Foundations for SCALA : Semantics
and Proof of Virtual Types

Vincent Cremet

) LABORATOIRE DES METHODES DE PROGRAMMATION
INSTITUT D’INFORMATIQUE FONDAMENTALE
FAcCULTE INFORMATIQUE ET COMMUNICATION

ECOLE POLYTECHNIQUE EcoLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FEDERALE DE LAUSANNE






Contents

1 Introduction 17
1.1 Scope . . . o e 17
1.2 Background . . . . . ... ... 19

1.2.1 Inner Classes . . . . . . . . . v i 19
1.2.1.1 Terminology . . . ... ... ... ... . .... 19
1.2.1.2 Enclosing Instances . . . . ... .. ... .... 19
1.2.1.3 Instance Creations . . . . .. .. .. ... .... 20
1.2.14 Aliasing . . . . . . .. ... .o 21
1.2.1.5 Summary . . . . . ... 22
1.2.2 Virtual Types . . . . . . . .. o 22

2 ScALA Semantics 23

2.1 A Model of Computation for OO Languages . . . . . . .. .. .. 24
2.1.1 Objects and Templates . . . .. ... ... .. .. .... 25
2.1.2 Example of Evaluation . . . . .. ... ... ... ..... 27
2.1.3 Object and Template Combination . . . . . . ... .. .. 28

2.1.3.1 Merging declarations . . ... ... ... .... 29
2.1.3.2 Tagging atomic templates . . . . . . ... .. .. 31
2.1.3.3 Comparison of both proposals . .. .. ... .. 32

2.2 A Class-based Calculus: C-CAL . . . ... .. ... ... ..... 33
2.2.1 Some properties of classes . . . . ... ... oL 33
2.2.2 Class-based Subset of MOC . . . . ... ... ... .... 34
2.2.3 A Syntax with Primitive Classes . . . . ... ... .. .. 35
2.2.4 Direct Semantics of C-CAL . . . . .. .. .. ... .... 36

2.2.4.1 Super-selections . . ... ... L 39

2.3 Semantics of a Functional Core of ScArLA . . .. ... ... ... 40
2.3.1 Syntax of CORE-SCALA . . . . . . .. ... ... ..... 40
2.3.2 Anonymous Templates . . . . . . ... .. ... ... ... 40
2.3.3 Parameters in Declarations . . .. ... ... ... .... 42

2.3.3.1 Principle . . .. ... Lo 43
2.3.3.2 Formalization . .. .. .. ... ... ...... 44
2.3.3.3 Invalid translation of parameterized objects . . . 46
2.3.4 Translating CORE-SCALA into C-CAL . . . . ... .. .. 46
2.3.5 Comparing Mixins in SCALA and CORE-SCALA . . . . . . 48
2.3.5.1 Linearization of classes and mixins . . . . . . . . 48
2.3.5.2 Expansion of mixins in the SCALA compiler . . . 49
2.3.6 Class Combination . . . . . ... ... ... ........ 50
2.3.6.1 Virtualclasses . .. ... .. ... .. ... . 51



CONTENTS

2.3.6.2 Classoverriding . . ... ... ... .. .....

24 SCALETTA . . .« o vttt e e e e e e e
2.4.1 Tree Interpretation of Values . . . ... ... ... ....
242 Syntax . . ... e
2.4.2.1 Elimination of self variables . . . . . . ... ...

2.4.2.2 Link with the de Bruijn notation . . . . . . ...

2.4.3 Semantics of SCALETTA . . . . . . . . . .. .. .. ...
2.4.3.1 Super-selections . . . ... ... oL

2.5 Conclusion . . . . . . .. ..
2.5.1 Summary . . ...
2.5.2 Related Work . . . . . ... ... L
2.5.2.1 Comparing MoC and ¢-calculus . . . ... ...

2.5.2.2 Lambda-calculi with records . . . .. ... ...

A Soundness Proof of Virtual Types

3.1 Imtroduction. . . . .. ... .. .. .. L
3.1.1 Extending Featherweight Java with Virtual Types
3.1.2 Comparison with Featherweight Generic Java . . . . . . .
3.1.3 Overview . . . . . . ...
3.2 Sound Subtyping . . . .. ...
3.2.1 Subtyping and Subclassing . . . ... ... ... .. ...
3.22 Graphof Symbols . ... ... ... ... ... .. ...
3.2.3 Naive Subtyping Rules . . . . . ... ... ... ......
3.2.4 Naive Rules are Unsound . . . .. ... ... .... ...
3.2.5 Backward Moves are Wanted for Type Aliases. . . . . . .
3.2.6 Transitivity by Confluence . . . . . ... .. .. ... ...
327 Cycles . . . . . .
3.2.8 Well-founded Relation . . . . .. ... .. ... ......
3.2.9 Incompatible bounds . . . . . ... ... .. ... .. ...
3.210 Conclusion . . . .. .. .
3.3 Syntax . . ... e
3.3.1 Programmer’s View . . . ... .. ... ... ... ...
3.3.2 Mathematician’s View . . . . . .. ... ... ... ...
333 Example. . . . ... . ...
3.3.4 De Bruijn’s Notation . . . . . ... ... ..........
3.4 Semantics . . . . . .. ...
35 Typing . . . . o o e
3.6 Well-formedness . . ... ... ... ... ..
3.7 Structured Subtyping . . . .. ...
3.71 Definition . . . . . ...
3.7.2 Motivations . . . . . .. ..o
3.7.3 Implementation . . . . . ... ... ... ... ... ...
3.8 Compatibility of Bounds . . . . . . ... ... .. 000
3.9 Soundness Proof . . ... ... .. ... .
3.10 Conclusion . . . . . . ..o
3.10.1 Summary and Future Work . . . . . ... ... ... ...
3.10.2 Evaluation Criteria . . . . . . . . . ... ... ... ...
3.10.3 Related Work . . . . . ... ... . oo



A Complete Proof of Soundness 105

Al
A2
A3
A4
A5
A6
AT
A8
A9

Miscellaneous . . . . . . . .. ..o L Lo 105
Type Ordering . . . . . . .. .. o 111
Subclassing . . . .. ... 115
Admissibility of Transitivity . . . . . . . . . ... ... ... ... 116
Progress . . . . . . . L 123
De Bruijn’s Indices . . . . . . . .. .. oo oo 126
Substitution Lemmas . . . . . . . ... oL Lo 130
Subject-reduction . . . . . ... oL 137

Soundness . . . . . . . . ... e 141



CONTENTS



Résumé

ScALA est un langage de programmation attractif parce qu’il est a la fois
expressif et fortement typé statiquement. Ce mariage contre nature vient au prix
d’une certaine complexité dans les constructions du langage et dans ’analyse
statique. Cette complexité rend la streté du typage incertaine. Le but de cette
thése est d’initier un processus de validation du systéme de typage de SCALA
qui soit & la fois rigoureux et formel. La correction d’un systéme de typage
ne peut étre établie que par rapport a une description formelle de ’exécution
d’un programme. La premiére contribution de cette thése est la définition d’une
sémantique formelle de SCALA, par traduction dans un calcul minimal basé sur
les classes. SCALA donne deux moyens d’exprimer des abstractions de types :
les paramétres de types et les membres de types, aussi appelés types virtuels.
Les types virtuels paraissent plus primitifs vu qu’ils permettent d’encoder les
paramétres de types alors que l'inverse n’est pas avéré. La correction des types
virtuels a été 'objet d’un long débat dans la communauté, et il est désormais
admis qu’ils sont sirs. Cependant, & ce jour, aucun argument formel n’est venu
confirmer cette croyance. La deuxiéme contribution de cette thése est une preuve
formelle de correction des types virtuels.

Mots-clés : Programmation orientée-objet, théorie des langages de program-
mation, SCALA, sémantique, systéme de types, types virtuels, streté du typage,
modéle de calcul.






Abstract

SCALA is an attractive programming language because it is both very expressive
and statically strongly typed. This marriage against nature comes at the price
of a certain complexity in the language constructs and the static analysis. This
complexity makes type safety unclear. The goal of this thesis is to initiate
a rigorous and formal process of validation of the SCALA type system. The
correctness of a type system can only be established in relation to a formal
description of a program execution. The first contribution of this thesis is the
definition of a formal semantics for SCALA, by translation in a minimal class-
based calculus. SCALA offers two means for expressing type abstraction: type
parameters and type members, also called virtual types. Virtual types seem
more primitive since they allow to encode type parameters whereas the existence
of a reverse encoding is not clear. The soundness of virtual types has been the
object of a long debate in the community; they are now commonly believed to
be safe, but at this time, there exists no formal argument that would confirm
this belief. The second contribution of this thesis is to provide a formal proof
of type safety for virtual types.

Keywords: Theory of programming languages, object-oriented programming,
SCALA, semantics, type system, virtual types, type safety, model of computa-
tion.






Acknowledgements

I first thank Prof. Martin Odersky for accepting me as his PhD student, for
the liberty he gave me in my work and for keeping confidence in me until the
end of my thesis. I owe him also having designed an interesting programming
language like Scala, which pleasantly occupied my life during these years.

I thank Philippe Altherr with whom I worked very closely during the last
two years. The initial competition between us to formalize the Scala language
turned quickly into a fruitful collaboration. There is almost nothing that one of
us found without discussing with the other. We supervised each other so much
that I like to think that our respective theses are two parts of the same work.

I thank Eduardo Sanchez for accepting being the president of my jury. I
also would like to express my gratitude to the other members of my jury, Dr.
Francois Pottier, Prof. Jan Vitek and Prof. Claude Petitpierre, for taking
the time to read my thesis and for making useful comments that helped me
improving its clarity.

I would like to thank Frangois Garillot for proof-reading my chapter on the
proof of soundness.

I thank Rachele Fuzzati for supporting me almost every minute during the
last months of my thesis and particularly before the private defense, and for
proof-reading the final version of the document.

If T enjoyed my time at LAMP, and in Switzerland in general, a lot is due
to the presence of the "vrais potes" which roughly correspond to the French
speaking part of the lab: Sébastien Briais, Michel Schinz, Stéphane Micheloud,
Daniel Biinzli and Gilles Dubochet.

I thank my other colleagues and collaborators at LAMP with whom I had
the chance and the great pleasure to work: Christine Rockl, Christoph Zenger,
Matthias Zenger, Iulian Dragos, Burak Emir, Nikolay Mihaylov, Fabien Salvi,
Yvette Dubuis, Johannes Borgstrom, Uwe Nestmann, Sebastian Maneth, Simon
Kramer, Erik Stenmann. Some of them contributed to the development of Scala,
on which everything in this thesis is about.

Finally, I thank all my family and my friends Sonia, Pierre and Yannick for
accepting the fact that I pass more time with my ideas than with them and for
always having confidence in me.

11






List of Figures

2.1

2.2
2.3
24

2.5
2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16
2.17

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Semantics of CORE-SCALA by translation into SCALETTA and

MoC . . . . . e 24
Syntax of MOC . . . . . . ... 26
Reduction of objects (¢t — u) and templates (' — U) in MoC . . 26
Declaration lookup in templates (T 3, d) and objects (¢ 3, d) in

MoC . . . . . e 26
Syntax of C-CAL . . . . . .. .. . 36
Reduction of objects (I' - ¢ — u) and templates (I' - T — U)

C-CAL . . . . 38
Declaration lookup in templates (I' = V' 3, d) and objects (T'

t3d)in C-CAL . . . . . . ... 38
Super-selections in C-CAL . . . . .. . . ... .. ... . 39
Syntax of CORE-SCALA . . . . . . ... .. ... ... ...... 41
Parameter elimination in classes and objects . . . . . . . . .. .. 45
From CORE-ScALA to C-CAL . . .. .. ... ... ........ 47
Example with a mixin inherited twice . . .. ... ... ... .. 48
Syntax of SCALETTA . . . . . . .« o v v v i it e 54
From C-CAL to SCALETTA . . . . . . . . . .. .. .. ... .... 55
Reduction of objects (I' + ¢t — u) and templates (I' = T — U)

in SCALETTA . . . . .. .. 58
Declaration lookup (I' F ¢ 3 d) in SCALETTA . . ... ... ... 58
Super-selections in SCALETTA . . . . . . . . . oot 58
Graph representation of a program . . . . .. .. ... ... ... 66
Oracle’sexample . . . . . ... .. 68
Example needing a backward alias move . . . . . .. ... .. .. 69
Cyclicexample . . . .. . ... . .. 70
Unfolded cyclic example . . . .. .. .. ... ... ... ... 71
Incompatible bounds . . . . . .. .. .. ... ... ... ... 72
Calculus Syntax . . . . . . .. .. ... 76
Mathematician’s view of a program . . . . . . . ... ... .. .. 79
Recovering the Programmer’s View . . . . . . ... ... ... .. 79
Term reduction (t — w) . . . . . ... . 82
Subclassing (C<C’) . .. ... 82
Instance Completeness (isComplete(C, f)) . . . . . . . .. .. .. 85
Typing (T F ¢:T) . . .. .o 86
Subtyping (T F T'<:U) . . .. . ... oo 86
Type Well-formedness (I' -7 WF) . . . ... ... ........ 87

13



14

LIST OF FIGURES
3.16 Member Well-formedness (C - d wF) . . ... ... ... .... 87
3.17 Class Well-formedness (D WF) . . .. .. .. ... .. ...... 87
3.18 Roles of subtyping in a type-checker . . . . .. .. ... ... .. 95
3.19 Rules for class types with refinements . . . . ... .. ... ... 101

A1 Context Well-formedness (wellFormed(I")) . . . . ... ... ... 131



List of Lemmas

3.1 Type expansion and type lowering . . . . ... ... ... .... 94
3.2 Algorithmic rules use structured subtyping . . ... ... .. .. 94
A.1 Admissibility of subsumption . . . . .. ... ... .00 105
A.2 Self in self substitution . . . . . . .. ... ... L. 105
A.3 Free parameters are in the context . . . . .. ... ... ..... 106
A.4 Free variables are in the context . . . . ... ... ... ... .. 106
A5 Values are irreducible . . . . . ... oL o oL 109
A.6 Some terms are not typable in empty context . . . ... ... .. 109
A.7 Paths typable in empty context are values . . . . . ... ... .. 109
A.8 Chaining self substitutions . . . . . . . . ... ... ... ... .. 109
A.9 Chaining self and parameter substitutions . . . . ... . ... .. 109
A .10 Chaining self and variable substitutions . . . ... .. ... ... 110
A .11 Interpretation and substitution . . . ... .. ... ... ..... 111
A .12 Interpretation and substitution of a value . . .. ... ... ... 111
A.13 Declarations and type ordering . . . .. . ... ... ... .... 112
A.14 Type ordering and substitution of a value . . . ... ... .. .. 113
A.15 Facts about type ordering . . . . . . .. ... ... 113
A.16 Multiset extension preserves well-foundedness . . . . . .. .. .. 113
A.17 Type ordering is well-founded . . . . . . . ... ... ... ..., 113
A.18 The multiset extension of type ordering is well-founded . . . . . . 114
A.19 Transitivity of subclassing . . . . .. .. ... .. ... .. ..., 115
A.20 Subclassing defines a hierarchy . . . .. ... ... ... ..... 115
A.21 Subtyping implies subclassing . . . . . ... ..o Lo 115
A.22 Subclassing implies subtyping . . . . . . ... Lo 115
A .23 Unstructuring derivations . . . . . ... ... ... ... .. ... 116
A.24 Strengthening . . . . . . ... L 116
A.25 Admissibility of transitivity for class type subtyping . . ... .. 117
A.26 Substitution for self in structured derivations . . ... ... ... 117
A.27 Admissibility of transitivity for structured subtyping . . . . . . . 119
A .28 Structuring derivations . . . . .. ... oL 122
A29Progress . . . . ..o 123
A.30 Lifting a closed term or type . . . . . . ... .. ... ... 126
A.31 Dropping a closed term or type . . . . . . . . .. ... ... .. 126
A .32 Values are invariant by lifting . . . . . . ... ... ... 0. 126
A .33 Permuting lifting and self substitution . . . . .. ... ... ... 126
A.34 Permuting lifting and parameter substitution . . ... . ... .. 126
A.35 Permuting lifting and variable substitution . . . . . . . .. .. .. 127
A.36 Permuting dropping and substitutions . . . . .. ... ... ... 129
A .37 Facts about lifting . . . . .. .. ... . o 129



16

LIST OF LEMMAS

A38Weakening . . . . . . ... 130
A.39 Substitution lemmas . . . . .. ... 130
A.40 Subject reduction . . . . ..o 137
A .41 Multi-step subject reduction . . . . . . .. ... ... L. 141

A.42 Soundness . . . . . ... 141



Chapter 1

Introduction

1.1 Scope

SCALA is a new programming language developed by Martin Odersky and
his team at LAMP [19]. From the programmer’s point of view, SCALA is
both a functional programming language and an object-oriented programming
language. From the functional world, it takes the concepts of higher-order
functions, algebraic data-types and pattern-matching; from the object-oriented
world, it takes the concepts of objects, classes and mixins. SCALA is concep-
tually a pure object-oriented language because every value manipulated by the
language is an object, even functional constructs are mapped to their object-
oriented equivalents.

SCALA is an attractive programming language because it is both very ex-
pressive and statically strongly typed. Expressiveness and static typing are by
nature two antagonist qualities: in the effort of filtering programs that behave
badly at runtime, a type system tends to filter some correct and interesting
programs too. Furthermore, powerful language constructs are likely to be diffi-
cult to type. SCALA provides powerful programming constructs and abstraction
mechanisms like mixin composition, first-class functions, generic classes and
methods, pattern-matching and arbitrary nesting of definitions, while still be-
ing able to statically check that they are always used in a safe way. In short
ScALA reaches a trade-off between expressiveness and safety that has rarely
been matched by statically typed object-oriented languages. This achievement
comes at the price of a rich language of types and a complex static analysis.
This complexity makes the soundness of the language unclear.

In principle ScaLa should be safe because it has been designed with this
goal. However, experience shows that we cannot completely rely on intuition in
this domain because safety can easily be broken by small details, as illustrated
by the following example.

abstract class C { type T >: Int <: String }

val a: C = null

val x: a.T = 42

val y: String = x
This piece of code was wrongly accepted by the version 1.3.0.10 of the ScarLa
compiler. In this example, type T of class C is declared with a lower-bound Int

17



18 CHAPTER 1. INTRODUCTION

and an upper-bound String. Since there exists no type that is both supertype
of Int and subtype of String, there is no way of assigning a value to T, neither
in class C nor in any of its subclasses. A consequence of this is that class C
and all its subclasses cannot be instantiated because they inevitably contain at
least one abstract member, namely T. Thus, we could wrongly infer that the
incompatibility between the bounds of T is harmless. Unfortunately, null is a
valid instance of C, which lets us define a concrete field a of type C. Because
the lower-bound of T is Int, we can deduce that Int is a subtype of a.T; so it
is possible to assign the integer value 42 to a field x declared with type a.T.
Because the upper-bound of T is String, we can deduce that a.T is a subtype
of String; so it is possible to assign the value x to a field y declared with type
String. The problem is that, at this point, y, which is of type String, contains
indirectly the integer value 42 via x. Of course, this is not safe because we can
now invoke String operations on the integer value 42. Note that accepting a
field declaration

def loop(): C = loop()
val a: C = loop()

would have been problematic for the same reasons, but in this case since fields
are always initialized before the enclosing object can be used, the safety problem
is converted into a looping initialization at runtime.

After we found this problem in the SCALA compiler, type member declara-
tions with incompatible bounds have been forbidden. Unfortunately, nothing
ensures that we have not missed other subtle details like this one. In our case,
the problem was clearly related to virtual types; this shows that although vir-
tual types are intuitively simple (after all they are just as normal fields except
they hold types instead of values), their theory is quite complex.

The ultimate goal of this thesis is to convince people that SCALA is safe.
This goal is however too ambitious and has actually never been reached for any
other real programming language, because a real language is far too complex.
So, the more realistic goal of this thesis is to extract the essence of SCALA from
its reference and its implementation in order to build some sound foundations of
the language. With the results presented in this thesis, we have the ambition to
initiate a rigorous and formal process of validation of the SCALA type system.
Our contributions to this process are the formal definition of a semantics for
ScALA and a soundness proof of a particular aspect of the SCALA type system,
namely virtual types.

Semantics. The correctness of a type system can only be established in re-
lation to a formal description of a program execution. The first contribution
of this thesis is the definition of a formal semantics for a functional subset of
ScaLA, called CORE-SCALA. The SCALA syntax is designed so as to be conve-
nient for writing programs, not to ease the static analysis or the transformations
performed by the compiler to reach an executable code. From this considera-
tion, it is likely that the SCALA syntax does not fit the direct description of a
semantics or a type system. So, in order to define a semantics for SCALA we
first identify a minimal class-based calculus and then translate SCALA into this
calculus. This work is described in Chapter 2.



1.2. BACKGROUND 19

Proof of virtual types. ScCALA offers two means for expressing type abstrac-
tion: type parameters and type members, also called virtual types. It is now
well-established that type parameters can be encoded using virtual types. The
soundness of virtual types has been the object of a long debate in the commu-
nity; they are now commonly believed to be safe, but at this time, there exists
no formal argument that would confirm this belief. The second contribution
of this thesis is to provide a formal proof of type safety for virtual types. The
proof is contained in Appendix A and described in Chapter 3.

1.2 Background

We review in this section two central features of SCALA that are widely dis-
cussed in this thesis, namely inner classes and virtual types. The presentation
is inspired by the technical report [3], which explains the non-trivial interaction
between the two mechanisms.

1.2.1 Inner Classes

In this section, we introduce our terminology about inner classes and explain
what we call an inner class. We remind also some, maybe not so well-known,
facts about them.

1.2.1.1 Terminology

A nested class is a class declared within another one. We distinguish two kinds
of nested classes: inner classes which can access the current instance of their
enclosing class and static nested classes which cannot. Within an inner class
the current instance of its enclosing class is called the current enclosing instance
and given an instance i of an inner class, it is called the enclosing instance of <.

Static nested classes are equivalent to top-level classes with some privileged
rights to access static members of their enclosing class. These rights pose some
interesting and non-trivial issues. However these issues are beyond the scope of
this thesis. Here, we are only interested in the additional issues posed by the
presence of a current enclosing instance in inner classes. The rest of this section
illustrates these issues with some examples written in JAVA [16].

1.2.1.2 Enclosing Instances

In JAvA, any non-static class declared within some class C is an inner class.
Within the inner class, the current enclosing instance is denoted by the expres-
sion C.this which is of type C. The code below declares an inner class I nested
in a class R. It makes explicit the presence of a current enclosing instance of
type R by declaring a field outerI of that type and initializing it with that
instance.

public class R {
class I { final R outerI = R.this; }
}



20 CHAPTER 1. INTRODUCTION

This example explicitly declares a field outerI that holds the current en-
closing instance. However, every inner class really has a hidden field that holds
this instance and the syntax C.this is just a way to access this hidden field. In
fact, an inner class is nothing else than a static nested class with an additional
field holding the current enclosing instance. We call this additional field the
outer field of the inner class.

When an inner class is declared within another inner class, it can access the
current instances of both of its enclosing classes. For example, within class M
in the code below, the expression R.this denotes the current instance of the
(indirectly) enclosing class R. This instance is, by definition, equal to R.this
evaluated within class I. In other words, in class M, R.this is equal to the
expression this.outerM.outerlI.

public class R {

class I {
final R outerI = R.this;
class M {
final I outerM = I.this;
}
}

}

So, although an inner class may have access to the current instance of several
enclosing classes, a single outer field per class is sufficient to access all these
instances. In the general case, within a class Cy nested in a class Cy, ..., nested
in a class C,, the expression C;.this is equal to this.outerCqy ... .outerC;_j.
Therefore, the syntax C.this would be superfluous if the outer fields were not
hidden and were automatically initialized. It could always be replaced by a
succession of outer field selections.

1.2.1.3 Instance Creations

To create a new instance of an inner class D, an instance of its enclosing class C
has to be provided. In JAvA, the syntax ezpr.new D(args) is used to that
effect. It creates a new instance of class D whose enclosing instance is the result
of the expression ezpr. The enclosing instance may be omitted if the instance
creation is enclosed, possibly indirectly, in a subclass E of C. In that case, the
expression new D(args) is equivalent to the expression E.this.new D(args).
We illustrate this by augmenting the class R above with the two fields declared
below. The value i is an instance of class I whose enclosing instance is the
current instance of class R (the expression new I() really means this.new I())
and the value m is an instance of class M whose enclosing instance is the value 1.

final I i = new I(Q);
final I.M m i.new M(Q);

Every inner class introduces a single outer field, but an instance of an inner
class may have several outer fields because it inherits one from each inner class it
is an instance of. For example, every instance of the class J declared below has
two outer fields, namely outerI and outerJ, and every instance of the class N
has the two outer fields outerM and outerN.



