizers. We have analyzed the run-time performance of
the programs produced by our optimizer on three of the
Octane benchmarks [1], a suite of benchmarks for the V8
JavaScript virtual machine: Richards, Tracer and DeltaBlue.
The benchmarks were run in 3 different configurations, using
the same setup as above:

• The original benchmark, hand-written in JavaScript,

• The benchmark ported to idiomatic Scala.js code, without
using the optimizer, and

• The same code optimized by our optimizer.

The results are shown in Table 5. Running times with
and without optimizer are normalized against the hand-
written JavaScript version. We can see that the performed
optimizations bring significant speedups, from 3x to 4x.

70

Additionally, the resulting programs are competitive with
hand-written JavaScript code.

7. Limitations

The approach presented in this paper focuses on speed for the
incremental optimizer, and has some limitations.

7.1 Dynamic Language Features

Dynamic language features such as reflection and dynamic
loading can invalidate the assumptions made by our optimizer
pretty quickly. However, this is not so much a limitation of the
incremental nature of the optimizer as of the whole-program
assumption. In fact, having an incremental optimizer can be
beneficial if such language features are used, provided a Just-
In-Time compiler can incrementally reoptimize parts of the
program that are invalidated.

In the context of Scala.js, however, this is a non-issue.
Scala.js does not provide any reflection nor dynamic loading
by design. Dynamic loading is typically avoided in JavaScript
environments, to enable bundling the entire application as a
single JavaScript file. In larger applications, dynamic loading
is used to improve startup times, but the whole program is
still known before distribution; it is only fragmented after the
fact (after whole-program optimizations) to enable lazy load-
ing. Run-time reflection, on the other hand, is heavily used
by dynamic languages, but is virtually never necessary in a
language like Scala, which supports advanced compile-time
metaprogramming features [3]. In practice, Scala.js develop-
ers replace run-time reflection by compile-time reflection for
features such as automatic JSON serialization [11], statically
typed RPC calls with the server [9], and so on.

7.2 Other Kinds of Whole-Program Optimizations

The optimizations we cover are essentially type-based. We
have not yet considered other kinds of whole-program op-
timizations such as those requiring flow-based analyses. In
theory, this is a severe limitation, but Section 6.3 has shown
that the optimizations we support are enough to bring id-
iomatic Scala.js code to a competitive level with respect to
hand-written JavaScript code. The particulars are out of the
scope of this paper, but the general insight is that we focus on
generating code that is as friendly as possible to the next com-
piler in line, i.e., the JIT compiler. The optimizations we im-
plement allow to remove the overhead of typical Scala code,
down to imperative, first-order monomorphic JavaScript code.
JavaScript virtual machines are good at optimizing such code
further using run-time profiling information.

In other contexts, the limitations currently imposed by our
approach can be lifted with a two-staged process. During iter-
ative development, only optimizations that lend themselves
to being incrementalized are used. This already provides a
major improvement over the non-optimized code, therefore
reducing the time spent on compile/test cycles. We then add
the other optimizations when emitting the final, production
executable, to compensate for the limitations of the approach.

8. Related Work

Incremental reoptimization of generated programs was pi-
oneered by Pollock and Soffa as early as 1985 [12]. This
first work was concerned with optimizations strictly local
to basic blocks. They later extended their algorithm [13] to
accommodate procedure-level optimizations.

At about the same period, Cooper et al. [5] introduced a
first framework for incremental recompilation with interpro-
cedural knowledge, which was extended later by Burke and
Torczon [2]. Their framework tracks the assumptions made by
the optimizer in the form of sets describing what callees may
do without necessitating reoptimization. If any of the assump-
tions are broken, the procedure is marked for recompilation,
ensuring the validity of the resulting program. However, their
framework does not handle the reverse operation: should any
new opportunity for optimizations arise, it is not detected.
They also acknowledge the difficulty of recording all nec-
essary assumptions. Knowledge queries can be viewed as a
generalization of this idea with several improvements:

• They support non-boolean queries, for example, the set
of possible targets of a dynamic call. This is critical to
support object-oriented patterns, or simply inlining.