1.2. BACKGROUND 21

public class R {

class I {
final R outerI = R.this;
class M {
final I outerM = I.this;
}

class N extends M {
final I outerN = I.this;
N(I i) { i.super(); %}
}
}
class J extends I {
final R outerJ = R.this;

}

final I i =new I(Q);
final J j = new JQO);
final I.N n = i.new N(j);

}

For the same reason instance creations of inner classes require an enclos-
ing instance, super constructor calls of inner classes also require an enclosing
instance. These super constructor calls have the syntax ezpr.super(args)
where ezpr must evaluate to an instance of the enclosing class C of the super
class. As with instance creations, the enclosing instance may be omitted if the
super constructor call is enclosed, possibly indirectly, in a subclass E of C. In
that case, the expression super(args) is equivalent to E.this.super(args).

1.2.1.4 Aliasing

In the code above, the class J has no explicit constructor; it gets a default
constructor containing a call to the super constructor, super (), which is here
equivalent to R.this.super(). This implies that for any instance of class J,
its two outer fields outerI and outerJ hold exactly the same value. The con-
structor of class N specifies that the enclosing instance of its superclass M is
its argument i. Therefore, the two outer fields of a given instance of class N
may hold different values. For example, for the value n, n.outerN is equal to i
while n.outerM is equal to j. In fact, the two values are even of different types.

The next example illustrates that it is sometimes possible to statically es-
tablish that two outer fields hold the same value. It implies that the two fields
can be assumed by the compiler to share their typing knowledge.

public class R {

class A {

final R outerA = R.this;

class X { final A outerX = A.this; }
}

class B extends A {

final R outerB = R.this;

class Y extends X { final B outerY = B.this; }
3



22 CHAPTER 1. INTRODUCTION

Instances of the class Y declared above have two outer fields: outerX and
outerY. One can establish that both will always hold the same value, but both
are not perfectly equivalent; outerY is of type B while outerX is only of type A.
However, we know that outerX holds an instance of class B. Thus, we know
that each time something is accessed via outerX, it is accessed on an instance of
class B. The next section will show that this information is crucial in the context
of virtual types.

1.2.1.5 Summary

To sum up, an inner class can be viewed as a top-level class with an additional
field (the outer field) holding the current enclosing instance. This instance must
be provided to all instance creations and all super constructor calls. An instance
of an inner class inherits one outer field from each inner class it is an instance
of. All those fields may hold different values, but sometimes it is possible to
formally establish that some of them necessarily hold the same value.

1.2.2 Virtual Types

In some object-oriented languages, it is possible to declare abstract type mem-
bers, i.e. type members that are bounded by a type but have no exact type
value. These members may then be given different type values in different sub-
classes. This means that the exact value of such a type member depends on
the exact class of the value from which it is selected. These type members
are called virtual types. We illustrate virtual types with the following example
written in SCALA :

abstract class M {
type T <: Object
val x: T
val y: T = x

}

class N extends M {
type T = String
val x = "foo"

}

In class M, the fields x and y are both declared with the type T. It is therefore
legal to assign x to y. Within class M, the exact value of T is unknown. It is only
known that this value is bound by (is a subtype of) Object. Although "foo"
has type String and String is a subtype of Object, it would be illegal to
assign "foo" to x in class M because in subclasses of M, T may be assigned any
subtype of Object and the value of x has to be an instance of that type. In the
subclass N, T is assigned the type String. As in SCALA type assignments may
not be overridden in subclasses, it is possible to assign "foo" to x in class N.



Chapter 2

SCALA Semantics

This chapter is about the semantics of SCALA. The semantics of a programming
language consists of a set of definitions that describe the runtime behavior of a
program written in this language. We see two main motivations for modeling
the execution of a SCALA program. A first motivation is to document/specify
the language implementation in a simple and unambiguous way; we hope the
semantics given in this chapter can give an interesting perspective on non-trivial
ScALA mechanisms such as inner classes and mixins. The second motivation is
to let the semantics be the basis of some theoretical studies about the language;
in this thesis we are mainly interested in proving the soundness of the ScaLA
type system.

Overview To be pragmatic we focus on a small functional subset of ScaLA
that we call CORE-SCALA. Actually we do not give CORE-SCALA a direct se-
mantics, instead we look for the smallest calculus which is both able to support
a sound and "reasonably decidable" type system that mimics the typing disci-
pline of SCALA, and in which it is possible to translate CORE-SCALA simply. In
our research of such a calculus we first identify a very general model of compu-
tation that supports natively the object-oriented concepts of member selection,
code inheritance and self-recursion. We call this model of computation MoC.
This calculus fulfills the second requirement about the possibility of translating
CORE-ScALA simply, but it is dubious it can support a nominal type system as
the one of SCALA because it does not contain the concept of class as primitive.
This forces us to define a new calculus, named C-CAL, which is class-based but
still closely connected with the model of computation. Then, we go from C-CAL
to CORE-SCALA incrementally by two successive extensions of C-CAL, the first
one adds anonymous classes, the second one adds parameters. Finally, we give a
variant of C-CAL whose main innovation is the presence of a primitive operator
for selecting an outer instance. By interpreting values as class-labeled trees, we
are able to interpret this operator as the selection of a subtree. We claim that
such operator simplifies the lookup relation, makes the calculus closer to an im-
plementation and offers extra-possibilities for defining a type system. This last
calculus is called SCALETTA. This chapter can be summarized by the diagram
of Figure 2.1. Every box in this diagram corresponds to a calculus described in
this chapter and every arrow from a calculus ¢; to a calculus ¢; corresponds to
an encoding of ¢ in cs.

23



24 CHAPTER 2. SCALA SEMANTICS

Core—Scala

J7

C—cal
+ parameters CLASS-BASED

+ anonymous templates

J;

C—cal

+ anonymous templates

C—cal > Scaletta
MoC TEMPLATE-BASED

Figure 2.1: Semantics of CORE-SCALA by translation into SCALETTA and MoC

2.1 A Model of Computation for OO Languages

One part of this thesis consists in formalizing the execution of a SCALA program.
One possibility is to define the semantics directly on the SCALA syntax, another
possibility is to define the semantics of a simpler language and to translate
SCALA into this core language. The first impression is that the direct semantics
will be easier to read and understand because it is closer to the language we
try to describe. However the indirect semantics can be more appropriate when
both the core language and the translation from the source language to the core
language are simple and natural; in this case it is reasonable to claim that the
core language captures the essence of the source language. In this section we
describe a core language for SCALA.

In the field of programming languages, the lambda-calculus, or one of its
variants, is very often chosen as core language. This is particularly true for
functional languages, but several important developments for object-oriented
calculi have been based on the lambda-calculus too. An overview of main ob-
ject encodings in the lambda-calculus can be found in [5]. The advantage of
choosing the lambda-calculus is clear: it is possible to reuse its large and well-
established theory. The drawback is that it does not support natively the basic
concepts of object-orientation as inheritance and self-recursion. In this section
we describe a core language for object-oriented languages in which these con-
cepts are primitive. In the rest of the thesis we refer to it as the model of



2.1. A MODEL OF COMPUTATION FOR OO LANGUAGES 25

computation, or simply MoC.

2.1.1 Objects and Templates

Our model of computation for OO languages supports as primitives the concepts
of member selection, code inheritance and self-recursion. It distinguishes two
kinds of entities: templates and objects. The definitions of objects and templates
are mutually recursive. An object is a recursive record of labeled terms. There
are two kinds of labels and two kinds of terms: a template label L is mapped
to a template term 7', and an object label [ is mapped to an object term ¢.
Templates are also recursive records of labeled terms, but contrary to objects
they can be incomplete, which means they can refer to labels for which they do
not provide, and they are not supposed to provide, a value. Templates can be
combined, each component of the combination contributing to the completion
of the other parts. Complete templates can be instantiated as objects. The
basic brick for templates is the atomic template {z | d}. In this expression, x is
a variable that represents the current instance of the template as the keyword
this represents the current instance of a class in JAVA. The combination of
two templates T' and U is represented by the expression T'& U. An object can
be seen as the fixed point of a template, the object that is the fixed point of
a template T is denoted by the object term new 7. Finally, from an object ¢
we can select a template label with the expression t.L or an object label with
the expression ¢.I. The syntax and semantics of the model of computation are
formalized in Figures 2.2, 2.3 and 2.4.

Most reduction rules of Figure 2.3 are simple congruence rules like rule (OR-
CSELECT) that lets us reduce the prefix ¢ of an object selection ¢.I. The most
interesting rules are (OR-SELECT) and (TR-SELECT). The two rules are com-
pletely similar since the only difference is in the nature of the thing that is
selected, an object or a label, so we focus our explanation on object selections.
A selection is resolved in two steps: a declaration lookup and a substitution.
From the prefix ¢ of the selection we perform a lookup of the selected label [
thanks to the auxiliary relation ¢ 3, d. ¢ 3, (object | = u) means the ob-
ject ¢ contains the declaration (object ! = u) and that inside this declaration
the current instance is represented by the variable x. In the rest of this thesis
we refer to this variable as the self reference or the self variable '. The result
of the selection is the term u in which the prefix ¢ is substituted for the vari-
able x, which is noted u[xz\¢]. This last substitution provides the self recursion
semantics of objects.

The lookup of a declaration d in a term ¢ is defined by the rule (L-NEw):
t must be an expression new T and the template T must contain the decla-
ration d. The auxiliary relation 7' 3, d is used to collect the declarations d
owned by the template T'. In this relation, the variable x has the same meaning
as in the lookup relation. An atomic template {z | d} contains its declara-
tions d, the declarations owned by a compound template T & U are computed
from the declarations d owned by T and the declarations d owned by U. This
computation is abstracted by the operation d W, E/; for now we consider that

declarations are simply concatenated, what we note (d, E,), but later we study

1We avoid using the terminology "instance variable" because it is already used with a
different meaning in the domain of OO languages.



26

CHAPTER 2. SCALA SEMANTICS

Object label l

Template label L

Self variable T,y

Object t,u =z current instance
|t object selection
| newT instance creation

Template T,U == {x|d} atomic template
| T&U compound template
| t.L template selection

Declaration d = objectl=t object field
| templateL =T template field

Object value v,w == xz|newV

Template value VW o= {z|d}|V&W

Figure 2.2: Syntax of MoC

t 3, (object = u) t—u
(OR-SELECT) (OR-CSELECT) ————
t.l — ulz\t] t.l — u.l
t 3, (template L =U) t—u
(TR-SELECT) (TR-CSELECT) ———
t.L — Ulz\t] t.L — u.L
(OR-New) T—-U (TR-Lerr) T— T
W) ew T — new U Y TeU ST U
T U—-U
(TR-RIGHT) TR STl

Figure 2.3: Reduction of objects (¢t — u) and templates (T' — U) in MoC

Ts,d U>s,d

(L-CoMPOUND) —
T&U 3, dy, d

T5>5:d

L-N _
( BW) new T >, d;

Figure 2.4: Declaration lookup in templates (T' 5, d) and objects (t 3, d) in

MoC




2.1. A MODEL OF COMPUTATION FOR OO LANGUAGES 27

several refinements of this definition.

In this calculus, the values are the set of terms that do not contain object
or field selections. More precisely, an object value v is either a self reference
x or a instance creation new V, where V is a template value. It might be
surprising to consider variables as values. Of course, a closed term, that is, a
term in which every occurrence of a variable is bound by the self variable of
an atomic template, will never reduce to a variable. However, it is common
to consider variables as values, in the lambda-calculus for instance, and to let
free variables represent constants. A template value V is either an atomic
template {z | d} or a combination V & W of two template values. There exists
an alternate presentation of this calculus where templates are flattened by the
following reduction rule.

(TR-FLATTEN) — p— —
{z|d}&{e|d} = {z|dy,d}

In this case the set of template values consists only of atomic templates and the
lookup becomes simpler.

(L-NEw)

new {z | d} 2, d;

The presentation with flattening of templates and the one with lookup of dec-
larations inside compound templates are trivially equivalent. The reason why
we chose the presentation where templates are not flattened becomes clear in
a next section when we present a mechanism for combining declarations that
relies on a traversal through the structure of templates.

2.1.2 Example of Evaluation

A program in MoC is just an object term. The evaluation of a MoC program
is performed by successive reductions of this term until a value is reached. To
illustrate this mechanism we consider the following MoC program. This pro-
gram is an object term that we call t. This term is an object value because it
has the form new T" where T is an atomic template. Inside T the self reference
is represented by the variable root. 7' contains two template declarations and
one object declaration. This example is best understood by analogy with OO
languages: we can think of template declarations as class declarations and of
object declarations as field declarations. Actually, the translation of SCALA we
present later in this chapter is based on this correspondence. We can see that
despite its apparent simplicity this example is already quite evolved: we have
a template A with an inner template X, the value of the field foo in X refers to
the value of the field bar selected on the enclosing instance a. The template
B is a combination of the template A and an atomic template that provides a
declaration for the field bar; using a class terminology, we would say that the
template B extends the template A and implements the field bar.

new { root |
template A = {
template X =
object foo

N~ p

P oK —
o —
o

et

}



28 CHAPTER 2. SCALA SEMANTICS

3

template B = root.A & { b |
object bar = <something>

3

object myB = new root.B

}

The term ¢ is not reducible in itself because it is value, it acts as a container
for declarations. In order to define a MoOC program wu that uses these declara-
tions we just have to make ¢ a subterm of u. The example of such a program
u is the term (new t.myB.X).foo. Here are the reduction steps corresponding to
the evaluation of the program wu into the value < something >. For clarity we
have underlined the redexes. As we can see the only redexes of this calculus are
either object selections or template selections.

S
Il

(new t.myB.X).foo

(new (new ¢.B).X).foo

(new (new t.A& {b| ---}).X).foo

(new t'.X).foo Wheret’:new{a|'~}&:{b|~~}
(new {x | object foo = t'.bar}).foo

t' .bar

< something >

LErlbLd

2.1.3 Object and Template Combination

Even if we assume that every atomic template does not contain several declara-
tions of the same label, because of composition we cannot ensure this property
is satisfied by an arbitrary template. Currently nothing is done in the semantics
to deal with such conflicted declarations, more precisely every declaration has
the same potentiality of being chosen in the reduction process. It implies that
the semantics is not deterministic. In this section we propose several solutions
to recover determinism.

The fact that an object can potentially see several declarations of the same
label can be regarded as a problem or as a chance. If we regard it as a problem,
the simplest solution to keep determinism consists in considering that declara-
tions are always hidden by further declarations with the same name. This cor-
responds to the mechanism called overriding, or late binding, in object-oriented
languages. Formally, it is sufficient to replace the definition of the function
d, d that merges declarations by the following one.

dw,d =d+d

In this definition the operation d + d gives precedence to the declarations

that appear in the right-hand operand d. Tt can be defined by recurrence on
the length of the first list of declarations.

e+d = d
d,d)+d = d+d if label(d) € dom(d)
7 d, (d+ d ) otherwise



2.1. A MODEL OF COMPUTATION FOR OO LANGUAGES 29

This solution is simple but we can think of a more evolved mechanism where
the lookup of a label returns some well-defined combination of all the declara-
tions that have been found for this label.

The idea of combining all declarations of a label during the execution of
a program is not new, it is inspired by the similar mechanisms that exist in
JAvA, SCALA and GBETA [13]. In a JAVA class, a super-call super.m(t) executes
the body of the method m corresponding to its definition in the super-class. It
corresponds to inlining in the subclass the implementation of the method defined
in the super-class. It can be done statically because a class always knows its
super-class, so in this case we speak of static super-calls. In SCALA, there is a
generalization of JAVA super-calls: a mixin can refer to the implementation of a
method declared in its parent, but because a mixin does not know its parent at
compile time, we then speak of dynamic super-call. It is as if the implementation
of the super-class was inlined inside the mixin at runtime. In GBETA the body of
a method can refer to the implementation of the unknown method by which it
will be overridden, with the keyword INNER. All these mechanisms conceptually
amount to inline a method in a method of another class than the one in which
it is declared, statically when it is possible, and dynamically otherwise. Such
an inlining can be seen as a way of combining the declarations of both classes.

In the rest of this section we consider two ways of combining MoC declara-
tions which are inspired by the construct super in JAVA and ScArLA. We refer
sometimes to suchs mechanisms as auto-combination, or deep combination, be-
cause the combination of declarations is completely implicit in a program, it
is a side-effect of the explicit combination of their enclosing atomic templates
through the construct T & U.

2.1.3.1 Merging declarations

In this section we present a mechanism for combining declarations, based on
the keyword super, which implements the intuitive idea that a super-call just
corresponds to some inlining of a declaration into another one. In the context
of MoC we will not speak of super-calls, because we have no methods, but of
super-selections ; we extend the syntax of objects and templates as follows.

Object t = x.super.] object super-selection
| (as before)

Template T = x.super.L template super-selection
|

(as before)

With this syntax, a super-selection x.super.l represents the value of the
declaration of [ in the super-template of the atomic template of which z is
the self reference. Informally, the super-template of an atomic template is the
template that is located directly at its left, it is a dynamic concept. For instance
in the expression (77 & {z | d}) & T the super-template of {x | d} is Ti. Note
that the value of this template is not necessarily known before running the
program, because T; could be a template selection ¢.L.

In order to formally define the meaning of these new constructs, we just need
to modify our function for merging declarations d W, d to take into account
multiple declarations. The new merging function is actually a generalization
of the previous one, it still gives precedence to right-most declarations but it



30 CHAPTER 2. SCALA SEMANTICS

also inserts in the chosen declaration the contribution of previous declarations
by replacing super-selections with their values. Here is a completely formal
definition of this function.

dw, d = 4+ replaceSuper(d, z, d)

replaceSuper((object I =t), z, d) = object [ = replaceSuper(t, z, d)

replaceSuper(x.super.l, z, d) =t if (objectl=1t)cd

replaceSuper(r.super.L, z, d) =T if (template L=T) € d
(

replaceSuper(t.l, x, d) = replaceSuper(t, x, d).l

The auxiliary function replaceSuper(t, x, d) replaces all super-calls in ¢ ac-
cording to the declarations d. Note that replaceSuper(z.super.l, y, d) is unde-
fined when = and y are different variables; in such situations the term whose
evaluation implied such a replacement simply gets stuck.

The simplicity of this definition is certainly hidden by the complexity of the
notations. Let us illustrate the simple and intuitive underlying mechanism by
an example. We consider a template 1" which is built from two sub-templates T}
and T,. T contains a valuation for the object label f, and T3 contains another
valuation for f and a valuation for another object label g.

T = Tl&_Tg
no= (o)
T, = {o|7}

d = (object f=23)
d (object g = x.f x x.super.f, object f = 4 + x.super.f)
We want to show that

T 3, (object g = z.f * 3, object f =4+ 3)

—/

By rule (L-Atom), T} 3, d and T 3, d. By rule (L-Compound), T 3, d &, d
where

di,d = d+ replaceSuper(E,, z, d)
= (object f=3)+ (object g=x.f %3, object f =4+ 3)
= (object g=ux.f*3, object f =4+ 3)

With the previous example we have understood how the declarations of
two templates are combined together. With the next example, we chain three
templates, 71, T» and T3, containing super-selections and we check that we
obtain the desired result.

T = (M&T)&Ts

Ty = {x]|object f=3}

T, = {x|object f =4+ x.super.f}
T3 = {x]object f =5x*uzx.super.f}

As expected the resulting declaration of f is built from the contributions of
templates T7, T> and T3:



2.1. A MODEL OF COMPUTATION FOR OO LANGUAGES 31

T >, (object f=5x(4+3))

2.1.3.2 Tagging atomic templates

As we have already said, a JAVA, or SCALA, super-call amounts to inline a
method of a super-class in its subclass. In this inlining the current instance
this of the super-class becomes the current instance this of the subclass. It
means that super-calls are conceptually always performed on the current in-
stance of a class. The same observation can be made about our first proposal
for combining declarations: a super-selection x.super.l contains the information
of a self variable z. It is quite natural to want to generalize this notation so
that super-calls, or super-selections, can be made on arbitrary objects, instead
of just the current instance. This is such a generalization that we present in this
section. The idea is to have a new set of labels representing tags and to let each
atomic template be tagged with a tag k. Then, we modify the lookup relation
on templates (T 3, d) so that it becomes sensitive to tags. The modifications
of the syntax needed by this extension are summarized below.

(as before)

Tag label k

Object t = t.superlk].l object super-selection
| . (as before)

Template T = {z|d}* tagged atomic template
|  t.super[k].L template super-selection
|

Template value V, W {z|d}* | V&W

With this syntax, a super-selection ¢.super[k].l is similar to the selection ¢.1
except the lookup of a declaration for [ starts from the super-template of the first
atomic template tagged with k, instead of starting from the first atomic tem-
plate. The modifications in the rules required by this extension are summarized
in the following figure.

Va.d Vs, d

(L-ATOM) ———=—F——= (L-CoMPOUND) —
{z|d}¥ >3, d V&V o, d+d
Vo, d Kk VaFad
(L-MATcH) — — (L-MISMATCH) — —
V&{x|d}rskd V&{z|d}skd

vV okd t 3% (object I = u)
(OR-SUPER)

(L-NEW-SUPER) ——————
new V 37 d; t.super[k|.l — u[z\t]

The relation V' 3, d is used for normal selections (and for super-selections
once the first template to consider has been determined). It is defined in such
a way that precedence is given to right-most declarations. The relation V 3% d
is used for super-selections, it represents a lookup initiated from the super-
template of the first atomic template tagged with k.



32 CHAPTER 2. SCALA SEMANTICS

It is important to note that the relation V' 3% d is undefined for atomic
templates tagged with a tag k&’ which is different from k. That corresponds
to perform a super-selection from a template that has no super-template. In
such situations the super-selection that initiated this lookup simply gets stuck.
The relation is also undefined for templates that associate to the right like
T) & (T2 & T3). We could remove such templates from the syntax, it would lead
to the following definition for templates.

Template T = {z|d}* tagged atomic template
| t.L template selection
|  t.super[k].L template super-selection
| T&{x|d}  tagged compound template

Templates that are structured this way reduce to template values that are non-
empty lists of atomic templates.

Template value V,W = {z|d}*|V&{z|d}*

Static selections. Along the same ideas as super-selections it is possible to
define a mechanism of static selection. A static selection ¢.static[k].l is similar
to a super-selection t.super|k].l except it makes the lookup start from the first
template tagged with k instead of making it start from the super-template of
this template. In the context of a class-based object-oriented language like JAVA,
a static selection corresponds to the possibility of executing the implementation
of a method m defined in a given super-class C. JAVA has no syntax for that,
contrary to SCALA for which the syntax super[C].m(?) is used, where t are the
arguments of the method call. The reason static calls are less interesting than
super calls is that there exists a simple design pattern for emulating them: for
each method m of a class C, add a method m¢ that calls the method m, then
replace each static call super[C].m (%) with the normal call this.m¢ ().

2.1.3.3 Comparison of both proposals

For defining super-selections as we do in the second proposal, based on tagged
atomic templates, we need to keep the structure of templates because the lookup
relation is based on this structure. For the first proposal this structure is not
used and we could actually have flattened templates, as explained in a previous
section.

The second proposal fits better the description of semantics for class-based
languages like SCALA. Without anticipating too much on the translation of
ScALA into the model of computation, it is clear that in this context the tags
attached to atomic templates will correspond to class names.

Another observation is that the translation of the first proposal into the
second one is trivial: take a program, tag all atomic templates with a differ-
ent tag, inside a template {x | d}* replace all occurrences of x.super.l with
x.super[k].l, and the same thing for template super selections. It is also pos-
sible to encode the second proposal with the first one but it is less elegant. It
consists in adding in every atomic template some declarations for the labels
that will potentially be selected through super selections. For instance in a



2.2. A CLASS-BASED CALCULUS: C-CAL 33

template {z | d }* we add the declaration (object lsyperk = z.super.l). And
we replace all super-selections ¢.super[k].l by normal selections t.lguper-k- Actu-
ally, in order to implement generalized super-calls on a platform that supports
only super-calls invoked on the current instance, we would have to implement
the design pattern described above. With separate compilation it is impossible
to know which methods are going to be be called through generalized super-
selections. And considering that all methods are potentially called this way
implies to double each class with a bridge method, which is not realistic.

2.2 A Class-based Calculus: C-CAL

Our model of computation is closer to object-oriented programming languages
than the lambda-calculus because it supports natively the following important
object-oriented concepts: objects are records of values that can be accessed
through their associated label, self-recursion of objects is modeled directly by
the self reference inside templates, and finally the concept of code inheritance
is present in the operator of template composition. Our goal in this chapter
is to model the semantics of SCALA, but in SCALA there is a very important
concept that is not present in MoC : classes. In this section, we give an infor-
mal definition of classes, based on the properties they satisfy in languages like
JAVA, ScALA or GBETA. Then, we characterize a subset of M0OC where cer-
tain template declarations enjoy similar properties as the ones we identified for
classes. Finally, we present a class-based calculus, called C-CAL, which models
the properties of classes in a primitive way. For this calculus, we give both an
interpretation in MOC and a direct semantics.

In our perspective of designing a nominal type system for modeling the
static analysis performed by the SCALA compiler, the direct semantics has the
advantage of being based on classes. We justify now the interest of a class-based
semantics. A nominal type system considers that some types have a name and
compares these types using their names rather than their structure. In the
context of object-oriented languages, class names play the role of these named
types. So, if a nominal type system for SCALA manipulates class names, it is
natural for a proof of soundness to be developed on a class-based semantics.

2.2.1 Some properties of classes

By inspection of their properties in programming languages like JAVA, SCALA
and GBETA, we try to capture the essence of classes from a semantic point of
view.

In ScaLa, fields and methods can be declared abstract in a class and imple-
mented in a subclass. The exact value of such members is determined at run
time by a lookup through the class hierarchy. On the contrary, class and mixin
declarations are not subject to dynamic binding. Each time a class name or a
mixin name appears in the program, the exact value of the entity it represents
is determined at compile time. For instance when referring to a class C in an
instance creation expression new C, we know exactly which class declaration
will be used, no dynamic lookup is necessary, and a direct link pointing to the
declaration of the class can be established statically. The fact that name anal-
ysis requires a static lookup of the class C does not contradict our point. The



34 CHAPTER 2. SCALA SEMANTICS

static lookup is just a means to distinguish between classes that have the same
name but that are conceptually different entities. Unfortunately it is possible
in ScALA to define in a class A a mixin M which has the same name as a
mixin defined in a super-class B of A, it is then possible to refer inside A to
the mixin in B with the expression super.M. But contrary to appearances, the
second mixin is not an overriding of the first one and the mixin super selection
is not resolved at run time. Conceptually it just declares a new mixin M’, and
super.M is just an alias for M’. It is certainly unfortunate to have a mislead-
ing syntax like that: for methods, redefinition means overriding and super call
means dynamic binding, for classes, redefinition means new definition and su-
per call means static binding. We want to define a calculus and a semantics for
SCALA that satisfies the following property: values of classes are determined at
compile time, values of fields are determined at runtime. In GBETA the opposite
is true, precisely the essence of GBETA is that values of classes are determined
at runtime, that is why they are called virtual classes.

In class-based object-oriented languages, classes are privileged locations for
declaring new values, functions or types. In SCALA and JAvA this is not the
only place where declarations can occur: in JAVA we can also have variable
declarations inside methods and blocks, in SCALA method and class declarations
can even appear inside blocks and method bodies. However, in a language
like GBETA where the concepts of class and method are unified, every single
declaration is attached to a class.

The last important semantic role of classes is to specify a mechanism for
letting some parts of a program inherit code from some other parts. In object-
oriented languages, classes are actually the only location where the code inheri-
tance relation is defined. In SCALA or JAvVA, the declaration of a class associates
a class name with an optional parent. This parent is usually a class, called the
super-class, or a class combined with mixins and interfaces. In GBETA, over-
riding is also allowed for classes and a class inherits implicitly from the class it
overrides in addition to its list of class parents.

Here is a summary of properties that are satisfied by classes in SCALA.

1. The value of a class can be determined statically, i.e. no dynamic lookup
is necessary.

2. Classes are place-holders for declarations.

3. Classes represent the only place where the code inheritance relation is
defined.

Certainly there is not just one reason why most mainstream object-oriented
languages are based on this concept of class. For structuring information in the
programmer’s head, it is certainly natural to have a single place, not subject
to dynamic binding, where declarations and inheritance are defined. Another
reason is that structuring information this way can simplify the design of a type
system and make its proof of soundness easier.

2.2.2 Class-based Subset of MoC

In this section we characterize a class-based subset of M0C. By class-based we
mean that inside programs of this subset some template declarations satisfy the
properties we have identified for classes in the previous section.



2.2. A CLASS-BASED CALCULUS: C-CAL 35

Informal characterization. By definition, in order to know if a MoC pro-
gram belongs to the class-based subset, the following properties must be satis-
fied. Among the template labels occurring in the program we distinguish a set
that we call class labels. There must be only one template declaration corre-
sponding to a class label. Only class labels can contain an atomic template in
the right-hand side of their declaration, they must contain one and only one.
This atomic template must be tagged with the class label. Finally the operator
of template composition can occur only in the right-hand side of a class label
declaration.

A model of classes. Now we can check that the minimal concept of class
characterized by the three informal properties of the previous section is actually
present in the restricted calculus. The first property states that contrary to other
kinds of members, classes are not subject to dynamic lookup; in the class-based
subset class declarations are unique so the value of a class can be determined
statically. The second property is that classes are privileged place-holders for
declarations; this corresponds to the constraint in the class-based subset that
atomic templates are allowed only in the right-hand side of a class-template
declaration. Finally, the third property says that classes are the only place
where code inheritance is described; the counterpart in the class-based subset
is that template composition appears only in class-template declarations.

2.2.3 A Syntax with Primitive Classes

Figure 2.5 contains the syntax of a calculus, named C-CAL, where classes are
primitives. C-CAL corresponds closely to the class-based subset of the model of
computation that we identified in the previous section.

In MoC a program is just a term and all declarations used for reducing the
program are contained inside the term itself. Even if this view simplifies the
definition of a calculus, it does not simplify its understanding because it does
not convey the idea that inside a program there are parts that do not change like
declarations and parts that do change like the current evaluation state of the
program. C-CAL makes this distinction between the static part and the dynamic
part of a program; a C-CAL program has the form {z | d t}, it consists of a
list of declarations d and a main term ¢ to be evaluated in the context of these
declarations. The variable x is a binder, it can occur both in the declarations d
and in the main term ¢; it represents an implicitly defined root object containing
the declarations d. This presentation has to be connected with mainstream OO
languages, where a program consists of a global set of classes and an entry
point; in JAVA and SCALA the entry point is the name of a class containing an
implementation for a static method called main, in our calculus the entry point
is just a term.

Another difference with the model of computation is a new kind of decla-
ration which lets us define classes. A class declaration consists of a class name
C, a template parent T, a self variable = and a set of declarations d. The
parent of a class is an optional template, we represent it with the meta-variable
Topt- More generally, we adopt the convention that if e is a meta-variable then
eopt Tepresents an optional element of the set denoted by this meta-variable; the
absence of such an element is then denoted by none. Class declarations corre-
spond to the distinguished class-template declarations of the class-based subset



36 CHAPTER 2. SCALA SEMANTICS

Class name c

Template label L

Object label l

Self variable x

Declaration d = class C extends Ty {2 |d} class
| templateL =T template field
| objectl=t object field

Template T,.U == t.L template selection
| t.C class template
| t.C o Top extended template

Object t,bu = x self reference
| tl object selection
| newT instance creation

Program rP = {x|dt}

Object value v = z|newV

Template value \%4 = 0.0 Vop

Evaluation context T’ n= x>3d

Figure 2.5: Syntax of C-CAL

of MoC we have informally defined in a previous section. More precisely, a
class declaration

class C extends T {z | d}

corresponds to the declaration of the template

template C =T & {xz | d}©

Also, a program {z | d t } corresponds to the MOC term t[z\new {z | d}]. The
constraint that class declarations must be unique is not specified by the syntax.
It is a condition that has to be added to the definition of well-formed C-CAL
programs.

In C-cAL templates are either a class template t.C, a template selection ¢.L
or an extended template t.C' :: T,p:. This last kind of template is not meant
to appear inside programs, rather it is a semantic entity that represents the
current evaluation state of a template.

Object and template values correspond to objects and templates such that
no sub-expression is a selection or a class template. It means that an object
value v is either a self reference x or an instance creation expression new V
where V is a template value, and a template value V is necessary an extended
template v.C :: V. In Section 2.4.1 we explain how template values can be
seen as lists of pairs (v, C') and object values as class-labeled trees.

2.2.4 Direct Semantics of C-CAL

In the previous section we have explained how to interpret a C-CAL program as
a MoC program. We could formalize this interpretation and it would actually
constitute a valid semantics for C-cAL. However, a direct semantics based on



2.2. A CLASS-BASED CALCULUS: C-CAL 37

classes is preferable in the perspective of writing type safety proofs, because
there is no doubt we want to base a type system for SCALA on the concept of
class, and if we do so, the semantics should also be based on classes. Such a
direct semantics for C-CAL is summarized in Figures 2.6 and 2.7. In the rest of
this section we discuss its novel and interesting aspects.

The lookup relation on templates has the form T' - V 3, d in C-CAL ; it
means that in the evaluation context I' the template V' contains the declarations
d and that inside these declarations the self reference is represented by the
variable z. This relation also exists in MoC, except that it is not parameterized
by a context I', and it has exactly the same meaning. However the definition of
this relation is more complex in C-CAL and it is interesting to see why. The main
reason is that a MoC template value consists of atomic templates only, which
means that all declarations are directly accessible. On the contrary, template
values are not completely unfolded in C-CAL because they still contain class
names, and declarations can only be accessed indirectly through these class
names. The problem is that it is not possible to simply follow a class name and
collect its declarations because inside these declarations there can be references
to enclosing current instances that would escape their scope. But let us take an
example to illustrate this problem.

{ root |
class A extends none { a |
class B extends none { b |
object foo = a
object bar = b
}
}
(new (new root.A).B).foo

3

Let T' be the evaluation context root > class A extends none {a | ---},
and suppose we want to compute the declarations of (new root.A).B. If we
just collect declarations of class B without further treatment, we deduce the
following judgment.

I' - (new root.A).B 3, (object foo = a, object bar = b)

However this cannot be correct because the variable a that was bound in the
program becomes free in the lookup judgment. Note that the current instance
b does not suffer this problem because it is bound inside the lookup judgment.
The correct result of the lookup is obtained by replacing the variable a with its
actual value, here new root.A.

In our example, the depth of nesting of the declarations we consider is two,
by definition, because they are enclosed in two classes. More generally, when a
declaration d declared at depth n is selected we must somehow replace each of
the n self variables corresponding to the n enclosing classes of d with some values.
Our solution to define a lookup relation that performs these n substitutions is
to let the lookup relation on templates (I' = V 3, d) and the lookup relation
on objects (I' F ¢ 5 d) have mutually recursive definitions. For defining the
latter we must consider two cases: if ¢ is a self variable x, it can only be the
root instance of the program and d can be any declaration defined at top-level;



38 CHAPTER 2. SCALA SEMANTICS

I' Ft> (object I =u)
FFtl—u

(OR-SELECT)

I' Ft> (template L =1T)

TR-S
(TR-SeLEOT) THtL—T

[ t>(class C extends T,y {7 | d})
(TR-EXTENDS)
IPEtC—tC Ty

OR.CS 'Ft—u ORN T+-T-U
(OR-CSercr) 'Ftl—ul (OR-New) I'FnewT — new U
TR.CS I'Ft—u TR.CC 'Ft—u
(TR-CSpLECT) [T = T (TR-COLASS) T e e

I'ET-—-U

TR-CE
( XTENDS) THtC:T—=tC:U

Figure 2.6: Reduction of objects (I' + ¢t — w) and templates (I' v T — U)
C-cAL

(LT ) D' Vopt 2. d  T'F v>(class C extends Ty {m|3/})
-TEMPL —
T'FoCuVoyd.d+d
(L-R )F:xaa (LN )t:newV '-vs,d
-RooT) —————— -NEW
I'kx>3d; Fl—thi[Jﬁ\t]

Figure 2.7: Declaration lookup in templates (I' - V 2, d) and objects (T" +
t > d) in C-CAL



(L-TEMPL)
(L-NEW)

(L-TEMPL)
(L-NEW)
(OR-SELECT)

2.2. A CLASS-BASED CALCULUS: C-CAL 39

C+C
d Tk Vo3¢ d
I F Vopt 30 dc _ (L-MISMATCH) ort Za ==
' w.C Voo, d 'k v.C Voo, d

(L-MATcH)

t=newV T FV3Yd

L-NEw-S
(LoNEW-SUPER) 20 ]

I+ t3% (object | = u)

OR-S
( UPER) I' + t.super[C].l — u

I+ ¢3¢ (template L = U)

(TR-SUPER)

I' - t.super[C].L - U

Figure 2.8: Super-selections in C-CAL

if ¢ has the form new V, a lookup on the template V is performed and d is any
declaration found by this lookup where ¢ has been substituted for the current
instance. In the definition of T' - V 3, d, we know that V has the form
v.C :: Vope. To obtain the declarations of C' where all required substitutions
have been performed, we can simply perform a lookup of class C' on the object
v. As an illustration of all the mechanisms that have been introduced in this
section we present the derivation corresponding to the evaluation of our example.

(L-RoorT)

I' F root > (class A extendsnone {a| ---})
' F root.A 3, (class B extends none { b | object foo=a, ---})
I' F newroot.A 5 (class B extends none { b | object foo = new root. A, ---})

I' b (new root.A).B 3, (object foo = new root. A, ---)

I' F new (new root.A).B 5 (object foo = new root.A)

' + (new (new root.A).B.foo) — new root.A

2.2.4.1 Super-selections

For MoC we proposed two means of defining a mechanism of auto-combination
of declarations. For C-CAL we present a mechanism which is similar to the
second proposal based on a tag-sensitive lookup of declarations inside a tem-
plate. We extend the syntax of C-CAL with object super-selections ¢.super|C].l
and template super-selections ¢.super[C].L; they have the same meaning as the
corresponding constructs in MoC.

In Figure 2.8, we summarized the additional rules needed to deal with super-
selections in C-CAL. These rules are similar to the ones defined in the tag-based
extension of MoC with super-selections (See Section 2.1.3.2).



40 CHAPTER 2. SCALA SEMANTICS

2.3 Semantics of a Functional Core of SCALA

As stated in the introduction of this chapter, we do not have the ambition to
provide a semantics to the complete SCALA language. Rather, we focus on an
untyped functional subset of SCALA, that we call CORE-ScALA. The semantics
of CORE-SCALA takes the form of a translation into the class-based calculus
C-cAL, it is summarized by the following formula.

SEMCORE—SCALA = TRANSCORE—SCALA—>C—CAL + SEMC—CAL

The translation from CORE-SCALA to C-CAL is simpler to define and explain
by successive small transformations. We start by considering a simple extension
of C-CAL with anonymous templates, then we extend this extension by the
addition of parameters in declarations. Finally, we translate CORE-SCALA in
this last extension of C-CAL. After defining the semantics we informally validate
its conformance to the SCALA implementation by focusing on the translation of
mixins. To conclude this section we study an extension of CORE-SCALA with
deep combination of classes, a mechanism similar to GBETA virtual classes.

2.3.1 Syntax of CORE-SCALA

In Figure 2.9 we give the syntax of CORE-SCALA. Despite its simplicity this cal-
culus is already very expressive. It supports the usual object-oriented concepts
of classes, methods and fields. But it also has inner classes, mixins, dynamic
super calls, blocks, first-class functions and anonymous classes. The presence
of blocks and anonymous classes implies that declarations can be nested at any
level inside terms. Our core SCALA is functional, not in the sense that it only
contains the concept of functions, but in the sense that it has no imperative
features such as I/O primitives, mutable fields and mutable variables.

The main difference between our core SCALA and the real SCALA, except
for the type annotations that we do not consider in this chapter, is the way we
deal with the current instance and the current enclosing instances of a class.
In ScALA the expression C.this represents the current instance of the class C,
where C must be the class in which the expression occurs or an enclosing class
of this class. In our core SCALA we use a variable for representing the current
instance of a class. The correspondence between both notations is immediate.
Our treatment of current instances extends better to the treatment of blocks
and anonymous classes. Contrary to SCALA, every block or anonymous class
contains a variable x that represents the actual instance of this block or anony-
mous class. Blocks have the form {z | d t} and anonymous classes have the
form new e, {x | d}. Inside a block, members of the block can be referenced
through the variable . Another implication of this treatment of current in-
stances is that SCALA super-calls C.super.m(t) are replaced by super-calls of
the form z.super.m(%).

2.3.2 Anonymous Templates

In this section we extend the syntax of C-CAL with anonymous templates.

Template T o= Tyu{x|d}]| -



2.3. SEMANTICS OF A FUNCTIONAL CORE OF SCALA

Class name c

Mixin name M

Field name f

Method name m

Self reference =z

Parameter z

Declaration d  u= class C(Z) extends p class declaration
| trait M with k {x | d} mixin declaration
| val f=t field declaration
| defm(z)=t method declaration

Pattern P u= eopt {w|d}

Extends clause e = t.C(f)withk

Mixin k n= t.M mixin use

Term t,bu = x self reference
| =z parameter
| t.f field selection
| t.m(?) method call
|  xz.super.m(?) super-call
| newp instance creation, anonymous class
| {x|dt} block
| @)=t anonymous function
| () function call

Program P o= {x|dt}

Figure 2.9: Syntax of CORE-SCALA



42 CHAPTER 2. SCALA SEMANTICS

A C-cAL program with anonymous templates can simply be transformed into
an equivalent program without anonymous templates. The translation function
[-]y is parameterized by a variable y that represents the self reference of the
class that contains the term, template or declaration to be translated. The idea
of the translation is very simple: it consists in replacing every occurrence of an
anonymous template Ty, {2 | d } with a class template y.C' where C is a fresh
class name. The class C' is generated by the translation and added to the class
whose y is the self reference. Its only role is to give a name to the anonymous
template. Here is its definition.

class C extends [Top]y { = | [d]. }

Even if the idea is very simple, the definition of the translation function
becomes quite technical as soon as we want to describe it in a declarative math-
ematical way, because of the synthetic classes that must be added to existing
classes. So for this time, we ask the reader to believe such a function can be
defined properly. As an illustration of the principle we give an example.

{ root |
class B{b | }
class A { a |
object bar = new root.B { x | object foo = 3 }
}
}

In this example, the translation of the anonymous template root.B { x |
object foo = 3 } results in the class template a.Anon$1, where Anon$1 is
a synthetic class added to the class A.

class A { a |
class Anon$1l extends root.B { x | object foo = 3 }
object bar = new a.Anon$1

}

2.3.3 Parameters in Declarations

In CORE-SCALA, classes and methods have parameters. In order to bring C-
CAL closer to CORE-SCALA, we extend C-CAL with the possibility of having
parameters in class and object declarations. We show that parameters can ac-
tually be encoded in C-CAL using normal declarations. Eliminating the concept
of parameters through encoding has the advantage of reducing the number of
concepts in the calculus. Note that not only this simplifies the syntax of the
calculus, but also has the potential to simplify all definitions that depend on the
syntax, from the semantics to the type system. If we look at this question from
an implementation point of view, it also makes a difference. In the usual and
efficient implementation of methods, their arguments are stored on the stack.
Since we intend to encode the parameters of a method as the fields of a class,
they are likely to be stored on the heap.

The parameters that we intend to add to C-CAL represent either objects
or templates. The additional syntax needed for this extension is summarized
below. The meta-variable z (resp. Z) ranges over parameters that represent an



2.3. SEMANTICS OF A FUNCTIONAL CORE OF SCALA 43

object (resp. a template). Class and object declarations now have parameters
p. Finally, class templates and object selections must be passed some arguments
a

Object parameter z

Template parameter Z

Parameter D = z|Z

Argument a = t|T

Declaration d = class C(p) extends Tpp; { 7 | E}
| objectli(p)=t]| ---

Template .U == Z|tC(@)]| ---

Object t,u = z|tl@)| ---

2.3.3.1 Principle

The principle behind the elimination of parameters is to convert each parameter
into a field. Object parameters become object fields and template parameters
become template fields. The first idea for implementing this principle is to let
a parameter z of a class C' be a field of the class C. For instance

class C(x, y) { c |
object foo = new root.C(y, x)

3

becomes

class C { ¢ |

object x = c.x

object y = c.y

object foo = new root.C { anon
object x = c.y
object y = c.x

}

3

Note that the fields x and y are conceptually abstract in class C, because they
correspond to formal parameters. In principle, we could have omitted their
default declarations in C. They are useful nevertheless to stress the membership
of x and y to the class C.

The only problem with this translation scheme is when a parameter is used
in the extends clause of its class, like in the following example.

class D(y) {d | %}
class C(x) extends root.D(x) { c | }

By definition, the scope of a self variable is limited to the declarations of its
class. However, if we let x be a field of class C, its scope gets limited to the
declarations inside C, and its use in the extends clause root.D(x) becomes
problematic. Actually, the solution exists, as shown by the program below, our
argumentation just explains why such a translation can cannot be compositional.



44 CHAPTER 2. SCALA SEMANTICS

class D { d |
object y = d.y

}

class C extends root.D { ¢ |
object x = c.x
object y = c.x

}

The solution to have a compositional translation of class parameters is to
enclose the class inside a newly generated class and to let the parameters be
fields of this class. As an illustration of this translation scheme, we present our
solution for the last example.

class D’ { 4’ |
object y = d’.y
class D {d | }
}
class C’ { ¢’ |
object x = ¢’.x
class C extends (new root.D’{ object y = c’>.x }).D { c | }
}

2.3.3.2 Formalization

In order to translate this extension of C-CAL into the extension of C-CAL
with just anonymous templates, we assume the existence of an infinite set
{lo,11,---} of object labels for representing object parameters and an infinite
set { Lo, L1,-- -} of template labels for representing template parameters. We
also assume for each object label [ (resp. each class name C') the existence of
a template label L; (resp. a class name C¢). All these labels and names are
supposed not to appear in the original program to translate.

The translation function [-], is described in Figure 2.10, it is parameterized
by a substitution ¢ that maps object parameters to objects and template pa-
rameters to templates. When the translation starts, this substitution is empty;
it is then extended each time the translation reaches a nested parameterized
declaration. The mappings that are added to the substitution are computed by
the auxiliary function param(z,p) which takes as arguments a self variable x
and the sequence of parameters p of the declaration to be translated. Then, it
is very simple: the first parameter is mapped to x.l; if it is an object parameter
and z.L; otherwise, the second parameter is mapped to x.ly if it is an object
parameter and x.Lo otherwise, etc.

We illustrate the formalization of parameter elimination by translating the
following class which models scalable two-dimensional points. In this example
there is a parameterized class Point, a parameterized object scale and the
class template with arguments root.Point(x * z, y * 2z).

{ root |
class Point(x, y) { Point_this |
object scale(z) = new root.Point(x * z, y * z)

}



2.3. SEMANTICS OF A FUNCTIONAL CORE OF SCALA 45

pa‘ram(xap) pa‘ramO(xva)a e aparamn—l(xﬂp’ﬂfl)
param;(z, z) = zreuxl;

param;(z, Z) = Zw—ualL;

arg () = argo(ao),  atEy 1 (an 1)

arg, (t) = objectl; =t

arg,;(T) = template ;=T

[object i =],
[template L =T, B
[class C(P) extends Topt {2 | d }]o

[object I(p) =],

object I = [t]o

template L = [T,

class C¢ extends {y|d}

where d = class C extends [Top]lor { | [d]o }
where ¢/ = o, param(y, p)

template L; = {y | object! = [[t]]a,param(y@ }

[] o = =z

[t.1]~ = [t]s.1

[t.super[C].l]» = [t]o.super[C].l

[new T). = new [T],

[2]o = o(2)

[Li@], — (new [1]o.Li { | arg([al,) }).
[t.super[C].l(a)] - = (new [t],.super[C].L; { x | arg([a],) }).l
[[t'cﬂa = [[tﬂa-c

[t.L]» = [t],.L

21, — o(2)

[t.C(a)]- = (new [t]o.Cc {= | arg([a],) }).C
[{z[dt}] [{ | 1d]e [t]e }]

Figure 2.10: Parameter elimination in classes and objects



46 CHAPTER 2. SCALA SEMANTICS

3

As we can see in the result of the translation below, parameterized classes
and parameterized objects are treated differently: class Point is enclosed in a
synthetic class C$Point whereas object scale is enclosed in a synthetic template
L$scale.

{ root |
class C$Point { C$Point_this |
class Point { Point_this |
template L$scale = { L$scale_this |
object 1 = new (new root.C$Point { anon_this |
object 1$1 = C$Point_this.1$1 * L$scale_this.1l$1
object 1$2 = C$Point_this.1$2 * L$scale_this.1l$1
}) .Point
}
}
}
}

In the transformed program, the term C$Point_this.1$1 (resp. the term
C$Point_this.1$2) corresponds to the use of the parameter x (resp. y) in
the original program, and L$scale_this.1$1 corresponds to the use of the pa-
rameter z. When explaining the principle of the translation, we have reused
the names of variables as names for the corresponding fields, whereas in the
formalization we use labels [y, I3, L1, etc. The advantage of the choice made
in the formalization is that the translation of a class application can be made
independently of the translation of the corresponding class declaration, just by
having a convention in the use of labels /;’s and L;’s.

2.3.3.3 Invalid translation of parameterized objects

For reasons that have been exposed earlier we want our transformation to keep
the invariant that there is only one class declaration corresponding to a class
name. It means that for encoding a method declaration [ we cannot simply
declare a class Cj, like in the following translation, because several implemen-
tations in several sub-classes would generate several classes with the same class
name.

[object I(p) =t], = [class C;(p) extends {z |objectl=1t}],
[t.l(@)]» [(new t.Ci(@)).l]»

Contrary to classes we do not impose special constraints on template declara-
tions, so the solution for translating parameterized objects consists in defining
a template L;.

2.3.4 Translating CORE-SCALA into C-CAL

The transformation described in this section deals with removing mixins from
CoORE-ScaLA and replacing super-calls selected on self-variables with general-
ized super-calls selected on arbitrary objects.