• They automatically record all the relevant assumptions,
since the queries are the only interface between the
optimizer and the program.

• They detect new opportunities for optimizations.

Chambers et al. [4] proposed an impressive framework
that can be viewed as more general than our approach, since
it applies to the entire compilation pipeline. Filtering nodes in
their framework are basically equivalent to knowledge queries
in terms of dependency tracking. However, as we explained in
the Section 1, the measures and evaluations of this framework
were focused on accuracy, omitting any discussion of the run-
time overhead of their detection algorithm. Our approach
has significant differences geared towards good run-time
performance of the detection algorithm itself. In particular,
it does not require factoring nodes, computed at run-time, to
avoid memory blow-up, because we automatically compute
the set of queries impacted by program changes instead of
storing them in the dependency graph. Our algorithm also
easily parallelizes, as we have shown in Section 5, which is an
important property nowadays. To achieve this, we sacrificed
the fully automatic nature of the change detection algorithm.
Since the evaluation of [4] only shows the number of methods
that need to be reoptimized, rather than the actual run-time
performance of their framework (e.g., how the incremental
algorithm performs with respect to the batch algorithm), we
cannot draw any measurable comparison with that work.

A related although somewhat different area is program
analysis. There have been numerous works in that area in the
past decades, including incremental whole-program analyses,
e.g., [10, 15, 17, 19, 20]. The results of such advanced
analyses can be used by optimizers, among other tools, to

71

produce more efficent code. Incremental analyses can form
a very powerful combination with incremental optimizers
such as ours, since the whole pipeline can be incrementalized.
Knowledge queries can be used to ask facts about the result of
the static analysis. The changes to the static analysis results
can be incrementally used to compute the set of knowledge
queries that are impacted, which in turn will reoptimize
only the appropriate set of methods. Actually, our program
diffing algorithm can be viewed as a very weak form of
incremental class hierarchy analysis. Combining state-of-the-
art incremental program analyses with our optimizer could
provide better results in the future.

9. Conclusion

We have presented a new approach to designing incremental
whole-program optimizers using knowledge queries, and
showed how to apply this approach to common optimizations
in object-oriented and functional languages. Knowledge
queries abstract away the details of the optimizer when
analyzing changes to the program, and therefore create a
modular interface between the optimization logic and the
incremental logic.

The implementation of an incremental whole-program
optimizer for Scala.js with this approach shows speedups
from 10x to 100x with respect to batch processing. This
means that, in the broader context of the compilation pipeline,
whole-program optimizations take negligible time.

There are, however, limitations to the technique, essen-
tially because methods must be optimized independently. In
other words, the optimization of a method may not depend
on the result of optimizing other methods of the program.
This prevents some advanced optimization decisions, e.g.,
inlining a target based on its optimized size, or optimizations
that must be applied consistently in several methods or not at
all. A work-around for this limitation is to apply additional,
non-incremental optimizations only when producing the final
executable, but not on every compile cycle.

Further work includes partially removing the above limita-
tion, notably to enable scalar replacement of class fields, and
integration with incremental program analysis techniques.

Acknowledgements

This work has been supported by the Swiss Commission for
Technology and Innovation (CTI) grant 16613.1.

References

[1] Octane, the JavaScript benchmark suite for the modern web,
2015. [Online; accessed 30-November-2015].

[2] M. Burke and L. Torczon. Interprocedural optimization:
Eliminating unnecessary recompilation. ACM Trans. Program.

Lang. Syst., 15(3):367–399, July 1993.

[3] E. Burmako. Scala macros: Let our powers combine!: On how
rich syntax and static types work with metaprogramming. In

Proceedings of the 4th Workshop on Scala, SCALA ’13, pages
3:1–3:10, New York, NY, USA, 2013.