2.3. SEMANTICS OF A FUNCTIONAL CORE OF SCALA 47

[]o =z

[]- = =z

[[t'f]]tf_ = [t]o-f B

[tm@le = [om@)

[x.super.m(t)], = ax.super[o(z)].m([t],)

[new p], _ = new [p], B

[class C(Z) extends (_eopt {z|d})], = -class C(Z) extends [[eopt]]g;{ x| [[d]]g’x.__,c}
[trait M with k {z | d}]~ = class M(Z) extends mix,(k, Z) {z | [d]o,z—n }
[val f =], = object f = [t],

[def m(Z) = t], object m(z) = [t]»

[t.C (%) with Eﬂg
[[eopt {z | d}]o

miXU(E7 [tl--C([t]-))

[eoptlo {z | [d]o}
T

mix, (€, T') = 3
mix, (k,t.M, T) = [t]o-M(mix, (k, T))
[{= [ dt}] = {=|[d [t]c}

Figure 2.11: From CORE-ScCALA to C-CAL

We start by treating anonymous functions, function applications and blocks
as syntactic sugar, by applying a simple CORE-SCALA to CORE-SCALA trans-
formation.

[(@)=t] = new {y|defapply(z)=[t]} (v fresh)
t®H] = [t]-apply([Z])
[{z |dt}] = (new {z|[d],valresult = [t]}).result

Functions are treated as objects containing a method apply. Function appli-
cations are treated as invocation of this method on the function arguments.
Finally a block is considered as an object containing all the declarations of the
block, plus an additional field result which holds the main expression of the
block. This field is finally selected to compute the result of the block.

Then, we proceed with the translation with the additional assumption that
the program no longer contains functions or blocks. The translation is summa-
rized in Figure 2.11.

The translation is parameterized by a substitution o that maps a variable
x to the class C' it is the self reference of. The substitution is used in only
one place, for translating method super-calls: a super-call like z.super.m(?) is
translated in the parameterized super-selection x.super|[C].m([t],).

The translation of mixin declarations and mixin applications also needs some
explanations. The declaration of a mixin M is translated as a declaration of a
class M which takes a template parameter Z. This parameter represents the
abstract super-class of the mixin, which implies it must be part of the extends
clause of M. The extends clause of M is computed by the expression mix, (k, Z)
which is basically Z, potentially mixed up with super-mixins k. More generally,
mix, (k, T) represents the successive applications of mixins k to the template
T; if k is the empty sequence, it returns just 7. We take as example a class C
that extends a class D while combining it with two mixins M; and Ms.



48 CHAPTER 2. SCALA SEMANTICS

class C(x) extends t.D(z, x) with uy. My, us.Ma {y | }

The result of the translation is the following.

class C(x) extends ug. Ma(uy .My (¢t.D(z, 2))) {y | }

2.3.5 Comparing Mixins in SCALA and CORE-SCALA

Ideally, our encoding of mixins should correspond to their implementation in the
ScALA compiler. On the majority of programs, it is actually the case. However
there are some situations where there is a difference in the way our encoding
and the SCALA compiler linearize classes and mixins. In this section, we explain
this difference and we give arguments in favor of the linearization performed by
our encoding.

2.3.5.1 Linearization of classes and mixins

Our translation of SCALA leads to a natural linearization of classes and mixins.
Let us consider the following ScALA program. The hierarchy of classes and
mixins is represented in Figure 2.12.

class C1 { def foo(): Int }

trait M1 extends C1 { def foo(): Int =1}

trait M2 extends C1 with M1

class C2 extends Cl1 with M1 { override def foo(): Int = 2 }
class C3 extends C2 with M2

(new C3).foo()

Cl g M1 | (foo=1)
AN
(foo=2) | C2 M2
A
C3

Figure 2.12: Example with a mixin inherited twice

In the diagram, classes are represented with square boxes and mixins with
rounded boxes. There are three kinds of arrows between classes and mixins. Ar-
rows with empty head and plain line represent inheritance between two classes.
Arrows with empty head and dashed line represent the link between a mixin and



2.3. SEMANTICS OF A FUNCTIONAL CORE OF SCALA 49

the required interface of its parent. Finally arrows with plain head represent
the inheritance of a mixin by a class or another mixin.

Our translation linearizes this way: C3-M2-M1-C2-M1-C1. As we can see,
there are two occurrences of the mixin M1 in the linearization. In order to
get this linearization we first remove all dashed arrows because they do no
correspond to code inheritance, they just specify the interface of the parent of
a mixin, which serves typing purposes only. Then we perform a depth-first and
right-most traversal of the diagram starting from C3. We add each node that
we encounter, even if it has already been traversed, like the mixin M1 in our
example, which is added twice. This linearization implies that a call of method
foo on an instance of C3 resolves in the value 1, which is first found in mixin
M1.

The SCALA compiler linearizes this way: C3-M2-C2-M1-C1. It traverses the
diagram in the same order, but contrary to our linearization it takes into account
dashed arrows and it always keeps the last occurrence of a mixin that has been
encountered. In our example, it removes successively the first occurrences of M1
and C1 when it reaches them for the second time. With this linearization the
lookup of foo returns the value 2.

We claim our linearization is more natural and simpler than the one imple-
mented in the SCALA compiler. Our linearization is natural because it comes as
a natural interpretation of mixins as classes parameterized by their super-class.
Our linearization is simpler because it does not deal explicitly with the problem
of having multiple occurrences of a same mixin in the linearization, it just keeps
all mixins in the linearization, letting left-to-right precedence decide on which
declaration is finally chosen.

There is yet one advantage of the linearization performed by the ScarLa
compiler, it is always consistent with the static hierarchy of classes and mixins:
each time a class C' has a mixin M, C is located before M in the linearization
order. This is not the case with our linearization since we have M1 before C2 in
the linearization order even though class C2 has M1 as mixin.

2.3.5.2 Expansion of mixins in the SCALA compiler

In this section we explain how mixins are implemented in the SCALA compiler.
The implementation is based on the linearization described in the previous sec-
tion.

The SCALA compiler transforms a program with mixins into an equivalent
program without mixins. We illustrate the translation principle through the
following example. The idea is to split a mixin into an interface and a module.
The module contains the implementations of all methods declared by the mixin.
Each method is converted into a function that takes an extra parameter for rep-
resenting the runtime value of the object resulting from the composition with
this mixin. Inside these functions, super-calls are replaced by calls to abstract
methods. It is impossible to provide an implementation to these methods be-
cause, at the mixin declaration site, we do not know which method to call, we
just know that it has to be the next possible method in the class linearization
when the mixin is used. At the use site of mixins (here class C), we know the
complete linearization, so we can implement the abstract methods representing
super-calls.

abstract class A {



50 CHAPTER 2. SCALA SEMANTICS

def foo(): Int = 3
}
trait M extends A {
override def foo(): Int = 4 + super.foo()
}
trait N extends A {
override def foo(): Int = 5 * super.foo()
}
class C extends A with M with N {}
(new C).foo()

Here is the code that is generated by the SCALA compiler.

class A {
def foo(): Int = 3
}
trait M {
def M_super_foo(): Int
override def foo(): Int
}
trait N {
def N_super_foo(): Int
override def foo(): Int
}

class C extends A with M with N {
override def foo(): Int = N_class.foo(C.this)
def N_super_foo(): Int = M_class.foo(C.this)
def M_super_foo(): Int = C.super.foo() // static super call
// resolved at compile time

}
Console.println(new C.this().foo())

object M_class {

override def foo(self: M): Int = 4 + self.M_super_foo()
}
object N_class {

override def foo(self: N): Int = 5 * self.N_super_foo()
}

The transformation performed by the compiler to eliminate mixins relies on
the property that it is possible to perform a static linearization of classes and
mixins at the point where a mixin is used. Our encoding of mixins does not rely
on this condition.

2.3.6 Class Combination

In GBETA classes and methods are unified under the concept of pattern. An
interesting aspect of GBETA patterns is that they combine automatically and
at all depths [14], as soon as they make contact with a homonymous pattern.
In GBETA methods are composed using the keyword INNER that represents the
implementation of the current method in the direct subclass of the current
class. When translating CORE-SCALA we already presented a mechanism for
combining methods based on super-calls. Both mechanisms are similar but



2.3. SEMANTICS OF A FUNCTIONAL CORE OF SCALA 51

inverse: in one case (SCALA) we can refer to an implementation defined in the
direct super-class, in the other case (GBETA) we refer to an implementation
defined in the direct subclass. In this section we propose an extension of CORE-
ScALA for combining classes which can still be encoded in the basic calculus.

2.3.6.1 Virtual classes

We extend the syntax of CORE-SCALA with two new kinds of declarations for
virtual classes. The first one is similar to a normal class declaration and corre-
sponds to the first implementation of a virtual class.

virtual class C(T) extends p

The second kind of declaration corresponds to the overriding of an existing
virtual class. Like mixin declarations, overriding class declarations have no
explicit parent, because they implicitly inherit from the class they override.

override class C(T) with k {x | d}

Note that it is required for all implementations of a same virtual class to
have exactly the same number of arguments. It is the task of a type-system to
enforce such policies.

2.3.6.2 Class overriding

We have insisted on the fact that one basic property of classes in SCALA and
C-caL is that they cannot be overridden. If they were we could simply combine
classes by extending an overriding class with a super-call to the same class, like
in the following example.

class A { this |

class C(z) ... { ... }
}
class B extends root.A { this |

class C(z) extends this.super.C(z) with ... { ... }
}

new (new B).C(v)

Fortunately it is possible to encode classes that can be overridden using
templates: each implementation of such a class is given a unique name and
original class declarations become template declarations which are just aliases
for the class implementations. With this design pattern, the previous example
is translated as follows.

class A { this |
class C$A(z) ... { ... }
template C(z) = C$A(=z)
}
class B extends root.A { this |
class C$B(z) extends this.super.C(z) with ... { ... }
template C(z) = C$B(z)
}
new (new B).C(v)



52 CHAPTER 2. SCALA SEMANTICS

2.4 SCALETTA

The C-cAL calculus aims to be a simple target language for translating SCALA
programs; for this purpose it contains the concept of class as a primitive and
it has a simple and natural interpretation in MOC, our general model of com-
putation for object-oriented languages. However, C-CAL is not completely sat-
isfactory as a class-based calculus. The reason is simple: values are isomorphic
to class-labeled trees, but there exists no primitive in C-CAL corresponding to
the selection of a subtree. Actually, adding such a primitive to the calculus
allows to simplify the treatment of self references and to simplify the lookup of
a declaration in a template. The result of this last improvement is a calculus
that we call SCALETTA.

2.4.1 Tree Interpretation of Values

In C-cAL object and template values are defined by the following abstract syn-
tax.

v = z|newV

V o= 0.0 Vo

A template value V is isomorphic to a list of pairs (v, C') whose first compo-
nent is an object value v and second component is a class name C. It implies that
object values can be represented as trees labeled with class names. Leaf nodes
of such trees correspond to the object value x, which represents the implicit root
object of a program. Internal nodes correspond to object values new V: if V' is
isomorphic to the list ((v1, C1), -+, (vn, Cp)), the node will have n outgoing
edges, labeled with class names C;’s, and leading to the tree representations of
values v;’s. The inverse interpretation of trees as object values is also clear: if
an object value v has a child w labeled with C' it means that v is an instance of
class C and that its C enclosing instance is w.

As an example, let us find the tree representation of the value returned by
the following program.

{ root |
class A {
class X
}
class B extends root.A {
class Y extends (new root.A).X
}

new (new root.B).Y

The result of this program is the object value v such that

v = new ((v1,Y), (v2, X))
vy = mnew ((root, B), (root, A))
U9 new ((root, A))



24. SCALETTA 53

Its tree representation is given below. The tree representation reveals the
two dimensions that exist in the world of classes, namely class inheritance and
class nesting. All classes that lead to sibling nodes of the tree are in a subclass
relationship; in our example Y is a subclass of X, which is reflected by the fact
that Y and X are edges coming from the same node. The nesting of classes
can be recovered by following some branches of the tree. More precisely, if
a class is the label of an edge at one level, its enclosing class appears among
the classes labeling edges at the level just below; in our example, the branch

v 2 U1 B, root reflects the fact that Y is enclosed in class B, and the branch
v Vg A, root reflects that class X is enclosed in class A.

RN
N

root root root

If an object value v is a tree labeled with class names, it is natural to speak
of the subtree corresponding to a label C. By analogy with the Unix file system
we can use the notation v/C to represent this subtree. In our example v/
Y represents the value v; and v/Y/A represents the value root. Surprisingly,
whereas it seems that the selection of a subtree is a basic operation of C-CAL,
there is no corresponding primitive in the calculus. In this section we give
an alternate presentation of C-CAL where v/C' is a primitive operation. Some
simplifications arise from the addition of this operator which justify it status of
primitive: by replacing self references with applications of the new operator we
are able to delay the time where a substitution must take place. For instance,
without self references no substitution has to intervene during the lookup of a
declaration. We claim that a type system can also benefit from this property
and type a larger set of programs.

2.4.2 Syntax

The addition of a mechanism for selecting outer instances to C-CAL leads to the
definition of SCALETTA. The syntax of SCALETTA is summarized in Figure 2.13.

Note that this syntax is not just C-CAL with the addition of an operator ¢/
C. Tt also includes some natural simplifications implied by its introduction. All
simplifications come from the observation that references to current instances
of enclosing classes can be replaced by successive applications of the operator /
on the current instance. For example, in the following program, the occurrence
of a in the definition of foo can be replaced with ¢/C/B.

{ root |
class A { a |
class B { b |
class C { c |
object foo = a.bar



54 CHAPTER 2. SCALA SEMANTICS

Class name C

Template label L

Object label l

Owner 0] = Root root
| C class

Template T.U == tL template selection
| t.C class template
| t.C: Top extended template

Object t,u = this current instance
| tl object selection
| t/C outer object selection
| newT instance creation

Declaration d iw= class C extends Tpy class
| templateL =T template field
| objecti=t object field

Anchored declaration D w= din O

Program P = Dt

Object value v = this|newV

Template value %4 = v.C  Vop

Evaluation context r = D

Figure 2.13: Syntax of SCALETTA

13}

If we can consider that self references never designate the current instance
of an enclosing class, alpha-renaming of these variables is no longer needed,
because no name capture is possible with binders that are never nested. It
means that we can assume that all self variables have by convention the name
this, which becomes a keyword of the calculus.

Also, if class declarations no longer refer to a binder defined outside, they
somehow become relocatable. More precisely, it is possible to flatten all class
declarations, and more generally all declarations, as long as we keep the infor-
mation of their enclosing context. An enclosing context, or owner, O is either a
class name C or Root for top-level declarations. A declaration d together with
its owner O is called an anchored declaration and is noted d in O. Finally, a
SCALETTA program D ¢ is just a list of anchored declarations D, together with
a main term ¢.

Object and template values of SCALETTA are similar to those of C-CAL; the
only difference is in the representation of the root instance: in C-CAL a self
variable x is used, in SCALETTA it is replaced with this.

We say that a SCALETTA program D t is well-formed if for each occurrence
of a label or class name inside the declarations D and the term ¢, there exists
a corresponding declaration in D. Furthermore for a given class name C there
can only be one declaration in D.



24. SCALETTA 95

selfr(z) = selfp(x, this)

selfr zc(x, 1) = t

selfr y.c(z,t) = selfp(z,t/C) ife#y

[[J)]]r = selfr(x)

[t = [t]r.

[t.super[C].l]r = [t]r.super[C].l

new T = new [T]r

t.L]r = [tJr.L

[t.super[C].L]r = [t]r.super|[C].L

[t.C]r = [t]r.C

t.C :: Topi]r = [t]r.C = [Topt]r

object ! =t]pr = (object!=[t]r) in O fr=r'z2— 0

[template L = T|r = (template L =[T]r) in O fr=r,z—0

[class C extends T, {y | d}r = (class C extends [T,p]r) in O, [d]ryc
ifr'=0"2—0

{aldt}] = [d].-Root [tl.—Root

Figure 2.14: From C-CAL to SCALETTA

2.4.2.1 Elimination of self variables

The translation from C-CAL to SCALETTA is formally defined in Figure 2.14.
The translation is parameterized by an ordered list I' of bindings that associate
a self reference & with an owner O.

An inverse translation from SCALETTA to C-CAL is also possible. The only
difficulty is in the translation of outer selections t/C. The idea is to add to
each class C an object field Io that is initialized with the value of the direct
enclosing instance. This way an outer selection ¢/C' can simply be replaced with
the normal field selection t.lc. As an example the SCALETTA program

object foo = this.foo
class A {

object bar = this/A.foo
}

is translated into the following C-CAL program.

{ root |
object foo = root.foo
class A { a |
object 1$A = root
object bar = this.1$A.foo
}
}

2.4.2.2 Link with the de Bruijn notation

The idea of replacing C-CAL self variables with chained outer instance selec-
tions is connected to the de Bruijn notation for the lambda-calculus. In this



56 CHAPTER 2. SCALA SEMANTICS

notation, variables are replaced with integers that represent the number of \’s
to traverse before finding the A corresponding to the declaration of the variable.
For instance the lambda-term Axz. Ay.x y is written A.A.1 0 in the de Bruijn
notation.

In order to explain the analogy, we have to name lambdas in the lambda-
term Az. Ay.x y; let us call the first one f and the second one g. Because the
second lambda is nested inside the first one, every call of the function g is done
in the context of a call of the function f. In other words, every activation frame
of g is nested inside one of f. So, to get the argument z of f from g, we follow
the following procedure: we start from the activation frame of g, we escape it
in order to get the activation frame of f and finally we select the argument
of this last activation frame. This can be expressed with the SCALETTA term
this/g.arg. In this term this represents the current activation frame, this/
g represents the enclosing activation frame of g, namely the one of f, and
finally this/g.arg represent the argument of this/g, that is the argument of f.
Similarly the argument y of g can be expressed inside g by the SCALETTA term
this.arg.

The SCALETTA terms this/g.arg and this.arg are to be put together with
the notations 1 and 0 for representing the arguments of f and g from inside g in
the de Bruijn notation. The SCALETTA notation can be seen as a generalization
of the de Bruijn notation. The fact that the de Bruijn notation is more compact
is that it makes some simplifying assumptions: first there is no inheritance
between functions, which has as consequence there is always a single way of
escaping an activation frame and that using function names is useless. Second,
there is only one argument per A whereas classes can have many fields, which
means that in the de Bruijn notation the name of the argument is useless. If
both the name of the activation frame to escape and the name of the argument
are useless, it is possible for the de Bruijn notation to merge the operations of
finding an activation frame and selecting its argument.

2.4.3 Semantics of SCALETTA

As for all semantics presented until now the semantics of SCALETTA is based
on two kinds of relations: declaration lookup and reduction. In SCALETTA an
evaluation context I' consists of the set of anchored declarations of the program
to evaluate.

The declaration lookup relation is defined in 2.16. It maps an object value
to the set of its accessible members. In case the value is this the list of top-
level declarations is returned. For values of the form new V, the auxiliary
function membersp (V) is used. It takes a template value V' and returns the
list of members contained in this template. It is defined as follows, where the
operator + still designates the concatenation of two lists of declarations with
precedence given to the declarations of the second list.

membersp(v.C :: V,,y) = membersp (Vi) + (declsp(C), outer C' = v)
As we can see, pseudo-declarations of the form (outer C' = v) are added to

this set and represent values of outer instances. In this definition, declsp(C')
represents the set {d | (dinC) € T'}.



2.5. CONCLUSION 57

What is remarkable in the definition of declaration lookup for SCALETTA is
that it just returns a list of declarations as they appear in the original program.
The use of the operator t/C allows to avoid the substitution for current enclosing
instances; the only required substitution is the one for the current instance,
which is represented by this in SCALETTA. With SCALETTA, the replacement
of enclosing instances with their values is done neither during the reduction of
template selections as in MoC, neither during the lookup of a declaration as in
C-cAL, but only when an enclosing instance is used in the computation.

The reduction relations for objects and templates are summarized in 2.15.
A selection of an object field [ is resolved by searching the corresponding dec-
laration in the prefix ¢ and substituting ¢ for this in the result u of the search.
Compared to C-CAL there are also additional rules for reducing an outer field
selection ¢/C. Actually an outer field selection is almost treated as a normal
field selection except no substitution needs to be applied to the result of the
lookup.

2.4.3.1 Super-selections

The primitives for super-selections in SCALETTA are the same as the ones in
C-cAL, namely t.super[C].l for object super-selections and t.super[C].L for
template super-selections. The definition of their semantics uses the following
function membersSuperp(C, V') which returns the members found after class C
in the template V.

membersSuperp (C, v.C :: V,p) membersr (Vopt)
membersSuperp(C’, v.C :: Vo) = membersSuperp(C’, Vop) it C#C’

The rule (OR-SUPER) for reducing an object super-selection is given in
Figure 2.17.

2.5 Conclusion

2.5.1 Summary

In this chapter we have equipped an untyped functional subset of SCALA, called
CORE-ScALA, with a semantics. Rather than giving a direct ad-hoc semantics
we preferred to define a translation from CORE-SCALA to a more general lan-
guage. In the quest of this language, we have identified a very general model of
computation for object-oriented languages that we called MoC. MoC models
the object-oriented concepts of field selection, self recursion and code inheritance
but it does not have classes as primitives. Because classes are going to play an
important role in the typing of a language like SCALA, we have inserted a class-
base calculus, called C-CAL, in the translation from CORE-ScaLa to MoC.
Finally we have argued that this class-based calculus is similar to a simpler one,
called SCALETTA, where the selection of an outer instance is a primitive of the
language.

In the global picture of this thesis, which has for main goal to prove that
ScALA is safe, the definition of a semantics for SCALA is only a first step towards
this goal. A first validation of our semantics would be to show that SCALETTA



58 CHAPTER 2. SCALA SEMANTICS

I'F t>(objectl=u)
I+ ¢l — u[this\{]

(OR-SELECT)

' t>(template L =1T)

TR-S
(RS ELECT) e T Tenis\]

I' - ¢t > (class C extends Ty,)
I' - t.C — t.C :: Tope[this\{]

(TR-EXTENDS)

'+t > (outer C =u)

OR-O
(OR-Our) —— e =
OR.CS | T'ktou (OR-COu T'kt—u
s Ay TR~ wc
S T'kt—ou RN TET—U
(TR- LASS)FI—t.C—>u.C (OR- EW)I‘I—newT—>newU
TR.CS I'Ft—u
(TR-CSELECT) T 7
'+-T-—-U

(TR-CEXTENDS)

'tC::T—tC::U

Figure 2.15: Reduction of objects (I' + ¢ — u) and templates (T' H T — U) in
SCALETTA

(d inRoot) € T d € membersp (V)

L-R L-N
( ooT) I' - this>d ( BW) I'FnewV >d

Figure 2.16: Declaration lookup (I' F ¢ 5 d) in SCALETTA

t=newV
(object I = u) € membersSuperp(C, V)

OR-S
( UPER) I' I t.super[C].l — u[this\{]

Figure 2.17: Super-selections in SCALETTA



2.5. CONCLUSION 59

makes it easy to define an expressive type system that can be implemented
efficiently. We can consider that this work has already been done in Philippe
Altherr’s thesis [2] because it contains a typed-intermediate language for SCALA
that can be seen as a typed version of SCALETTA. The second step of validation
would then be to prove that the type system is sound. In the next chapter we
approach this question by focusing on the proof that virtual types, an essential
feature of the SCALA type system, are safe.

2.5.2 Related Work
2.5.2.1 Comparing MoC and ¢-calculus

In our model of computation we make a syntactic difference between objects and
templates. An even simpler calculus can be obtained by unifying both concepts:
this would imply to remove the construct new 7" and to only have one kind of
labels, one kind of declarations, one kind of selections, and one rule for reducing
a selection. The resulting calculus is very similar to the ¢-calculus, the basic
untyped calculus of objects described in the book “A Theory of Objects” [1].
We briefly remind its syntax and semantics in order to compare it with MoC.

Labels
Terms t == =z variable
| [d] object formation
| ¢l field selection/method invocation
| tl—c(z)u field update/method update
Fields d == [I=c¢(z)t

There are two redexes in the ¢-calculus : field selections and field updates.
In the reduction rule for field updates, d\! represents the set of fields d, minus
the field associated with label [, when it exists.

t.l —  ulz\t] ift =[d] and (I =¢(x)u) €d

tl—g¢@)u — [d\l,l=¢(x)u] ift=][d

One contribution of our work w.r.t. the ¢-calculus is to separate the concepts
of objects and templates at the level of the syntax. We think it is confusing
to unify both concepts. The unification leads to a model for prototype-based
languages, like SELF [24]. But this model does not extend naturally to take
into account mutable fields, because mutable fields are conceptually part of
objects, not templates. The following confusing questions arise if we unify both
concepts: what happens if we extend a prototype that has mutable fields? Do
we also inherit the values of these fields, do we have the right to assign them
new values? A classical error in SELF is to forget to clone an object before
extending it.

We can trivially encode the ¢-calculus in a variant of MoC where templates
and objects are unified: an object [l = ¢(z)t1, -+, I, = ¢(z)t,] becomes the
MoC object/template {« | object I; = t1, ---, object I, = t,}, a variable
stays a variable, a field selection stays a field selection, and a field update
t.l — ¢(x)u becomes a compound object/template t& {z | object | = u}.
As we can see, a field update in the ¢-calculus corresponds to a very restrictive



60 CHAPTER 2. SCALA SEMANTICS

use of the template combination T'& U in M0OC, where the first template T is
always a selection and the second template U is always an atomic template with
just one field.

The authors of the ¢-calculus suggest an encoding of static super-calls as
found in JAvA, but they do not try to model a semantics of dynamic super-
calls, as we do with MOC. In order to define a semantics of dynamic super-calls
as they exist in SCALA, it is convenient that declarations can be organized in
groups. This way, a super-call inside a group simply means a call whose lookup
starts from the next group in some dynamic linearization of groups. MoC has
this possibility of grouping declarations through atomic templates {z | d}. The
s-calculus is able to express one group with the construct [d], but it fails to
express a linearization of groups, because the only way of combining groups in
the ¢-calculus is through a method update and method updates just contribute
singleton groups to the linearization.

2.5.2.2 Lambda-calculi with records

Another tradition consists in encoding objects and classes in an extension of the
lambda-calculus with records and record selections. The best-known encodings
are called the self-application semantics and the recursive-record semantics.

The self-application semantics corresponds to the traditional implementation
of object-oriented languages, like JAVA for instance: an object is seen as a record
of functions. Each function of this record corresponds to a method of the object
and takes an extra parameter that represents the object itself. The call t.m(¥)
of a method m with arguments  on a receiver object t is transformed in the
function application (¢.m)(t, ), i.e. an application of the function ¢.m with first
argument t itself, followed by the method arguments . This encoding is very
simple and is all what is necessary for an implementation. However, it is not
a good candidate for the design of a type system because it places the current
object in a contravariant position when encoding methods. Consequently it for-
bids the overriding of a method in a subclass. In the recursive-record semantics,
an object is seen as a recursive record pu(x)r. We remind that recursive terms
like p(z)t can be encoded in the lambda-calculus after defining a fixed-point
operator.

The various semantics for classes and objects based on the lambda-calculus
suffer the same problem as MOC, our general model of computation for object-
oriented languages: because classes are not a primitive of the language, they
cannot be used in the definition of a type system. It means that class types must
be encoded by the combination of several different type constructs, like recursive
types, existential types and universal types, which have complicated theories
separately and a fortiori when they are used together. [5] is a good overview of
the existing encodings. In this thesis we present a class-based calculus, called
SCALETTA, which is supposed to simplify the definition and the proof of a type
system.



Chapter 3

A Soundness Proof of Virtual
Types

3.1 Introduction

In the effort of adding genericity to object-oriented languages, virtual types have
been proposed as a replacement for type parameterization [21]. And indeed,
there exists a general encoding that lets one express all kinds of parameterized
types as virtual types [2]. A virtual type is a class member holding a type. As for
virtual methods, whose exact implementation depends on the object on which
they are called, the interpretation of a virtual type depends on the actual object
on which it is selected. Virtual types are considered the most natural foundation
for type abstraction in the SCALA programming language [20]. This chapter
is about a completely formal proof of type safety for a calculus with virtual
types. We resisted the temptation to design a very expressive and complex
calculus whose soundness would rest only on informal arguments and we instead
concentrate on a smaller calculus with a limited expressiveness but whose safety
cannot be questioned. In the design of the calculus and the proof of soundness of
its type system we have been guided by the objective of ultimately implementing
our work in the CoqQ proof assistant [4]. Some unusual choices of representations
in the calculus and the abnormally high level of detail reached in the proof must
be understood in the light of this objective.

3.1.1 Extending Featherweight Java with Virtual Types

Except for the syntax, that we wanted close to SCALA, the calculus on which we
develop our soundness proof resembles Featherweight Java [17] (FJ) on many
points. FJ is a formalization of JAvA that captures some central aspects of the
whole language and that is frequently used to model and prove the validity of
its extensions. Like FJ, our calculus is a stateless class-based object-oriented
calculus with fields, methods, single inheritance, and top-level classes only. In
both calculi, the value of a field cannot refer to the current instance of the
class to which it belongs, rather it should be possible to compute the value of
a field before invoking the creation of an object. Furthermore in both cases the
semantics is given as a small-step operational semantics without modeling of

61



62 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

the heap, which means objects have no identity.

Our calculus adds the concept of virtual types to F.J by several simple syntax
extensions. FJ has only concrete types, called class types, which are of the
form C' and that denote all instances of a class C. In our calculus, a type
can also be a wirtual type p.L, also called abstract type, which represents the
value of the type field L held by the object denoted by the path p. Paths
are the subcategory of terms that are allowed inside types. Roughly speaking,
they are composed of variables and field selections performed on terms that are
themselves paths. The introduction of paths is motivated by their property of
being strongly normalizable and of always evaluating to the same object value;
both properties are needed if we want type soundness to hold.

There are also two additional kinds of member declarations that are related
to virtual types: a declaration type L >: T <: U defines a new virtual type L
with a lower-bound T" and an upper-bound U, a declaration type L = T assigns
the value T to the virtual type L in all instances of the current class.

Amongst terms, the calculus adds the possibility of introducing local im-
mutable variables with the construct let:T = ¢ in u which defines a new
variable of type T, initialized with value ¢, and that can be used in u using
its de Bruijn’s index [12]. The adding of local variables is not just a matter of
convenience: they are used to obtain valid prefixes of virtual types. Remember
that the prefix p of a virtual type p.L has to be a path; as it will be explained
latter this constraint propagates to the receiver object of a method call and
to the term on which a field is selected. With local variables, an ill-formed
chaining of method calls like this.f().g() can be replaced with the valid term
let:T = this.f() in 0.g() in which all method calls are performed either on
the current instance this or on the local variable 0, which are paths by defini-
tions. They are various approaches to represent the concept of bound variables
in a mathematical way. The approach that consists in regarding terms modulo
alpha-conversion of the names they contain is usually prefered in a semi-formal
context, like a scientific paper, but if we want to be completely formal, de
Bruijn’s indices tends to be more practical.

There are only two features of FJ that we do not keep in our calculus:
method overriding and type casts. There are also some other small dissimilar-
ities like our formal treatment of the current instance of a class — which is a
reserved word and not a variable —, and our treatment of variables and method
parameters.

3.1.2 Comparison with Featherweight Generic Java

In the previous paragraph we have compared our calculus with FJ. Now we
compare it with Featherweight Generic Java [17] (FGJ), the extension of F.J
with generic classes and generic methods. The goal is to show that both cal-
culi are not directly comparable. First of all, our calculus is unable to encode
parameterized class types as found in FGJ. For instance, in order to encode
a parameterized type like List<Int>, which is the FGJ type of integer lists,
our calculus lacks the possibility of enriching class types with constraints on
virtual types. With such a mechanism, the above type would be encoded by the
class type with refinements List{type Elem = Int}, which represents the set
of instances of List in which the virtual type Elem has the value Int.

But there are also programs of our calculus that are not translatable in FGJ,



3.1. INTRODUCTION 63

like the one below. The usual translation scheme from virtual types to genericity
consists in transforming virtual type declarations into type parameters [6]. But
it does not work in this case. It is like if the class List below was parameterized
by an infinity of types, one for each element in the list. Let us see why: if we
transform X as a type parameter of class List, then the occurrence of List in
the type of tail must receive a type argument. As we do not know it, because
it is left abstract, we must pass it from outside, i.e. add another type parameter
X2 to the class, etc.

class List {
type X
val head: this.X
val tail: List

}

We could argue that the occurrence of List in the type of tail could be
translated by List[?] in an extension of FGJ with type wildcards [23]. But it
is an open question if this trick can be applied in all situations. We consider a
more complicated example where a virtual type is selected on a field selection *.

class List {

type X

val head : this.X

val tail : List

val elem0fTail : this.tail.X
}

In order to translate this program, there are certain choices that are imposed
to us. For instance, for translating the type this.tail.X, which is a type
abstraction, we have no other choice than using a type parameter Y. This type
parameter can not stay free in the class List, it must become a type parameter of
this class. At the end the class List must declare at least two type parameters:
one for simulating the virtual type X, as in our previous example, and one for
representing the type this.tail.X. The occurrence of List in the type of tail
must consequently receive two type arguments. The first one is of course Y
because it has been created for that. For the second one it is sufficient to use a
wildcard. The final result of the translation is the following code.

class List[X,Y] {

val head : X
val tail : List[Y,7]
val elem0fTail : Y

}

There is one main lesson we can draw from this example. The translation
scheme forces us to have more type parameters than we had virtual types. Ac-
tually, to one virtual type corresponds as many type parameters as occurrences

INote that types like this.tail.X are not formalized in our basic calculus for which we
have a formal soundness proof, they are left as future work.



64 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

of this virtual type with different prefixes in the program. For instance in our
example we had two occurrences of the virtual types X with different prefixes:
this.X and this.tail.X. And we ended up with two type parameters: X and
Y. This observation makes the encoding unsatisfactory because it forces us to
pollute the interface of classes with synthetic type parameters. It is also inher-
ently not compositional because it requires a global analysis of the program in
order to find all the occurrences of a virtual type. In conclusion it is an open
question if we can translate any program with virtual types into a program with
just type parameterization and wildcards. But it is a closed question that such
a translation cannot be compositional.

The conclusion of comparing FGJ and our calculus is that both calculi are
not directly comparable in terms of expressiveness, i.e. it is not possible to
encode simply one calculus into the other. This justifies our investment in the
proof of a calculus with virtual types, otherwise we could always be reproached
that there already exist convincing type safety proofs for more general calculi.

3.1.3 Overview

The rest of this chapter is structured as follows. Section 3.2 explains the sub-
tleties behind the behind the design of subtyping rules for virtual types and
present informally our solutions to have a safe type system. Section 3.3 intro-
duces the syntax of our calculus, Section 3.4 its semantics, Section 3.5 its typing
rules, and Section 3.6 the well-formedness of its programs. In Section 3.7 we
present the concept of structured subtyping in detail. In Section 3.8 we dis-
cuss the compatibility that should exist between the two bounds of a virtual
type. Section 3.9 presents briefly the proof of soundness, which is completely
detailed in Appendix A. Finally, Section 3.10 presents future and related work
and concludes.

3.2 Sound Subtyping

In this section we informally explain the subtleties behind the design of sub-
typing rules in presence of virtual types. In particular, we show that the naive
rules that immediately come to mind are unfortunately unsound in the sense
that they are intrinsically incompatible with type safety. After two successive
refinements of these rules we end up with a solution that is twofold: first we
impose a well-founded relation < on type symbols that is consistent with type
declarations, second we constrain the transitivity rule for subtyping such that
the intermediate type is smaller, with respect to the relation <, that the types
of the conclusion. We call the resulting subtyping relation structured subtyping.

3.2.1 Subtyping and Subclassing

The design of a type system requires to make a certain number of choices. Such
choices are guided by the objective of eliminating programs that potentially
endanger type safety. For an object-oriented calculus the potential runtime
errors that must be prevented are: the selection on an object of a field that
does not exist in the object, the call on an object of a method that does not
exist in the object, and the call of a method with a wrong number of arguments.



3.2. SOUND SUBTYPING 65

Our approach for designing a safe type system consists in characterizing some
general classes of problems and in finding solutions to these problems, with the
hope that we have covered this way all dangerous cases. We think that, in
the context of a class-based calculus with virtual types, most of the problems
come down to the following question: does subtyping implies subclassing? More
precisely, it should be true that if two classes A and B are such that the class
type A is a subtype of the class type B, then A is also a subclass of B. This
fact is trivially true in a calculus like F.J in which all types are class types and
in which, consequently, subtyping and subclassing are not even distinguished.
But this fact is less obvious in a setting with virtual types, in which the proof
that A is a subtype of B might go through a virtual type p.L (for instance if L
has A as lower-bound and B as upper-bound).

But first, let us see why a type system where subtyping does not imply
subclassing is inevitably unsafe. This is illustrated by the following example.

class A { }
class B {
def m(): B = new B()
}
new AQ) .m()

In this example we have two independent classes A and B such that one, B,
declares a method m, while the other, A, does not. Suppose then that the type
system lets us deduce that A is a subtype of B. The expression new A().m() is
well-typed because method m is declared in class B, and B is a super-type of
the type A of the receiver object new A(). Although the expression new A().m()
is well-typed, it causes an error at runtime because no method m is actually
inherited from A.

Note that we still have a problem if we change the hypothesis from "A
is a subtype of B" to "there exists a type T such that A is a subtype of T
and T is a subtype of B", in a context where subtyping is not transitive for
all types. The construction of a problematic example is less direct, but still
simple. It consists in assembling the two subtyping steps, from A to T" and from
T to B, by composing two coercion functions, id1 and id2, that individually
perform just one of theses steps. The resulting function id, defined below, lets
us see any instance of class A as an instance of class B. As a consequence, the
unsafe expression id(new A()).m(), which reduces to the stuck evaluation state
new A().m(), is well-typed.

def idi(x: A): T = x
def id2(x: T): B = x
def id (x: A): B = id2(id1(x))

Now we are going to use these observations to see what kinds of programs
must be eliminated by the type system.

3.2.2 Graph of Symbols

In the course of our argumentation, we will consider several program examples
containing declarations of classes and of virtual types, and we will base our
analysis on the relations that exist between their associated symbols. In order



66 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

to make clearer the relation that links type symbols and class symbols, we
reason on abstract representations of programs as finite directed graphs. In such
graphs, the nodes are the type and class symbols that appear in the program
and they are represented by circles. There is an arrow (directed edge) from one
symbol to another if there is a declaration that links both symbols together. An
arrow is labeled by the kind of the associated declaration: <: is used between a
type symbol and the symbol of its upper-bound, or between a class symbol and
its superclass; >: is used between a type symbol and the symbol of its lower-
bound; finally = is used between a type symbol and the symbol of the type it is
an alias for. Note that there can be more than one edge labeled with = starting
from a same type symbol since a type symbol can be assigned different values
in different classes.

As an illustration of this view of programs, consider the graph representation
of the following program in Figure 3.1.

class B {
type T <: B

}

class A extends B {
type T = A

}

Figure 3.1: Graph representation of a program

Note that, for the sake of clarity, we do not write the prefix of a virtual type
in the graph: in our example the node T of the graph actually represents all
the types of the form p.T', and in particular the type new C().T. In the rest of
this section, we often refer to the symbol of a type, it is defined as follows: the
symbol of a class type C is C, and the symbol of a virtual type p.L is L.

3.2.3 Naive Subtyping Rules

In this section, we present some natural inference rules for subtyping. In the
next sections we are going to demonstrate they are actually unsound using well-
chosen examples and we will introduce our solutions for making them sound.

A subtyping judgment has the form I' = 7" <: U where I is a typing context
that we do not need to explicit here. The first subtyping rule, (S-UP), states
that a virtual type p.L is a subtype of its declared upper-bound, provided its
prefix p has for type the class C' that contains the declaration of L.



3.2. SOUND SUBTYPING 67

'kp:C
(type L<:T)e C
T F pL < T[p)

(S-Up)

Of course, we must be careful here to reinterpret the upper-bound 7' in the
context of the prefix p. This is expressed by the type expression T[p] which
represents the substitution of p for the self reference this in type 7. As we
do not aim at being completely formal here, we omit the symmetric rule, (S-
DownN), that links a virtual type to its declared lower-bound.

Now, let us look at to the semantics of a type assignment. Conceptually, if a
type assignment type L = T is visible from an object p, the virtual type p.L is an
alias for the type T'[p]. In other words, both types can be regarded as equivalent.
It follows that p.L can be considered as both a subtype and a supertype of the
type it is an alias for. The first fact can be deduced from the subtyping rule
(S-AvLias-RIGHT) below, and there is a symmetric rule (S-ALIAS-LEFT), that
we omitted, for deducing the other fact.

'kEp:C
(type L=T) e C
T F Tl <pL

(S-Avrias-RIGHT)

In this first approach, we also omit the rule (S-CrLASS) (resp. the rule (S-
VIRTUAL)) which states that a class type C' (resp. a virtual type p.L) is a
subtype of itself. Both rules make subtyping a reflexive relation. We conclude
this presentation of subtyping rules with the transitivity rule (S-TRANS) that
makes subtyping a transitive relation.

'-T<:8 '-S<U

S-T
(S-TraNs) T T<U

3.2.4 Naive Rules are Unsound

Some programs, if they are accepted by the type system, imply that subtyping
is not consistent with subclassing. In Section 3.2.1, we have seen that such
inconsistency is synonymous with unsafety. Consequently, it is crucial for our
type system to reject such programs. In this section, we show that with the
naive subtyping rules, we are able to exhibit such a program. The simplest case
of dangerous program is the one of Figure 3.2, where A and B are two unrelated
classes.

For this program to be well-formed, it must hold that the type A assigned to T'
is a subtype of the bound B of T. Using the naive rules for subtyping we are
able to demonstrate this fact: new C().T is an alias for A, so A is a subtype
of new C().T (rule (S-AL1AS-RIGHT)); T is bounded by B, so new C().T is a
subtype of B (rule (S-UP)); by transitivity of subtyping, A is a subtype of B
(rule (S-TRANS)).

Now we have a well-formed program and we can show that, in the context
of this well-formed program, A is a subtype of B, actually using the same
reasoning we have used to show the program is well-formed. By the observation
of Section 3.2.1, it means we can build an expression that is well-typed in the
context of this program but whose evaluation goes wrong.



68 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

class A { }
class B { }
class C {
type T <: B
type T = A
}

CRORD

Figure 3.2: Oracle’s example

Note that the reasoning we have done here amounts to have an oracle that
says that we must pass by new C().T in order to go from A to B. Of course
this reasoning is nonsensical, it should be impossible to use a type assignment
while trying to show it is well-formed. We could argue that the wrong move —
the one that only an oracle could do — consists in taking the arrow from 7" to A
in the wrong direction.

3.2.5 Backward Moves are Wanted for Type Aliases

In order to reject the program of the previous example, we can establish the
following policy: for proving that a type T is a subtype of another type U, it
must be possible to follow a path from (the symbol of) T' to (the symbol of)
U in the graph of symbols. We can see that it forbids to deduce that A is a
subtype of B in the case of the previous program because there is no path from
A to B that follows the edges; in particular the move from A to T is forbidden
since it would require going backward along an alias arrow.

Such a policy is certainly sound, however it turns out to be far too restrictive,
as illustrated by the program of Figure 3.3.

This program is perfectly safe and is actually accepted by the SCALA com-
piler. But the assignment of type U in class A will be rejected by our policy.
For this assignment to be well-formed, it should be possible to show that in
the context of the class A, A is a subtype of the upper-bound this.T' of U.
The strong law of never taking an arrow in the wrong direction prevents us
from directly concluding that A is a subtype of this.T just by going through
the symbol U, as in the previous example, and this is good. However, it also
forbids us to deduce the result by following the path A =5 B & T, which
is bad. Clearly, in this case, we want to follow the edge corresponding to the
assignment type I’ = B in the direction " — B. So, we have to be more subtle
and refine our policy in order to making it more fine-grained.

3.2.6 Transitivity by Confluence

The two previous programs can be managed by defining a convergence policy
that lets us deduce that a type is a subtype of another only when their symbols
both converge towards a same symbol when following arrows in the graph. Such
mechanism can be formalized by: (1) inlining transitivity in all subtyping rules
except the transitivity rule, and (2) constraining the transitivity rule such that



3.2. SOUND SUBTYPING 69

class B {
type T <: B
type U <: this.T
}
class A extends B {
type T = B
type U = A
}

Figure 3.3: Example needing a backward alias move

the symbol of the intermediate type S is reachable from the symbols of the types
T and U at both ends.

Inlining transitivity in all subtyping rules except the transitivity rule leads
to the following:

'k p:C 'kp:C
(type L<:T)e C (type L=T) e C
'k T <: S '+ S<:T[p]
(S-Up) (S-ALiAs-RIGHT)
TFplL<:S TF S<ipl

The new transitivity rule is written below. In this rule we write U < T if
there exists a path in the graph from the symbol of T' to the symbol of U.

'FT<: S ' S<:U S=<T S=<U

(S-TrANS-S)
r-T<U

The combination of these two modifications results in a new set of subtyping
rules, which we call structured subtyping because the modifications of the rules
impose a structure to the shape of subtyping derivations. Let us see now how
these new definitions are able to reject the first program and to accept the
second one. In program of Figure 3.2, we can see that the new policy forbids
to deduce that A is a subtype of B because: (1) according to the direction of
arrows we have A < T and B < T, and (2) for applying the modified transitivity
rule we need the opposite relations, namely that T < A and T' < B. In Program
of Figure 3.3, we can check that we now accept the subtyping judgment this :
C F A <:this.T: we have A subtype of B (rule (S-EXTENDS)), and B subtype
of this.T (rule (S-AL1AS-RIGHT)). To conclude by applying rule (S-TRANS-S)
we need to have B < A and B < T', which is the case according to the direction
of arrows.



70 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

3.2.7 Cyecles

Our convergence policy works with the two previous examples, however it fails to
reject the program of Figure 3.4. As we will see, accepting this program causes
a breach in type safety since it becomes then possible to declare a coercion
function from the class type A to the the class type B whereas classes A and B
are totally unrelated.

class A {}
class B {}
class C {
type
type
type
type
}

this.U
this.T

HaHdg
A A

|
=

Figure 3.4: Cyclic example

Here is the detail of the proof that the program is accepted by the con-
vergence policy. We start by showing that in this example all declarations are
well-formed. Class declarations and type declarations are trivially well-formed.
For showing that type assignments are well-formed too we need to prove that
the type of the right-hand side of each type assignment is a subtype of the
declared bound of the assigned type symbol.

For the assignment type U = this.T, we have to show that, in the context of
class C, the type this.T is a subtype of B. This can be done by two successive
applications of the rule (S-Up) followed by the reflexivity rule for class types
(S-Crass):

S-C
( LASS) this:C + B<: B

(typeU <: B) e C
this:C F this: C
this: C F this.U <: B
(type T <: this.U) € C
this:C F this: C
this: C F this. T <: B

(S-Up)

(S-Up)

For the assignment type T' = A, we have to show that, in the context of
class C, the type A is a subtype of this.U. This can be done by two successive
applications of (S-ALIAS-RIGHT) followed by the reflexivity rule for class types
(S-Crass):



3.2. SOUND SUBTYPING 71

(S-Crass)

this:C F A<: A
(type T =A)eC
this: C + this: C
this: C + A <:this.T
(type U = this.T) € C
this: C F this: C
this: C + A <:this.U

(S-Avrias-RIGHT)

(S-Avrias-RIGHT)

Note that in both cases we do not even need the full transitivity rule (S-
TRrANS-S) for proving the well-formedness of the type assignment. Now that
we have shown that the program is well-formed, we can easily prove that A is
a subtype of new C().T" and that new C().T" is a subtype of B. By the second
observation of Section 3.2.1 this implies that it is possible to build a coercion
function from A to B, which is completely unsafe. The interesting point in this
example is that it is unsafe even though it is not possible to deduce that A is
a subtype of B. In order to prove such a subtyping judgment we would have
to apply the transitivity rule with the two premises - A <: new C().T and
F new C().T <: B. But the confluence check associated with this rule, namely
that T'< A and T' < B, does not succeed. Somehow, we managed to bypass the
confluence check by introducing a loop between symbols 7" and U in the graph
of symbols.

Interestingly, this example is similar to the one used for showing that the
local confluence of a notion of reduction does not imply its global confluence. If
we unfold the graph of symbols, we get an infinite graph that closes at infinity,
i.e. never (See Figure 3.5).

Figure 3.5: Unfolded cyclic example

In this example, the source of the problem is the cycle between symbols
T and U in the graph of symbols. The last refinement of the policy that we
propose is then to forbid cycles in the graph of symbols.

3.2.8 Well-founded Relation

The anti-cycle policy can be formalized by saying that the relation between
symbols in the graph is well-founded, in other words there must not exist an
infinite path in this graph. Since the graph is derived from the declarations
of the program, we end up with the following simple constraint for preventing
cycles: there must exist a well-founded relation < over class and type symbols
that is consistent with class and type declarations.



72 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

We can check that such a relation makes the type system reject the program
of Figure 3.4. Suppose by contradiction that the program is well-formed. Since
< is consistent with type declarations, type T" <: this.U implies U < T', and
type U = this.T implies T < U. With U < T and T' < U we can construct
the infinite descending chain of symbols --- < U < T < U. This implies that <
is not well-founded, which contradicts the well-formedness of the program.

3.2.9 Incompatible bounds

In Figure 3.6, we present the last example of this section. It broaches the
problem of incompatible bounds in the declaration of a virtual type.

class A {}
class B {}
class C {
type T >: A <: B

ECEIONG

Figure 3.6: Incompatible bounds

This program looks dangerous because for an instance v of class C, it lets
us deduce that A is a subtype of v.T" (by rule (S-DowN)) and that v.T is a
subtype of B (by rule (S-UP)), whereas A and B are two unrelated classes.
According to the second observation of Section 3.2.1, this looks like a breach in
type safety. What saves us here is that class C' and all its potential subclasses
are impossible to instantiate since it is impossible to assign a type value to T
Our reasoning for showing that the program is unsafe was correct except that
we have assumed the existence of an instance v of C' that actually cannot exist.
This is explained in more detail in Section 3.8.