[4] C. Chambers, J. Dean, and D. Grove. A framework for se-
lective recompilation in the presence of complex intermodule
dependencies. In Proceedings of the 17th International Con-
ference on Software Engineering, ICSE ’95, pages 221–230,
New York, NY, USA, 1995.

[5] K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedu-
ral optimization: Eliminating unnecessary recompilation. In
Proceedings of the 1986 SIGPLAN Symposium on Compiler

Construction, SIGPLAN ’86, pages 58–67, New York, NY,
USA, 1986.

[6] J. A. Dean. Whole-program Optimization of Object-oriented

Languages. PhD thesis, 1996. AAI9716832.

[7] S. Doeraene, T. Schlatter, and N. Stucki. Scala.js, 2015.
URL http://www.scala-js.org/. [Online; accessed 30-
November-2015].

[8] I. Lakhin. Papa carlo, 2015. URL http://lakhin.com/

projects/papa-carlo/. [Online; accessed 30-November-
2015].

[9] H. Li. Autowire, 2015. URL https://github.com/

lihaoyi/autowire. [Online; accessed 30-November-2015].

[10] Y. Lu, L. Shang, X. Xie, and J. Xue. An incremental points-to
analysis with CFL-reachability. In Proceedings of the 22Nd

International Conference on Compiler Construction, CC’13,
pages 61–81, Berlin, Heidelberg, 2013. Springer-Verlag.

[11] H. Miller, P. Haller, E. Burmako, and M. Odersky. Instant
pickles: Generating object-oriented pickler combinators for
fast and extensible serialization. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA
’13, pages 183–202, New York, NY, USA, 2013.

[12] L. L. Pollock and M. L. Soffa. Incremental compilation of
optimized code. In Proceedings of the 12th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Lan-

guages, POPL ’85, pages 152–164, New York, NY, USA, 1985.

[13] L. L. Pollock and M. L. Soffa. Incremental global reoptimiza-
tion of programs. ACM Trans. Program. Lang. Syst., 14(2):
173–200, Apr. 1992.

[14] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky.
Concurrent tries with efficient non-blocking snapshots. In
Proceedings of the 17th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, PPoPP ’12, pages
151–160, New York, NY, USA, 2012.

[15] D. Saha and C. R. Ramakrishnan. Incremental and demand-
driven points-to analysis using logic programming. In Proceed-
ings of the 7th ACM SIGPLAN International Conference on

Principles and Practice of Declarative Programming, PPDP
’05, pages 117–128, New York, NY, USA, 2005.

[16] A. Sewe, J. Jochem, and M. Mezini. Next in line, please!:
Exploiting the indirect benefits of inlining by accurately pre-
dicting further inlining. In Proceedings of the Compilation of

the Co-located Workshops on DSM’11, TMC’11, AGERE!’11,

AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Workshops,
pages 317–328, New York, NY, USA, 2011.

72

[17] A. L. Souter and L. L. Pollock. Incremental call graph reanaly-
sis for object-oriented software maintenance. In Proceedings of
the IEEE International Conference on Software Maintenance

(ICSM’01), ICSM ’01, pages 682–, Washington, DC, USA,
2001.

[18] L. Stadler, T. Würthinger, and H. Mössenböck. Partial escape
analysis and scalar replacement for Java. In Proceedings of

Annual IEEE/ACM International Symposium on Code Gener-

ation and Optimization, CGO ’14, pages 165:165–165:174,
New York, NY, USA, 2014.

[19] F. Vivien and M. Rinard. Incrementalized pointer and escape
analysis. In Proceedings of the ACM SIGPLAN 2001 Confer-

ence on Programming Language Design and Implementation,
PLDI ’01, pages 35–46, New York, NY, USA, 2001.

[20] J.-S. Yur, B. G. Ryder, W. A. Landi, and P. Stocks. Incremental
analysis of side effects for C software system. In Proceedings

of the 19th International Conference on Software Engineering,
ICSE ’97, pages 422–432, New York, NY, USA, 1997.

73