3.2.10 Conclusion

In this section, we have explained why it is necessary for type safety that sub-
typing implies subclassing. To help us in the discussion, we have introduced
a view of a program as a graph of symbols. After presenting naive rules for
subtyping, we have discovered that such rules consider as well-formed some par-
ticular unsafe program. We have suggested one possibility for rejecting similar
programs: avoiding following an arrow along the wrong direction in the graph
of symbols. However, this policy turns out to be too strong since it rejects also
some correct programs. So, we had to be more subtle. We have discovered that
the two considered programs can be managed by defining a policy that lets us
deduce that a type is a subtype of another if their symbols both converge to a
same symbol. Formally, it amounts to inline transitivity in all the rules except
the transitivity rule and to add constraints on the applicability of the transitiv-
ity rule. Unfortunately, we have observed that the safety of such technique is
broken if there are cycles in the graph of symbols, as demonstrated by another
example wrongly accepted by the type system. To prevent cycles in the graph,



3.3. SYNTAX 73

we have imposed the condition that the relation derived from the graph should
be well-founded. Summarizing, the result of all this analysis is the definition
of two theoretical tools, two techniques that together ensure a sound subtyp-
ing relation: a restricted subtyping relation, called structured subtyping, and a
well-founded relation on symbols. This section has just described the philoso-
phy of these tools, their precise definitions and the properties they satisfy are
the main subject of the rest of this chapter.

3.3 Syntax

Our proof of type safety for virtual types is based on a simple class-based object-
oriented calculus. We adopt the traditional approach of defining programs of
the calculus in two steps: first we define the set of pre-programs, which roughly
corresponds in a compiler to programs that are syntactically correct and where
name analysis has been resolved. Then we define the set of well-formed programs
as the subset of pre-programs that obey some typing discipline expressed as
inference rules. For pre-programs, we give two views: in the first one, that we call
the programmer’s view, pre-programs are defined entirely in terms of abstract
syntax. In the second one, that we call by contrast the mathematician’s view,
pre-programs are defined as a set of access functions that return the attributes
attached to each name. Both views are complementary: the programmer’s
view is very close to the concrete syntax of programs and is useful for writing
examples, whereas the mathematician’s view is convenient for formal theoretical
developments about the calculus.

3.3.1 Programmer’s View

The abstract syntax of the calculus is defined in Figure 3.7. There are six kinds
of symbols corresponding to the different kinds of names that can occur in a
program: classes, virtual types, fields, methods, method parameters and local
variables.

A program D t consists of a set D of class definitions and a main term ¢ to
be evaluated in the context of these classes. A class declaration has the form
class C' extends Cop { d }; it defines a new class C with an optional superclass
Copt and member declarations d. Clopt is either another class symbol C’ or none,
a construct that is used to express the absence of superclass; it means that our
calculus supports only single inheritance. The special class Object which is the
root of the FJ class hierarchy can be emulated here by defining a class Object
with no super-class and such that the following conditions are satisfied: all other
classes have a super-class, and all top-level classes inherits from Object.

There are two kinds of declarations inside a class: those that define a new
symbol and those that assign a value to an existing symbol. For emphasizing
this difference of role, we call the former declarations and the later valuations. A
type declaration type L >: T,,; <: U defines a new virtual type L with a type
upper-bound U and an optional lower-bound Ty,;. We could also have made
the upper-bound optional, but a virtual type without upper-bound is similar to
a virtual type with Object as upper-bound. A type valuation type L = T in
a class C makes L an alias for T in all instances of C. A method declaration
def m(z : T) : T defines a new method m with formal parameters T bounded



74 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

by T and result type T. At the point of its declaration the method is still
abstract because it misses a body; the only way of making it concrete is to write
a method valuation. A method valuation def m =t in a class C states that m
has body ¢ in all instances of C'. A method valuation inherits the parameters
of the method’s declaration, so that they can be referred to inside ¢. Fields are
declared in classes through the syntax val f : T; following FJ tradition, the only
way of assigning a value to a field is through an instance creation expression.

The concepts that are described by the terms of our calculus are standard for
an object-oriented calculus, but some points require an explanation. Compared
to FJ there are design choices that are imposed by virtual types. We already
explained in the introduction the need for local definitions. A local definition
let: T =t in u introduces a local variable with type T" and value ¢ whose scope
is limited to the term w. FJ uses the concept of variable to represent both the
current instance of a class and a method parameter. In our calculus a variable x
always represent a method parameter, and we let the current instance of a class
be represented by the special symbol this. Local variables are represented even
differently by integers using the de Bruijn notation. There are also constructs
for selecting a field or calling a method. Fields are selected on a subset of
terms, that we call paths, with the construct p.f. The reason why we restrict
the form of terms that can be used as prefixes of a field selection is explained
in the description of paths. The construct p.m(T = ¥) represents the call of the
method m on the receiver object p with arguments #. Usually the link between
an argument and a formal parameter is determined by their respective position.
Here the link is made explicit by associating each argument with a parameter.
Finally, instances of a class C are created using the construct new C(f = ).
The arguments ? of this expression specify the values of the fields f they are
associated with.

Types are either concrete or abstract. A concrete type C refers to a class
symbol C and is called a class type. An abstract type p.L refers to a virtual
type symbol L and is called a member type or simply a virtual type; it is selected
on a path p. Such types are called virtual because their actual value depends
on the runtime value of the object p on which they are selected; generally, at
compile time, we just know the bound of such a type.

As in FJ, the values of our calculus are the subset of terms that have the
form new C (7 = 1), i.e. they are represented as instance creation expressions
with evaluated fields.

Paths are, by definition, the subset of terms that are allowed in types. For
type safety reasons, it is important that such terms do not loop nor evaluate to
different values in successive evaluations. It can be shown that our definition of
paths satisfies the former property. The latter property is actually satisfied by
all terms in our calculus because the calculus can be shown confluent and there
is no means of modifying the state of a program by a side-effect. The reason
fields can only be selected on paths and not on arbitrary terms is that the type
attributed to a field selection depends on its prefix and that types can only
depend on paths; our restriction on the terms that can appear in types implies
a restriction on the terms that can be used as prefixes of a field selection. The
same argumentation justifies that receiver objects of method calls have to be
paths. Actually, for the same reasons, arguments of method calls would also
have to be paths if we had chosen to make parameter types and result types
depend on value parameters.



3.3. SYNTAX 75

Simple Paths. As a simplification, we start by considering a subset of the
calculus where paths cannot be field selections p.f. More formally we replace
the definition of paths with the following syntax.

p == this |z | n | v

Such a constraint simplifies the theoretical study of the calculus because it
implies that all terms occurring in types are irreducible. The reason we keep
full paths in the syntax nevertheless is that we conjecture there exists a natural
extension of our formalism that can deal with them 2.

Syntactic Sugar. Superclasses and type lower-bounds are optional. When a
class has no superclass, we just write class A { ... } instead of the complete
form class A extends none { ... 1}, and when a virtual type has no lower-
bound we write just type L <: Ainstead of type L >: none <: A. Sometimes
we also write type T instead of type T >: none <: Object; in this case we
assume the definition of a class Object, as explained above.

Sequences. Sequences are ubiquitous in our formalism. We write € for an
empty sequence of elements. We write |s| for the length of a sequence s. We
write also T for a finite sequence of elements ranged over by the meta-variable x.
In that case, if 0 < i < |Z|, z; represents the (i + 1)-th element of the sequence
T (i.e. we start counting from index 0).

Definition 3.1 (Occurrence of self and free parameters)
We define some notations to speak of the occurrence of self or some param-
eters in a path. These definitions extend naturally to types.

1. We write this € p if this occurs in path p.

2. We write x € fp(p) if parameter x occurs in path p.

3.3.2 Mathematician’s View

In the mathematician’s view we regard a pre-program as a set of functions
that take symbols as arguments and return the attributes attached to such
symbols. For instance there is a function fieldOwner that returns the class
enclosing the declaration of a particular field symbol, and there is a function
fieldType for accessing the declared type of that field. With this presentation
the important assumption that to each symbol corresponds a unique declaration
comes for free, it is contained in the fact that mathematical functions always
return the same value when applied to the same argument, by definition. With
the definition of pre-programs as abstract syntax trees we would have to define
and manipulate extra assumptions about uniqueness of declarations. The access
functions also enforce the existence of a declaration for every symbol that is
used in the program because their domain is by definition the entire set of
symbols. This last property places us conceptually after name analysis. In the
mathematician’s view, a program II is a tuple:

2Such an extension is discussed in Section 3.10.1.



76 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

Syntax

Class symbol A, B,C

Type symbol L

Field symbol f

Method symbol m

Parameter symbol T

Integer n, 1,7,

k,N

Class declaration D := class C extends Cop: { d }

Super class Copt = C | none

Member declaration d n= type L >:T,p; <: U type declaration
| typeL=T type valuation
| val f:T field declaration
| deftm(z:T):T method declaration
| defm=t method valuation

Term t,u = this current instance
| = method parameter
| n local variable
| »p.f field selection
| newC(f=%) instance creation
| pm(E=1) method call
| let:T=tinu local definition

Type 5,T,U,

V,W = C class type

| »pL member type

Optional Type Topt = T |none

Path D, q = this|z|n|v|p.f

Value v, W = new C(f =7)

Program P = Dt

Figure 3.7: Calculus Syntax




3.3. SYNTAX 77

I = ( Ec¢ Ey E Ep,E,,
<€ (EcUELU Ef)Q,

classSuper € FE¢ — Ec¢ (partial) |
typeOwner € Ep— E¢,
typeUpperBound € Ep — Erp,
typeLowerBound € FEj — Ep (partial) ,
typeValue € FEc¢ x Ep — Er (partial) |
fieldOwner € FEf— Eg,
fieldType € Ey— Ep,
methodOwner € FE,— FE¢,
methodType e E, — Er,
methodValue € FE¢ x E,, — F; (partial) ,
paramOwner € E,— E,,
paramType € FE,— Er
main e E;

)

This tuple consists of:

A set E¢ of class symbols, a set Ey, of virtual type symbols, a set Ey
of field symbols, a set F,, of method symbols and a set E, of parameter
symbols.

A binary relation < on class, type and field symbols. This relation is re-
quired to be well-founded in well-formed programs and is used to constrain
definitions so as to ensure type safety (See Section 3.2.7).

A partial function (classSuper) which maps a class C' to its superclass C’.
Note that this function is partial because in our calculus a class can have
no superclass.

A set of accessors for virtual types: a function (typeOwner) which maps
a virtual type L to its enclosing class C, i.e. the class where L is initially
declared; two functions (typeUpperBound) and (typeLowerBound) which
maps a virtual type L to its declared bounds T and U; a partial function
(typeValue) which maps a class C' and a virtual type L to the value T
given to L in class C.

A set of accessors for fields: a function (fieldOwner) which maps a field f
to its enclosing class C; a function (field Type) which maps a field f to its
declared type T

A set of accessors for methods: a function (methodOwner) which maps a
method m to its enclosing class C'; a function (methodType) which maps a
method m to its return type T 3; a partial function (methodValue) which
maps a class C and a method m to the implementation ¢ of m in class C.

A set of accessors for parameters: a function (paramOwner) which maps
a parameter z to its method m; a function (paramType) which maps a
parameter x to its declared type T

3Note that parameter types are attached to parameter symbols.



78 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

e A term (main) which represents the entry point of the program.

We still rely on the definitions as abstract syntax trees given in the program-
mer’s view for defining the set E; of terms and the set Ep of types.

Note that what we call the mathematician’s view roughly corresponds to the
data structures used in a compiler for representing a program after name anal-
ysis. For instance, a compiler does not traverse the whole syntax tree each time
it needs the type of a symbol, rather it uses access functions (or methods) that
directly return this information. We find then strange that this representation
is almost never used for describing type systems in the litterature. We think
that formal studies of type systems could also benefit from this representation.

3.3.3 Example

We show on an example how the programmer’s view of a pre-program can be
entirely recovered from its mathematician’s view. The following program, writ-
ten as an abstract syntax tree, has a representation with access functions which
is contained in Figure 3.8. The general translation is formalized in Figure 3.9.

class A {
type T <: A
def foo(x: this.T): this.T
}
class B extends A {
type T = B
def foo = this.foo(x.foo(this))
}

let: B = new B() in 0.fo0(0)

3.3.4 De Bruijn’s Notation

Local variables introduce binders. Because it makes the rules more readable, the
tradition in the description of calculi is to have an informal treatment of binders,
which is based on variables and with the implicit assumption that terms must be
considered modulo alpha-renaming. In this chapter we want a formal treatment
of binders because we want to be sure of our proof. Among the many ways of
representing binders mathematically, we choose the de Bruijn notation which
consists in representing variables by integers. Method parameters also are often
considered as binders. There are several reasons why we use symbols instead of
the de Bruijn notation for parameters: the first one is that we want to be able to
define the simultaneous substitution of actual parameters for formal parameters
in an extension of this calculus with parameter dependent method types; this
simultaneous substitution is easier to define with symbols than with binders.
The second reason comes from the well-known isomorphism class/method and
field /parameter which suggests that fields and parameters have a lot in common
and should consequently share similar representations.

Definition 3.2 (Free variables)



3.3. SYNTAX

Ec - { Av B }

Ep = {T}

Ef - @

En, = {foo}

E, = {z}

= = {(AvB)v(BvT)v(AaT)}

classSuper = {B— A}

typeOwner = {T— A}

typeUpperBound = {7 +— A}

typeLowerBound = 0

typeValue = {(B,T)— B}

fieldOwner = 0

fieldType = 0

methodOwner = {foo— A}

methodType = {foor this.T'}

methodValue = { (B, foo) — this.foo(x.foo(this)) }

paramOwner = {x+ foo}

paramType = {z+~ this.T}

main = 1let:B =new B( )in 0.f00(0)

Figure 3.8: Mathematician’s view of a program

parametersy(m) = {z:T |

II.paramOwner(z) = m,
II.paramType(z) = T}
members (C) = {val f:T]
IL.fieldOwner(f) = C,
ILfieldType(f) =T}

U {defm(@:T):T|
II.methodOwner(m) = C,
parametersy (m) = {Z: T },
II.methodType(m) =T}

U {def m =t | [l.methodValue((C,m)) =t}

U {type L >: Top <: U |
IT.typeOwner(L) = C,
II.typeUpperBound(L) = U,

r. 1T if Il.typeLowerBound(L) =T
P! ~ | none otherwise

U {type L =T | IL.typeValue((C, L)) =T}
classesy = {class C extends Cop { d } |
C" if T.classSuper(C) = C”

Copt = .
none otherwise

members(C) = {d }}
programp = Dt s.t. classesy = { D }, ILmain = ¢

}

Y

Figure 3.9: Recovering the Programmer’s View



80 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

The free variables of a term t, noted fu(t), is defined using an auxiliary
function fu,(t) that returns the free variables of t at depth k.

0 if n<k
for(n) {{n—k} if n>k
for(x) =0

fo(let: T =tinu) = fo (T)U fu,(t)U fu,q(u)
fo () = o

folt) = fuy(t)

Definition 3.3 (Closed terms and closed types)
We say that a term t is closed if: this & t and fp(t) = 0 and fo(t) = 0. A
similar definition applies to types.

Definition 3.4 (Lifting)
We define the lifting 1} of the term t at depth k > 0 with amplitude n > 0.
We also define t1™ as a shortcut for t1. These definitions naturally extend to

types.
o [ if i<k
YRS Y idn if ik
21y = =x
(let:T=tinu)ly = let:TTp =11} inul},,
S LY
o= oy

Definition 3.5 (Substitution)
We write t[k := u] (k > 0) the substitution in t of u for the variable k. This
definition extends to types naturally.

n if n<k
nlk:=t] = T if n=k
n—1 if n>k
zlk:=t] = =z
(let:T =t inta)[k:=t] = let:Tk:=t]=t1[k:=t] inta[k+1:=1]
---[k:::t] = ...

Note that in addition to substituting a term for a variable, this function also
decreases all free variables by one.

Definition 3.6 (Dropping)

We write t|,, the action of decrementing all free variables by one at depth
k > 0. We also define t| as a shortcut for t|, *. These definitions naturally
extend to types.

4Note that we could alternatively have defined t| as ¢[0 := 0].



3.4. SEMANTICS 81

[ if i<k
ily = { pred(i) if P>k
xlpy = 2
(tet:T=tinu)l, = let:T|, =1tl, inuly,
tl = tl

where pred(i) =i — 1 if i > 0 and 0 otherwise.

3.4 Semantics

The computational meaning of a program is defined by a call-by-value small-
step operational semantics. More precisely we define the reduction of a term in
the context of a program II. The evaluation of a program then consists in reduc-
ing the main term of the program in the context of the class declarations until
reaching a value. The reduction relation needs a subclassing relation between
class symbols. Both relations are summarized in Figure 3.10 and Figure 3.11.
They are implicitly parameterized by a program II ®. We also use some no-
tations to alleviate the rules. For instance we write (def m = t) € C as an
abbreviation for (def m = t) € members(C), which in turn is equivalent to
II.methodValue((C,m)) = t. Similarly we write class C extends C' { d } as a
shortcut for class C extends C’ { d } € classesq.

The evaluation rules are standard and do not deserve much explanation. In
rule (R-CALL), we substitute in the body ¢ of the method m the receiver ob-
ject v for the current instance this and the actual arguments T for the formal
parameters T. The substitution in a term t of a path p for the current instance
this is written t[p], and the substitution in a term ¢ of paths p for parameters T
is written t[Z\p]. As we always substitute values, i.e. closed terms, the substi-
tutions for self and parameters can be defined by straightforward replacement
without taking into account possible name captures.

Rules (R-PREFIX) and (R-RECEIVE) respectively allow the reduction of the
prefix in a field selection and of the receiver object in a method call. Actually
these rules are never applicable with our syntactical restriction that paths cannot
be field selections (See Section 3.3.1), because this restriction ensures that paths
are always in normal form: a path is either an abstract value (self, parameter
and variable) or a concrete value. We keep nevertheless rules (R-PREFIX) and
(R-RECEIVE) in the semantics in order to be general enough for accepting an
extension with reducible paths.

3.5 Typing

The rules that decide if a program is well-formed are based on the concept of
type. A type is an abstract interpretation of a term: it is impossible to statically
know the exact result of evaluating a term but we can always approximate its
value by saying it belongs to a certain set, types are a means of describing these

5To be completely rigorous we should have written IT - t — w and IT  C' < C” instead of
t — uand C<C’.



CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

P (R-SELECT)

p-f—af new C(f =70).fi — v;

(R-PREFIX)

(R-F1ELD) - e
new C(f =7,t,t) — new C(f =7, u,t)

o v =new C(f =) cacC’ (deftm=t)e’’
(R-Carr) om(T@ =) — (UE\T]
t — t

R-LocaL
( )1et:T:tinu—>let:T:t'inu

(R-LET) -
let:T=vint — t[0 :=v]

Figure 3.10: Term reduction (¢ — u)

SCLE class C extends C' { d } c'aC”
(SC-EXTENDS) ol

SC-C
( LASS) CaC

Figure 3.11: Subclassing (C' <« C”)




3.5. TYPING 83

sets of values. There are two judgments that are related to types in our calculus:
a typing judgment I' - ¢ : T means that ¢ can be approximated by the type T,
and a subtyping judgment I' - T <: U means that type T represents a smaller
set of values than type U.

In our calculus the typing relation and the subtyping relation have mutually
recursive definitions. In an object-oriented calculus, it is natural that typing
depends on subtyping: for instance in order to check that a selection p.f is
well-typed, we check that the type of p is a subtype of a class type C such that
class C declares the field f. However, it is less common that subtyping depends
on typing, for instance it is not the case in F'J and in FGJ. In our calculus, it
comes from the fact that types syntactically depend on terms (more precisely
on paths). For instance, in order to check that a virtual type p.L is a subtype
of another type U, we usually need to find the more precise declaration of L
visible from p. We perform this operation by assigning a type T to p and finding
a super-type of T' that contains a declaration for L. This cyclicity among the
definitions is what makes the proof of soundness for virtual types so difficult.

The typing relations (typing and subtyping ) are summarized in Figures 3.13
and 3.14. They are parameterized by a typing context I'. A typing context (See
Definition 3.7) has the form I'y; 7 : T; U where T, denotes either the current
enclosing class C or the top-level context root, T denotes the parameters of the
current method with their declared types T, and U represents the types of the
visible local variables.

Definition 3.7 (Typing context)

Owner context I, = | root
Method context J = Tp;z:T
Full context r = T U

Most of the rules are straightforward. We concentrate our explanations on
the few points that we think could confuse the reader. First of all it is worth
noting that there is no typing rule for subsumption, that is, there is no rule
that allows to deduce that a term ¢ has type U under the assumptions that ¢
has type T and that T is a subtype of U. One common way of doing without
subsumption rule is to inline it when needed, another way is to make it an
admissible rule and that is what we do in our calculus (See Lemma A.1). By
definition, a rule is admissible in a system of inference rules if its conclusion
holds whenever its premises hold. The two ingredients that make subsumption
admissible is our general transitivity rule for subtyping (S-TRANS) and the fact
that each typing rule contains a subtyping premise for opening the type that
will be assigned. For instance, by one application of the rule (T-THIS) we can
directly deduce that this is an instance of all super-classes of the class where
it is used.

The rule for typing variables is standard when using the de Bruijn notation:
in a context U for local variables, the type of the variable n is the (n + 1)-th
element of the sequence U when starting from the right (for instance the type of
0 is the last element of the sequence). This type has to be lifted by an amplitude
that is equal to the number of types that follow it in the typing environment in
order to be still able to refer to variables that are defined before it in the typing
environment.



84 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

The rule (T-CALL) for method calls contains the essence of virtual types.
What is classical is that the arguments of the methods must conform to the de-
clared types of the parameters. What is less standard is that the declared types
of the parameters T must be reinterpreted in the context of the receiver object
p. This reinterpretation is expressed by substituting p for this in the types T,
what we note T[p]. Similarly, the type given to the method call corresponds to
a reinterpretation of the declared result type of the method.

When creating an instance of a class C in rule (T-NEW) we must check that
the values given to the fields of the instance conform to the declared bounds of
these fields. Once again we must reinterpret these bounds in the context of the
instance we are creating. Actually for checking this conformance we abstract
over the particular instance we are creating and place ourselves in a typing
context this : C. However we must be careful here because there are two typing
contexts in play: the context of the instance creation expression that is also the
one of the field values ¢ and the context that we created for the conformance
check. We perform the transition between both contexts by imposing that the
types of field values that will be considered for the conformance checks are
closed. Note that a closed type is not necessarily a class type, it can also be
a virtual type with a closed prefix, like new A(f = new B()).L. The rule (T-
NEW) also resorts to an auxiliary predicate for checking the completeness of
the instance that is being created. This predicate is defined in Figure 3.12.
Intuitively, the predicate isComplete(C, f) is true if all instances of the class C
that contain values for the fields f are complete. By complete, we mean that
all fields that are visible from C' are initialized in the instance (Condition 1),
that all methods that are visible from C are implemented in a superclass of C'
(Condition 2), and that all virtual types that are visible from C are assigned a
value in a superclass of C' (Condition 3). By definition, a member declaration
is visible from a class if it is contained in a superclass of this class.

Subtyping rules are very intuitive. Rules (S-CLASS) and (S-VIRTUAL) make
the subtyping relation reflexive. One may just wonder why rule (S-VIRTUAL)
needs premises. Amongst the premises of rule (S-VIRTUAL), we check that the
prefix p of the virtual type p.L is well-typed; we actually need this property
for proving Lemmas A.3 and A.4, which state that the free parameters and
variables appearing in a subtyping judgment are in the typing context. Rule
(S-EXTENDS) imports the subclass hierarchy into the subtyping relation. Rules
(S-Up) and (S-DowN) allow to approximate a virtual type by its lower or upper
bound. As for the return type of a function, these bounds are reinterpreted in
the context of the virtual type’s prefix by means of a substitution. Rules (S-
ALIAS-LEFT) and (S-ALIAS-RIGHT) translate the idea that a virtual type is
just an alias for the type it contains. They are very similar to rules (S-Up)
and (S-DOwN); actually, as far as the subtyping relation is concerned a type
valuation type L = T is treated like a type declaration type L >: T <: T.
Finally, we already mentioned the rule (S-TRANS) that makes the subtyping
rule transitive. In Section 3.7 we present a restricted version of this rule, we
call the resulting subtyping relation structured subtyping because it imposes a
good structure on the shape of derivations. This structure is then used to prove
crucial properties of the system ©.

6The attentive reader will have noticed that structured subtyping is actually already used
in rule (T-NEw).



3.6. WELL-FORMEDNESS 85

() VC', f,T. C<C"and (val f:T) e C" implies Ji. f;=f

(2)VC' ,m,z,T,T. C<C and (def m(T:T):T) € C’ implies
JA;t. C<Aand (defm=t)c A

(B)VC', L, Topt,U. C<C" and (type L >: T <: U) € C’ implies
JA,S. C<Aand (typeL=S5)€ A

isComplete(C, f)

Figure 3.12: Instance Completeness (isComplete(C, f))

We conclude this section with the description of some intuitive abbreviations
for typing contexts, which are used in definitions and proofs. If J is a judgment,
then

F J stands for  root; € €
this: C + J stands for C; e eb
U+ J stands for root; ¢; U F

~ <SS

3.6 Well-formedness

The definition of well-formed programs is based on the relations of type well-
formedness, member well-formedness and class well-formedness, which are sum-
marized in Figures 3.15, 3.16 and 3.17. These relations are themselves defined
in terms of the typing and subtyping relations of the previous section. The
inference rules are not of particular interest except for the premises that have
been added to prevent cycles in type declarations and class declarations. For
instance, when checking the well-formedness of a type declaration in rule (WF-
TvyPE-DEF) we check that all symbols that appear in the upper-bound T' of
the type symbol L are actually smaller than L with respect to the well-founded
relation < on symbols. We write this condition I(T") <mw { L } where I(T') rep-
resents the multiset of symbols contained in 7" and <,,,; the multiset extension
of <. Here is the formal definition of the interpretation function I(-).

Definition 3.8 (Multiset interpretation of paths and types)

We define the interpretation I(p) (resp. I(T')) of a path p (resp. a type T)
as the multiset of symbols that compose it. We write { } for the empty multiset,
{e1, - ,en } for the multiset composed of the elements ey, -+ ,e, and M;W My
for the union of two multisets My and M.

I(this,z,n,v) = {}

1(p.f) = Ip)w{f}
1C) = {C}
I(p.L) = Ip)w{L}

The discussion about the impact of the cyclicity checks on the soundness of
the type system is deferred until Section 3.2.7. For now, we are ready to define
what a well-formed program is.



86 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

I'=T; U
r=C;z:7; U N = |U] n<N
r-cCc<:S I'F Uy <: S
(T-THIS) ————— (T-VAR)
I' - this: S 'kn:S
o 'kp:C
I'=r,;z:T; U (val f:T)eC
p T, <:S _ 'k Tp)<: S
(T-PARM) — 78 (T-SELECT) 1 77 8
'kp:C (def m(z:T):T)eC
r-¢:T 'kE Tp <: S
(T-CaLL) ) — )
'k pm@=1t):5
f disjoint I'-%:U U closed
Vi (val f; : T) implies_this 1 C Fotruet U <: T
isComplete(C, f) r-cCc<:8S
(T-NEW) =

'tnewC(f=1t):5

r=r,; T
T'+¢:T Lo T,TF u:U 0¢tv(U) r-ul<:S

(T-LET) -
' let:T=tinu: S
Figure 3.13: Typing (I' - ¢: T)
class C extends C' { d }
5. S.E r-c <T
(5-Cuss) vt eo<o (5-ExTENDS) TFC<T
F'kp:C (type L >: Topy <:U) € C
.U 'k Up]<: S
(5-UP) TFplL<S
F'kp:C (type L>:T<:U)eC
'+ S<:T[p]
(S-Down)
' S<:plL
'kp:C T'kFp:C
(type L=T) e C (type L=T) e C
' Tp] <: S I' =S <:T[p]
(S-ALiAS-LEFT) (S-ALiAs-RIGHT)
F'kFpL<S '+ S<:plL
T'kFp:C r=T<:8
(S-ViRrTuaL) (type L >: Top <:U) € C (S-Traxs) ' S<:U
'k pL<:plL T'ET<U

Figure 3.14: Subtyping (I' H T <: U)



3.6. WELL-FORMEDNESS 87

'kEp:C
t L>1T,,<U)eC
(K-VIRTUAL) (type opt )

K-CLASS) ———
(K-CLass) v awr T FpLwr

Figure 3.15: Type Well-formedness (I' - T wr)

this:C FT WF  I(T) <muw { f}

WFEF-F -D
( teLD-DEF) CFvalf:T wr

this: C U WF IU) <mu {L}
Topt = T implies this: C =T WF and I(T) <pu { L}

(WF-TYPE-DEF)
C F type L >: Ty, <: U WF

this: C S WF  I(S) <pw { L}
CaC’  (type L >: Thy <:U) € C'
this: C '_struCt S <: U
Topt = T implies this : C' Fggpyer T <: S

C I type L=5 WF

(WF-TYPE-VAL)

this: C FT,T WF

(WF-METH-DEF) —
CFadetm(z:T): T WF

c«c’ (def m(z:T):T)eC’
C:T:T:ebt:T

WF-METH-VAL
( ) ClF defm=tWwF

Figure 3.16: Member Well-formedness (C - d WF)

Copt = C' implies C' < C C+dwr
class C extends C,p { d } WF

(WF-CLaAsS)

Figure 3.17: Class Well-formedness (D WF)



88 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

Definition 3.9 (Program well-formedness)
A program 11 is considered well-formed when all the following properties are
satisfied.

1. < is a well-founded relation that satisfies (VC, f. C < f) and (VC, L. C <
L).

2. All classes are well-formed: ¥ D. D € classesyy implies D WF.
3. The main term is well-typed in the empty context: 3T. F Il.main :T.

4. Unicity of method valuations: there is only one valuation of a method
visible from one particular class of the program.

(defm=t)eC
Vm,t,u,C,C". (defm=u)eC’ impliest =u and C =C’
Cac’

5. Unicity of type valuations: there is only one valuation of a virtual type
visible from one particular class of the program.

(typeL=T)eC
VLTUCC. (typeL=U)eC’ implies T=U and C = C’
cac’

Note that 4 ensures determinism of reduction and 5 is required for type
safety.

Separate compilation. The reader could wrongly infer that requiring the
existence of a well-founded relation on symbols forbids the possibility of sepa-
rate compilation. Actually we do not ask the programmer to explicitly give the
relation < in his program. We show on the following example how to imple-
ment the inference of such a relation with the additional constraint of separate
compilation.

class Object {}
class A {
type T <: Object
type U <: Object
}
class B extends A {
type T = this.U
}

We assume we compile both classes separately. The idea is to build < in-
crementally. After compilation of A, < is composed of the pairs (Object,T),
(Object,U), (A,T) and (A,U). After compilation of class B, < has been ex-
tended with the pairs (A, B), (B,T), (B,U) and (U,T). As we do not require <
to be a total order, when compiling class A nothing forces us to choose between
T < U and U < T, which would prevent further extensions of A, like the class
B if we had chosen T' < U.



3.7. STRUCTURED SUBTYPING 89

Refining the mechanism of symbol ordering. A global well-founded re-
lation on symbols is sometimes too restrictive. We illustrate this point with the
following example which looks perfectly valid 7 but which is rejected by our type
system because it generates the inconsistent set of constraints {U < T, T < U }.

class A {
type T
type U

}

class Bl extends A {
type T = this.U

}

class B2 extends A {
type U = this.T

}

To avoid cyclicity in type declarations the SCALA compiler locks a type
symbol when analyzing its bounds or the type it is an alias for. It does the same
when using its bounds or its value for the first time in a subtyping check. For
instance in our example, it locks the symbol 7" when analyzing the type this.U
in class By. The analysis of this type succeeds without using the locked symbol
T. At this point the lock on T is released. Then, the compiler locks U when
analyzing the type this.T in class Bs. Intuitively, this mechanism of locking
enjoys similar induction principle as our relation < because the set of unlocked
symbols reduces each time we follow the bound or the value of a virtual type. We
did not have time to formalize this mechanism for the calculus presented in this
chapter, but we developped a similar mechanism for Featherweight-Scala [10],
another SCALA calculus. Also, to simplify the formalization and the proofs we
prefer to restrict ourselves to our simple solution based on a global well-founded
relation.

3.7 Structured Subtyping

In rule (T-NEW), to check that the value associated with a field has a type
U; which conforms to the declared type T of the field, we have written this :
C Fstruer U; <: T instead of this : C' + U; <: T. The latter judgment is
an instance of the subtyping relation we have already presented; the former
is an instance of a restricted and more regular form of subtyping that we call
structured subtyping 8. In this section we give the definition of this relation,
then we explain the motivations behind its introduction, and finally we show on
examples that it actually corresponds to the typechecking steps performed by a
compiler.

3.7.1 Definition

The only difference between general subtyping and structured subtyping is that
with the latter we force in every application of the transitivity rule the interme-

Tt is actually a valid ScALA program.
8Tt has nothing to do with structural subtyping; what is structured here is the form of
subtyping derivations, not the way of comparing two types structurally.



90 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

diate type to be smaller, with respect to a type ordering <7, than the types at
both ends. Here is the formal definition.

Definition 3.10 (Structured typing and structured subtyping)

The inference rules for structured typing (T Fseruce t @ T) and structured
subtyping (T Fgiruesr T <: U) are obtained from the general ones by replacing
the (S-TRANS) subtyping rule with the following (S-TRANS-S) rule.

Fotruct 1 <: S T bFatruee S <:U S =<rT S<rU
T Fetruct I <:U

r
(S-TRANS-S)

In this definition, the ordering <7 on types is the natural extension to types
of the well-founded relation < on symbols. Here is its precise definition.

Definition 3.11 (Type ordering)
We define the ordering <1 on types as the multiset extension of the relation
=< on symbols via the interpretation function I(-):

(T) <mu 1U)
T <7 U

3.7.2 Motivations

The concept of structured subtyping emerged from our discussion of Section 3.2
about the subtleties behind the design of a safe subtyping relation in presence of
virtual types. By an inspection of several representative examples, we have pre-
sented structured subtyping as a safe definition of subtyping. Here, we want to
give more technical justifications for structured subtyping, essentially by show-
ing where it is used in the formal proof of soundness and by explaining how
it makes this proof possible or simplifies it. These additional justifications for
introducing structured subtyping are based on the following three observations.

Point 1. We need the property that sublyping implies subclassing in the empty
context.

In Section 3.2.1 we have already shown that a type system where subtyp-
ing does not imply subclassing is necessarily unsafe, by exhibiting a counter-
example. Here, we explain where and how this property is used in the proof.

An important part of the soundness proof consists in proving that every
well-typed term that is not a value is reducible (See Theorem A.29 [Progress]).
The proof of this property essentially relies on the fact that in an empty typing
context the restriction of subtyping to class types is equivalent to subclassing, i.e.
each time two class types are in a subtype relationship their corresponding classes
are in a subclass relationship. To see why, let us look at the case (T-SELECT) in
the progress proof (See page 123). In the hypotheses associated with this case
we have a well-typed field selection v.f where v is a value new A(f = 7), and we
want to show that the entire field selection v. f can be reduced to one of the v;’s.
By definition of typing for field selections, v has type C' where C' is the class
enclosing the declaration of the field f. This implies trivially that A is a subtype



3.7. STRUCTURED SUBTYPING 91

of C. By definition of typing for instance creations, v is complete, which means
that it provides a value v; for each field whose declaration is accessible from
class A through class inheritance. With the property that subtyping implies
subclassing in empty context, we can derive from the fact that A is a subtype
of C' that A is a subclass of C. Consequently, v provides a value v; for the field
f. We conclude that v.f reduces to v; by the rule (R-SELECT).

Point 2. Considering that sublyping implies subclassing in all contexts is not
generalizable.

It might be true that in our simple calculus the property that subtyping
implies subclassing in all contexts holds. However there is a counter-example
that shows that this property would not be true in a more evolved calculus where
types can be empty, namely a simple extension of our calculus with intersection
types. As we want our soundness proof to be general enough, we do not want
to prove a theorem that would be trivially false in some natural extension. The
idea behind the counter-example is to apply the transitivity rule in a context
that is not instantiable. Assume A and B are two unrelated classes that assign
different and contradictory values to a virtual type T': let us say String for the
former and Int for the later.

class A { type T = String }
class B { type T = Int }

Now consider the context I' = this : A& B where A & B is an intersection
type composed of types A and B. By applying the subtyping rules of Figure 3.14
we get the following subtyping derivation.

(this: A& B) el (this: A& B) el
T-T ' ' T-T
(T8 —F hie A TF this 3 L)
type T' = Stri €A typeT = Int) € B
(S-ALIAS-RIGHT) (type ring) (type nt) (S-ALIAS-LEFT)
(ST ) I' = String <: this.T I' = this.T <: Int
-TRANS

I' - String <: Int

We see that in an inconsistent typing environment, namely this : A& B,
we have been able to derive that two unrelated classes, String and Int, are in
the subtype relationship. Note that it does not imply unsoundness of the type
system, it just says that if we provide a witness of the type A& B, which is
impossible in a calculus with single inheritance, then String can be considered
a subtype of Int . Of course, if the same counter-example was reproducible
in an empty context, we would have a problem of type safety, as explained in
Section 3.2.1.

The lesson of this observation is that we are not going to prove the property
of Point 1 in an arbitrary typing context, but only in the empty context.

9By analogy with logic formalisms, the ability of deriving false deductions from inconsistent
hypotheses does not imply inconsistency of the formalism.



92 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

Point 3. Structured subtyping has the expected property of Point 1 and coin-
cides with general subtyping in the empty context.

The previous point has shown it is not a good idea to prove the property
that subtyping implies subclassing in all contexts because it would not be gener-
alizable to natural extensions of our calculus. So, we want to prove the property
just in the empty context. We take an indirect approach that consists in defining
a new subtyping relation, namely structured subtyping, that trivially satisfies
the first requirement, actually in an arbitrary context (See Lemma A.21), and
that coincides with the general subtyping relation in the empty context (See
Lemmas A.28 and A.23). The difficult part in all these properties consists in
showing that a subtyping derivation can be structured in the empty context
(Lemma A.28). This result is a corollary of the most interesting lemma of this
work which states that the following rule is an admissible rule of structured
subtyping (See Lemma A.27).

Fetruct T'<: S Fetruct S <:U
'_struct T <: U

Compared to the transitivity rule (S-TRANS-S) of structured subtyping, we
observe that this rule does not impose any special condition on the intermediate
type S; in compensation, all typing contexts must be empty.

In conclusion, by limiting the situations in which a transitivity step can
be performed structured subtyping imposes a structure on the shape of typing
derivations. This structure can then be exploited to prove important properties
of the calculus, whose most important are Lemma A.21 (each time two class
types are in a subtype relationship their corresponding classes are in a subclass
relationship), and the strengthening lemma (Lemma A.24).

3.7.3 Implementation

From the previous section we could infer that structured subtyping is just a
proof technique for demonstrating properties on the general subtyping relation.
However, structured subtyping is more than a proof technique because it is also
used in the definition of typing rules, namely in rules (T-New) and (WF-TYPE-
VaL). As structured subtyping is a restricted version of general subtyping, it is
legitimate to wonder if its use in the typing rules does not reduce the expres-
siveness of the calculus. Our answer to this question is that, in practice, this is
not the case. More precisely, we show in this section that a natural implemen-
tation of a type-checker for our calculus would generate only applications of the
restricted transitivity rule for subtyping. To do that we start by describing the
algorithm we have in mind '°.

Subtyping plays two roles. In order to convince ourselves that only the
restricted transitivity rule is used in a type-checking algorithm, it is sufficient
to imagine all situations where subtyping is needed. If we do that we will see
that subtyping plays in fact two different roles.

Both roles are best illustrated by considering the typing rule (T-CALL-ALG)
below, which is the algorithmic version of rule (T-CALL) for typing method

10We actually wrote a type-checker for our calculus.



3.7. STRUCTURED SUBTYPING 93

calls. This rule makes use of the judgments I' Fag t: T and I' ko T <: U,
which are the algorithmic equivalents of the standard typing and subtyping
judgments. When checking that the type U of the prefix p is a subtype of the
class C' that contains the declaration of the method m, subtyping is used to
express a mechanism of lookup. When checking that the types U of the actual
arguments of the method call conform to the expected types T[p] of the method,
subtyping is used to check the conformance between two types that are already
known at that point of the analysis.

I'Fagp:U I‘i—alg_U<:C (gefTrL(f:T):T)EC
I'Fag t:U I' fag U <:Tp)
I Farg pm(T =1): T[p)

(T-CALL-ALG)

In the first case, we know a type and we want to find a supertype that satis-
fies a certain predicate (being a class type that contains a particular member);
in the second case we have two types and we want to verify that one is more
precise than the other. This difference of role is expressed with a different im-
plementation for each kind of algorithmic subtyping: the algorithmic subtyping
premise I' Fa, T' <: C is implemented as an instance of a lookup relation
I' Fiookup T <: U, while the algorithmic subtyping premise I' ka1, U <: T'p] is
implemented as an instance of another relation I' Fepecx T <: U. The relation
I' Fiooxup T <: U is typically implemented as a function that takes a type T’
and returns an optional type U such that T is a subtype of U. The relation
' Feneex T <: U is typically implemented as a function that takes two types,
T and U, and that returns the boolean value TRUE if T is a subtype of U and
FALSE otherwise.

Now, we informally explain how I' Fieoup T <: U and I' Fepecx 1" <: U can
be implemented just with structured subtyping, i.e. using only the restricted
transitivity rule (S-TRANS-S). The implementations of both relations are more
easily formulated with the concepts of type expansion and type lowering.

Type expansion. A type expansion step consists in taking the most direct
supertype of a given type. For instance, if the direct superclass of a class C
is another class C’, the one-step expansion of the class type C is the class
type C’. And the one-step expansion of a virtual type p.L is obtained either
by taking the value attached to this type in the current typing context or the
declared bound of the type otherwise. More formally, we say that T expands
to U in the context I', and we write I' - T = U, if the subtyping judgment
I' B T <: U can be derived by successive applications of the rules (S-CLASS),
(S-VIRTUAL), (S-EXTENDS), (S-UP) and (S-ALIAS-LEFT). Such a relation can
be easily formalized with inference rules; as an example we just give one rule,
namely the rule that lets us expand a virtual type using its bound.

I'tFagp:C r+c=¢ (type L >: T, <:U) € C'
L+Up =58

(E-Up) =
'ktplL—S




94 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

Type lowering. A type lowering step consists in taking the most direct sub-
type of a given type. Similarly to type expansion, type lowering can be char-
acterized by subtyping derivations that correspond to successive applications
of the rules (S-CLASS), (S-VIRTUAL), (S-DOWN) and (S-ALIAS-RIGHT). Note
that a class type cannot be lowered further since the rule (S-EXTENDS) is not

part of the rules that can be used to lower a type. We write I' - U &S T for
denoting that T can be lowered to U. As for type expansion, such a relation
can be formalized by a set of inference rules; as an example we just give the rule
that lets us lower a virtual type using a type alias.

Phagp:C TFCSC (typeL=T)ecC
L+ STl

(L-Av1As) =
'-S«—plL

Lookup implementation. A lookup can be performed using only type ex-
pansion: from a given type T, we expand it until reaching a type U that satisfies
a given predicate.

r-7T5U0
T l_lookup T<:U

(Lookup)

Conformance check implementation. Checking that a type T is more pre-
cise than a type U can be performed by using type expansion and type lowering;:
more precisely, we expand type T until we reach type U. If this fails we compute
a type U’ through a one-step type lowering from U and we expand type T until
we reach type U’, etc. At the end, either we found a type S such that T expands
to S and U can be lowered to S, or we failed.

rF7T=58s T FSSU
Fl_cheCkT<ZU

(CONFORMANCE)

The following lemma states that type expansion and type lowering are in-
stances of structured subtyping, and that both relations decrease the measure
on types.

Lemma 3.1 (Type expansion and type lowering)

THT=5U  implies T Fagruee T<:U and (U=T or U <7 T)
rFUST implies T Fgpruet U<:T and (U=T orU <7 T)

Proof: The proof that type expansion and type lowering correspond to struc-
tured subtyping is trivial since their respective definitions forbid the use of the
transitivity rule. The fact that both relations decrease the measure on types
can be shown by an easy induction on the relations.
Qed.
We can now prove our initial claim that the subtyping steps performed by a
natural type-checking algorithm are all instances of structured subtyping.



3.7. STRUCTURED SUBTYPING 95

Lemma 3.2 (Algorithmic rules use structured subtyping)

I' Fiookp T <: U implies T Fggruee T <: U
I' Fepear T'<: U implies T Fggpuer T <2 U

Proof: The proof is easy assuming the previous lemma. For the lookup relation,
by definition I' Fioexup I' <: U implies that I' = T = U, and we conclude
directly by Lemma 3.1. For the conformance relation, by definition I" F peck
T <:U implies that T + T =% S and T - S <<% U. We distinguish then two
cases. Either the intermediate type S is equal to T (resp. to U) and in this
case we conclude using the property of Lemma 3.1 on type lowering (resp. type
expansion). Or S is different from both 7" and U. By the previous lemma, S
is also smaller than both 7" and U with respect to the type ordering <, so we
can apply the restricted rule (S-TRANS-S) to conclude that T is a subtype of
U.

Qed.

Summary. What has been explained until now in this section can be sum-
marized by the diagrams of Figure 3.18. The diagram presents the two roles
of subtyping with their implementation: a left-to-right arrow represents a type
expansion and a right-to-left arrow represents a type lowering. The fact that
arrows are always descending emphasizes the property that both relations de-
crease the measure on types.

Lookup Conformance check

T T U

e S IR N2

U S

Figure 3.18: Roles of subtyping in a type-checker

Example. Let us illustrate all this development with a simple example. In
the following example, if we want to verify that type alias type U = B is well-
formed, we must check that, in the context of class C, type B is a subtype of
this.T.

class A
class B extends A
class C {
type T
type U <: this.T
type T =
type U

1]
o =



96 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

Type B can be expanded to A using rule (S-EXTENDS) followed by rule (S-
CLASS).

S-C
class Bextends A{ } ( LAsS) this: C Fgpruet A <A

this: C Fgiruet B < A

(S-EXTENDS)

Type this.T can be lowered to type A using rule (S-AL1as-RIGHT) followed by
rule (S-CLASS).

S-C
( LASS) this: C Fgiruet A <: A

this: C Fgiruct this: C (type T = A)eC
this: C Fgiruct A <:this.T

(S-AL1As-RIGHT)

At this point we would like to apply rule (S-TRANS-S) to derive that B is a
subtype of this.T":

A< B A <7 this.T
this : C Fgipruct B<: A this : C Fatpuct A <: this.T

(S-TrANS-S) - -
this : C Fgiruer B <: this.T

We still need to check that A <7 B and A <7 this.T. We already said that, by
construction, expanding or lowering a type always results in a smaller type w.r.t.
<7. We observe that it is actually the case in this example. We have A <p B
since B is a subclass of A and since well-formedness of class declarations (rule
WF-CLaAsS) implies A < B. We have A <1 this.T because the well-formedness
of the type alias type T'= A (rule WF-TYPE-VAL) enforces I(A) <mwu {T}
(note also that according to Point 1 of Definition 3.9, it is always the case that
A<T).

Conclusion. The main idea we want to convey in this section is that it is
not natural for a type-checker to use the full transitivity rule. The restricted
transitivity rule that we propose forbids absurd actions, like for instance pass-
ing through a virtual type in order to show that a class type is a subtype of
another class type. The presence of structured subtyping in the general typing
rules, namely in rules (T-NEW) and (WF-TYPE-VAL) remains to be justified.
Actually we have no good reasons here, apart that it makes the proofs of ad-
missibility of transitivity simpler and that it does not diminish in practice the
expressiveness of the calculus.

3.8 Compatibility of Bounds

Virtual types can be declared both with a lower-bound and an upper-bound. In
this section we examine what properties of these bounds are needed for proving
the soundness of our type system. We also discuss two alternative ways of
enforcing these properties in the type system and we justify our choice of one
of them.



3.8. COMPATIBILITY OF BOUNDS 97

For deciding what relation should statically exist between the lower-bound
and the upper-bound of a virtual type we adopt a pragmatic approach; we start
writing the proof with an open mind and see what hypotheses are needed to
complete it. In the way we organize our proof, the interaction between an upper-
bound and the corresponding lower-bound appears in the case (S-DowN, S-UP)
of the admissibility of transitivity for structured subtyping proof (Lemma A.27,
page 119). In this case we must show that a type T is a subtype of a type U
under the following set of hypotheses.

Fstruct p: C (type L>T <: U’) eC
'_struct T < T'[P] '_struct U/ [p] <:U

For proving our goal there are now two natural possibilities we can think of.
The first one consists in requiring in the well-formedness of the type declaration
of L that this : C' Fgiruer 17 <: U’'. With such an assumption we can apply
a substitution lemma in order to obtain Fgiruee T7[p] <: U’[p]. Then, T'[p]
and U’[p] being smaller that p.L w.r.t. the type ordering <7 we can apply
several times the induction hypothesis and prove our goal Fgiruet T <: U. The
second possibility consists in requiring for each class that is used for creating
an instance the existence of a type valuation for each visible type declaration; if
such type valuation type L = S exists in a class A, its well-formedness implies
that this : A Fgiruer 77 <: S and this : A bgiruer S <: U'. By applying
the substitution lemma and the induction hypothesis we are able to finish the
proof of our goal as we did with the first possibility. Let us examine now the
difference between these two approaches.

Pessimistic approach. In the first case we check explicitly for the compat-
ibility between bounds at the type declaration site. The advantage of this
approach is that it allows an early detection of classes that are impossible to
instantiate due to an inconsistency in the bounds of one of their type members.
We illustrate this scenario with the following example where it is impossible to
assign a value to T because there is no type both supertype of B and subtype
of A.

class B
class A extends B
class C {

type T >: B <: A
}

This is the approach adopted by the SCALA compiler. What is important is
to prevent the existence of a path expression p of type C. If such an expression
exists, we can deduce that B is a subtype of p.T and that p.T is a subtype of
A, and according to the second observation of Section 3.2.1, such a situation
is unsafe. Note also that such an expression, namely null, was at the basis of
the SCALA compiler bug explained in Section 1.1 of the introductory chapter.
Rejecting totally the class C, as the SCALA compiler does, is a rough but efficient
means of achieving the goal that such an expression p cannot exist.

Another advantage of this approach is that, in principle, it is not necessary
to forbid the instantiation of classes with abstract type members. The reason



98 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

is that the compiler can always insert a type valuation when one is missing
by choosing either the declared lower-bound or the declared upper-bound. This
type valuation would be automatically well-formed since the bounds are compat-
ible. Note that the SCALA compiler does not implement this optimization. The
reason is that SCALA implements F-bounded polymorphism [8], i.e. it allows
the bound of a type member T to depend of itself, like in type T <: List[T].
By assigning its bound to the type member T, we would end up with a recursive
type definition type T = List[T]. In principle, recursive types are not prob-
lematic, but they would certainly complicate the type system, the arguments
for its soundness and the design of a terminating type-checking algorithm.

Optimistic approach. In the second approach we also check for the com-
patibility between bounds but we do it indirectly by supplying a value for the
virtual type. As the value must be both a subtype of the upper-bound and
a supertype of the lower-bound the compatibility between the bounds is auto-
matically enforced. The advantage of such a solution is that it makes the type
system more expressive: there are programs that cannot be typed with the first
approach but that can be typed with the second one. The following program
is an example of such a scenario. It reuses the classes A and B of the previous
example. What is important to note is that it is impossible to check for compat-
ibility of the bounds of T" in class C because they are both abstract. Actually
we do not care about the compatibility of bounds at this point because class
C has still abstract members and cannot be instantiated. Bounds must only
be proved compatible in concrete classes, as in class D where all type members
have been assigned a value. The compatibility of bounds L (lower) and U (up-
per) is indirectly enforced by the fact that the value A assigned to 7' is both a
subtype of U and a supertype of L.

class C {
type L
type U
type T >: Low <: Up
X
class D extends C {
type L = A
type U =B
type T = A
}

In our type system we chose the second approach that enforces bound com-
patibility indirectly through the requirement that no instantiated class can have
abstract type members (See premise isComplete(C, f) in rule (T-NEw)). The
reason of this choice is that it makes the type system more expressive, as we just
showed. But taking the other approach would require only a minor modification
of our proof; the beginning of this section informally explains what proof steps
must be taken in this case.

Finally it is interesting to remark that there is no concept of type equality in
our type system, we only have subtyping. Actually a type valuation type L = T'
is used in the subtyping rules as an additional declaration of L with lower-bound
and upper-bound both equal to T'. From this consideration we could design a



3.9. SOUNDNESS PROOF 99

type system where type valuations would be replaced with the possibility of
overriding the bounds of a virtual type in a subclass one or more times. Once
again we did not make this design choice because it was not consistent with our
treatment of methods where overriding is forbidden.

3.9 Soundness Proof

Following a now well-established approach [25] for proving type safety of calculi
with small-step operational semantics we decompose our proof of soundness into
two lemmas: progress and subject-reduction. Progress ensures that a well-typed
term that is not a value is reducible, subject-reduction ensures that the type
of a term is preserved by reduction. All lemmas and proofs are collected in
Appendix A. Every lemma is immediately followed by its proof. Furthermore
the proof of a lemma only refers to lemmas that have been previously defined
(and proved).

3.10 Conclusion

3.10.1 Summary and Future Work

In this chapter we present a completely formal, although not machine-checked,
proof of soundness for a simple extension of FJ with virtual types. Contrary
to the classical representation of programs as abstract syntax trees, our proof is
based on a more abstract representation of programs as sets of functions over
symbols; this representation is more appropriate to the mechanization of the
proof in a proof assistant. We identify an interesting example that shows that
a cyclicity between type declarations may lead to a subtyping relation which
is no longer consistent with the class hierarchy; this breaks type safety. Our
solution to this problem is to impose the existence of a global well-founded
relation on symbols which is consistent with type and class declarations. We
also define a restricted subtyping relation, called structured subtyping, which
prevents absurd uses of the rule of transitivity of subtyping. This relation makes
proofs simpler and is shown equivalent to the general subtyping relation in the
empty typing context.

To our knowledge, this work represents the first completely formal argument
in favor of the soundness of virtual types. However, it cannot be considered as
a proof of soundness of SCALA virtual types, because in this language, virtual
types are used in a more general setting. In order to generalize our proof to
the use of virtual types in SCALA, we would have to consider the following
extensions.

Reducible paths. First, we must release the limitation that virtual types can
only be selected on irreducible terms. This forbids interesting examples where a
type is selected on a filed member. For instance, suppose we have the following
class ListModule which represents the lists of integers as an abstract data type.

class ListModule {
type T
def head(xs: this.T): Int



100 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

def tail(xs: this.T): this.T

def isEmpty(xs: this.T): Boolean

def nil(): this.T

def cons(x: Int, xs: this.T): this.T
3

In this class, the abstract type T is the type of integer lists, the abstract method
head takes as input a list, i.e. an element of this.T, and returns the first element
of this list, etc. Suppose also we have several different implementations of a list
module. Later, we may want to implement a sort function that is not bound to
a particular list module implementation. Parameterizing the sort function by a
list module implementation can be achieved by enclosing the function sort in a
class Sort that declares a field 1m of type ListModule, as shown below. In this
case, both the argument type and the return type of the method sort are the
selection of a type member T on the field this.1lm.

class Sort {

val 1lm: ListModule

def sort(xs: this.Im.T): this.Im.T = ...
3

Having reducible terms embedded inside types complicates the type system.
With sufficient conditions on the use of field symbols we think it is possible to
prove a lemma that states that typing derivations can be normalized, i.e. trans-
formed into equivalent derivations that do no longer contain reducible terms
inside types. After this normalization we could in principle apply the proof
techniques that we develop in our proof.

Class types with refinements The types of our calculus are not rich enough
to express parametric polymorphism. We are able to translate the type param-
eter X of a class C' by a virtual type declaration, but it is of limited interest if
we do not extend at the same time the syntax of types so that we can speak
of the value of X in an occurrence of a C class type. In SCALA such types are
written C{type X >: T <: U }, they represent all instances x of class C such
that the value of X in z is both a supertype of T" and a subtype of U.

Here we extend the syntax of types so that class types can now contain
constraints on virtual types. We call the resulting types class types with refine-
ments.

Constraint R = type L >: Tope <: U
Type T n= C{R} | p.L

New rules must be added to deal with class types with refinements. In
Figure 3.19, we present a set of natural typing and subtyping rules. We do not
know exactly how to extend the current proof for dealing with refinements in
class types, in particular it is not clear how to define the interpretation function
I(+) for class types with refinements.

Inner classes. Contrary to our calculus, SCALA has inner classes. Unfortu-
nately, the concepts of inner classes and virtual types are not orthogonal. A
detailed explanation of their interaction and the description of a static analysis



3.10. CONCLUSION 101

C<D for all (type L >: Top <: U) eR,
Lpy S,C{R} - 0.L < U1t and
Topt = T implies T',,; S,C{R} - T1' <: 0.L

Iy S +F C{R}<:D{R}

(S-EXTENDS)

F'kp:C{R} B
(type L >: Topy <:U) € R
— r-uv<=>s
(S-Rer-LbrT) TFpL<:S
I'p:C{R} B
(type L>:T <:U) € R
r-sS<rT
(S-REF-RIGHT)
'k S<:plL

(as before)
(T-NEw) —
I'FnewC(f=t):C{}

Figure 3.19: Rules for class types with refinements

can be found in [3]. Here we just give an idea of the kind of mechanism that is
needed to typecheck virtual types in the presence of inner classes. To illustrate
this we consider a SCALA version of the example of Section 1.2.1.4 augmented
with a type member T in class A and a field x in class X.

abstract class A {
type T <: Object
abstract class X {
val outerX = A.this
val x: T // T = A.this.T = this.outerX.T
}
}
class B extends A {
type T = String
class Y extends X {
val outerY = B.this
val x = "foo"
}
}

The code above and in particular the assignment of field x in class Y is
well-typed. This might be a bit surprising because the field x is declared in
class X with the type T and T is an abstract type member of class A. The exact
value of T is not known, at least not in class X. So, how could one assign "foo"
to x in one of its subclasses? The answer comes from the observation we made
in Section 1.2.1.4: for all instances of class Y, the fields outerX and outerY
hold the same value. The field x is declared with the type T. In class X, T is a
shorthand for A.this.T and by definition A.this is equal to this.outerX,so T



102 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

is equal to this.outerX.T. As for any instance of Y, outerX is equal to outeryY,
we conclude that in class Y, the field x has the type this.outerY.T which is
obviously equal to String. The assignment of "foo" to x in class Y is therefore
well-typed.

This example illustrates the fact that typing virtual types in the presence
of inner classes requires some kind of alias analysis on outer fields. In this
example, it is possible to establish that x has the type String in class Y only
because it was possible to establish that, for any instance of Y, the fields outerX
and outerY hold the same value. Without that information, one would only
know that x has the type T and that T is bound by Object.

3.10.2 Evaluation Criteria

For evaluating our calculus with virtual types, we consider three criteria that
we think are the most important for a type system: expressiveness, safety and
decidability.

The expressiveness of a type system is its ability to accept non-trivial pro-
grams. This property cannot be proved formally because there is no formal
definition of what a non-trivial program is. The easiest way of gaining confi-
dence in the expressiveness of a type system is to write a type-checker whose
implementation follows closely the typing rules and to use it for testing some
programs examples. However this is not completely satisfactory because it can
happen that, due to a bug in its implementation, the type-checker accepts a
program that is actually ill-typed. A simple solution to this problem consists in
having the type-checker generate formal typing proofs for the programs it ac-
cepts. A standard type-checker either says Yes if it accepts the input program
or No if it rejects it; in the latter case it also signals the violated typing rule. In-
stead of simply saying Yes, a type-checker that generates typing proofs returns
also a formal proof that the input program is actually well-typed; such a proof
can then be checked by a proof assistant. This approach requires to instrument
all analysis functions of the type-checker, so that they additionally build proof
trees. Unfortunately, we had no time to write a typing-proof generator for the
calculus presented in this chapter but we applied successfully the method on
another calculus which formalizes Scala. More details can be found in [11]. Fi-
nally, note that expressiveness must not be confused with Turing-completeness.
Turing-completeness means that the calculus is sufficient to encode Turing ma-
chines, but it says nothing on how easy it is to write interesting examples in a
readable and compact way.

By definition, a type system is safe if all the programs that are accepted
execute correctly. For instance, it cannot happen that, during the execution
of an accepted program, a method call is impossible to resolve because the
method is not present in the receiver object. The property of safety can be
proved formally and we actually proved it for our calculus.

A type system is decidable if the set of programs it accepts is computable
by an algorithm, i.e. there must exist an algorithm that terminates with Yes if
the input program is accepted by the type system and that terminates with No
otherwise. Decidability is a property that can be proved formally. It is of course
a good idea to have a decidable type system, but in general it is a mistake to try
to prove type safety directly on the decidable type system. It is often necessary
to find a more general type system, maybe undecidable, but on which proofs



3.10. CONCLUSION 103

by induction can be made. This is the same idea as generalizing a theorem in
order to make a proof by induction succeed.

Now we can estimate the value our calculus with respect to these three
criteria. The weak point of our calculus is definitely its expressiveness. It would
become much more expressive if we could extend it with the missing features
previously presented: reducible paths, class types with refinements and inner
classes. The strong point of our calculus is to have a rigorous proof of safety.
Finally, we conjecture that the type system is decidable. In order to prove
this statement we would need to formalize the typing algorithm that we have
presented in Section 3.7.3 and show that it is equivalent to the typing rules of
the calculus.

3.10.3 Related Work

Several works aim at formalizing virtual types. Here is a short overview of these
works.

In [18] the authors present some foundations for virtual types. They model
objects and classes containing type members in a typed lambda-calculus which
is a combination of well-understood and sound features, namely subtyping, type
operators, fixed points, dependent functions and dependent records. The au-
thors believe that the interaction between these features should not break type
safety, but give no proof. They have no mechanisms similar to ours for prevent-
ing cycles in the graph of type symbols and for restricting the application of the
transitivity rule. In our calculus such mechanisms are used for proving some
properties that are crucial for type safety. However, it does not mean their type
system is unsound because it could be that these properties are satisfied for
other reasons or simply that their calculus is not expressive enough to encode
our counter-examples.

The title of [22] is "Virtual Types are Statically Safe". The paper is a bit
disappointing in this regard because it only contains a syntax and a set of typing
rules for a calculus with virtual types; the author does not try to formally state
nor prove a soundness theorem, only informal arguments are given in favor of
type safety. We think the title must be understood in the context of a time
where the current belief was that it was not possible to design a type system
for virtual types that is both sound and static. The presented calculus is close
to ours, in particular it has the restriction that virtual types are only selected
on the current instance of a class. In our calculus, we have a similar restriction:
virtual types are only selected on terms that are not reducible, namely variables,
parameters, values and the current instance.

In [20] the authors present v-OBJ, a calculus of objects with inner classes,
multiple inheritance and type fields, which is far more general than the one
we use for our proof of virtual types. They completely formalize its semantics
and type system, and present a proof sketch of its soundness. v-OBJ is indeed a
good candidate as a core calculus for SCALA and a good argument in favor of the
soundness of SCALA and of virtual types in general. However, there are small
points where v-0BJ fails to be the ultimate answer to these questions. There are
two main problems. First, »-0BJ has a syntax which is completely different from
ScALA. For instance, v-OBJ has no primitive concept of class and represents
a program as a term, rather than as a set of classes, like ScALA. The paper
informally describes how to encode the main features of SCALA into v-0BJ. It



104 CHAPTER 3. A SOUNDNESS PROOF OF VIRTUAL TYPES

is proposed to encode a class by two things: a type declaration and a class
template declaration. Since both declarations include the complete signature
of the original class, such an encoding is necessarily exponential in the depth
of the class nesting. The complexity of the encoding, the complexity of the
v-0BJ syntax and the complexity of the typing rules make that it is unclear
if the result of encoding a valid SCALA program is still a valid v-OBJ term; it
is actually not feasible to manually encode and typecheck even trivial SCALA
programs. Since no type-checker has ever been implemented for v-0BJ, contrary
to our calculus, the question of the existence of such a type-preserving encoding
is still open. Our calculus does not suffer this problem since it is almost a
syntactical subset of SCALA. Furthermore, our calculus shares with SCALA the
intuitive representation of a class as a fixed entity that can be consulted but
never modified during evaluation. Since, in the v-OBJ encoding, classes are
embedded in terms, they may potentially be rewritten and even copied during
evaluation. The second problem of v-0BJ is the degree of formalization of its
proof of soundness. Contrary to our case, mechanizing the soundness proof of
v-OBJ is not conceivable in the short term.

Our main source of inspiration for designing the type system and finding
the intermediate lemmas of the proof has been [9]. The authors present a proof
of soundness for a lambda-calculus with dependent types, subtyping and late-
bound overloading in a very rigorous and didactic style. They identify and
solve the same problem of cyclicity between definitions we have in our calculus,
namely having the typing relation depend on subtyping and subtyping depend
on typing. It is not surprising since virtual types are a kind of dependent types:
they depend on the object on which they are selected.

In [15], the authors prove the soundness of a calculus with virtual classes
called vc. Virtual classes are classes that can be defined in a class and over-
ridden in a subclass, they form the basis of the programming language GBETA.
Overriding classes automatically inherit from the overridden classes. vc’s virtual
classes and our virtual types are not directly comparable. The main difference
is that virtual types eventually receive a type value, whereas virtual classes stay
open to future extensions. It means that no assumption can ever be made on
the exact value of a virtual class, which limits the expressiveness of the calculus.
The language GBETA has the concept of final-binding for classes: a final class
cannot, be extended further. Such a mechanism is similar to the type assign-
ments of our formalism. Unfortunaly, final-bindings for virtual classes are not
part of the vc calculus.

In [6, 7], the authors present a safe solution to encode a particular and in-
teresting use of virtual types, namely the possibility of extending several classes
that are mutually recursive, in parallel. The solution consists in defining groups
of classes and adapting the treatment of class parameters accordingly. This
work is not directly comparable to ours because it imposes strong constraints
on the way a virtual type can be used. These constraints are necessary to let
the authors interpret virtual types as type parameters of classes.



Appendix A

Complete Proof of Soundness

A.1 Miscellaneous

Lemma A.1 (Admissibility of subsumption) I' - ¢ : T andT' - T <: U
implies ' - t: U.

Proof: By caseson I" - ¢ : T by applying rule (S-TRANS) each time. We show
just one case.
Case (T-THi1s). The hypotheses are:

t=this I'=C;z:T;U T+HC<:T

1. By rule (S-TRANS), ' F C<:Tand T'F T <: U impliesT" + C <: U.
2. We conclude with rule (T-THIs).
Qed.
Lemma A.2 (Self in self substitution)
1. this € q[p| implies this € p.
2. this € T[p] implies this € p.

Proof: By mutual induction on ¢ and 7.
Case (THis). The hypothesis is: | ¢ = this

1. ¢[p] = this[p] = p.

2. By hypothesis this € g[p], so this € p.

Case (ParaM). The hypothesisis: | g==

1. ¢[p] = z[p| = =.

2. By hypothesis this € ¢[p], so this € z, which is false.

Case (VAR). Similar to case (PARAM).

Case (SELECT). The hypothesisis: | ¢=¢'.f

105



106 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

L qlp] = ¢"-flpl = ¢'[p].f.
2. this € ¢[p].f implies this € ¢'[p].

3. By (IH), this € p.

Case (VALUE). The hypothesisis: | g=wv

1. g[p] = v[p] = v.

2. By hypothesis this € ¢[p], so this € v, which is false.

Case (CLASSTYPE). Similar to case (PARAM).
Case (VIRTUALTYPE). Similar to case (SELECT).

Lemma A.3 (Free parameters are in the context)
1. To; T:T; U & t:T implies fp(t,T) C {T}.
2.T,;7:T; UF T <:U implies fp(T,U) C {7 }.

8. T, T:T; UF T WrF implies fp(T) C {T}.

Proof: Property 1 and 2 by mutual induction on the typing and subtyping
relations using when necessary that fp(7'7%) = fp(T'). Property 3 is proved by
cases on the kinding relation using Property 1.

Qed.

Lemma A.4 (Free variables are in the context)

1. Dy U & t: T implies Vk € fo(t, T). k < |U|.

2. Ty Uk T <:U implies Vk € fo(T,U). k < |U]|.

8. Ty U =T WF implies Vk € fu(T). k < |U|.
Proof: We prove the more general lemma

1. Dy U & t: T implies Vd < |U|. Yk € fva(t,T). k < |U| — d.

2. Typ; U = T <: U implies Vd < [U|. Vk € fvy(T,U). k < |U| — d.

by mutual induction on I',,,; U F t: T and I',,,; U F T <: U, and then we take
d = 0. Property 3 is proved by cases on the kinding relation using Property 1.

Case (T-THis). The hypotheses are
t=this I,=C;z:T T,, UFC<:T

1. Let d < |U].
2. fvg(t) = fvg(this) = 0, so Vk € fvy(t). k < |U| — d.
3. By (IH), I'y,; U = C <: T implies Vk € fvg(T). k < |U| — d.



A.1. MISCELLANEOUS 107

Case (T-PArRAM). Similar to case (T-THIS).
Case (T-VAR). The hypotheses are

t=n N = |U| n<N T U+ U(N_l_n)TnJrl <:T

1. Let d <|U]|.
2. By (IH), T'yn; U F Un—1-n)1" ™! <: T implies Vk € fvq(T). k < |U].
3. We reason by cases on n and d.
Case (n < d).
(a) fvq(t) = fvg(n) = 0.
(b) Yk €. k< |U|—d.
Case (n > d).
(a) fvq(t) =fvg(n) ={n—-d}.

(b) k € fvq(t) implies k =n — d.
(¢) N =|U| and n < N implies n — d < |U]| — d.

Case (T-SELECT). The hypotheses are
t=pf Tp; Uk p:C (valf:S)eC T, UF Slp|<:T

1. Let d < |U]|.

2. fvd(t) = de(p.f) = de(p).

3. By (IH), I'yy; U F p: C implies Vk € fvy(p). k < |U| —d, so Vk €
fva(t). k < |U| —d.

4. By (IH), Ty,; U = S[p] <: T implies Yk € fvy(T). k < |U| — d.

Case (T-CaLL). The hypotheses are
t=pm(@T =1 D[pn; UF p:C (def m(

T

S)

:S)edC
T

1. Let d < |U]|.

2. fvg(t) = fvg(p.m(T = 1)) = fva(p) U fvy(t).

3. By IH), T',,; U F p: C implies V& € fvy(p). k < |U| — d.

4. By (IH), T'yy,; U + t: S[p] implies Vk € fvy(f). k < |U| — d.

5. By (IH), I',,; U F S[p] <: T implies Vk € fvy(T). k < |U| — d.

Case (T-NEw). Similar to case (T-CALL).
Case (T-LET). The hypotheses are
_tE let:Th =ty inty Iy U I-_tl 2T
Pm; U,Tl F oty Ty O¢fV(T2) Fm; Uk Tgl < T




108 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

1. Let d < |U].
2. de(t) = de(let: T1 = tl in tg) = de(Tl) U de(f,l) U deJ,_l(tQ).
3. By (IH), T',,,; U F ty: Ty implies Vk € fvg(t)) Ufvg(Th). k < |U| — d.

4. B_y (IH), T U, Ty + to : To implies Vd < |U| +1.Vk € de/(tQ). k<
Ul +1-d.

5. d < |U| implies d + 1 < |U| + 1.

6. By taking d’ = d+ 1 in the previous result, Vk € fvay1(t2). k < [U[|+1—
(d+1),ie k<|U|—d.

7. By IH), I'y; U F Ty| <: T implies V& € fvg(T). k < |U| — d.

Case (S-CrLASS). The hypotheses are| T'=C U=C

1. Let d < |U].

2. de(T) = de(C) = @ and de(U) = de(C) = @, so Vk € de(T) @]
fva(U). k < |U] — d.

Case (S-EXTENDS). The hypotheses are
T=C classCextendsC’'{d} T,; UF C'<:U

1. Let d < |U].
2. fva(T) = fva(C) =0, so Yk € fvyg(T). k < |U| — d.
3. By (IH), T,,; U = ¢’ <: U implies Yk € fvy(U). k < [U| — d.

Case (S-VIRTUAL). The hypotheses are
T=pL U=pL T,;UFp:C (typeL> T, <:U)eC

1. Let d < |U].
2. de(T) = de(U) = fvd(p.L) = fvd(p).
3. By (IH), Ty,,; U F p: C implies Vk € fvy(p). k < [U] — d.

Case (S-TraNS). The hypotheses are
I UFT<:S T,;UFS<:U S=<¢pT,U

1. Let d < |U].

2. By (IH), I',,; U = T <: S implies V& € fv4(T). k < |U| — d.

3. By (IH), Ty,,; U = S <: U implies V& € fvy(U). k < |U| — d.
Case (S-AL1as-LEFT). The hypotheses are

T=pL Tp; Uk p:C
(type L=S)€C T,; UF Sp<:U




A.1. MISCELLANEOUS 109

1. Let d <|U]|.

2. fvy(T) =tva(p.L) = tvy(p).

3. By (IH), T',,; U = p: C implies Vk € fva(p). k < |U| — d.

4. By (IH), Ty,; U F S[p] <: U implies Yk € fvy(U). k < |U| — d.

Case (S-AL1as-RIGHT), (S-Up), (S-DowN). Similar to case (S-ALIAS-LEFT).

Qed.
Lemma A.5 (Values are irreducible) v irreducible.
Proof: By induction on v.
Qed
Lemma A.6 (Some terms are not typable in empty context)
F t:T impliest # this andt Zx andt Zn
Proof: By simple case analysis on t.
Qed.

Lemma A.7 (Paths typable in empty context are values)
F p:T impliesp=wv

Proof: By definition, a path p is either this, x, n or a value v. Lemma A.6
tells us that only the last alternative is possible.

Qed.
Lemma A.8 (Chaining self substitutions)
1. tpllv] = thplol].
2. T[pl[v] = T'[p[v]].
Proof: By mutual induction on ¢t and T'.
Qed.

Lemma A.9 (Chaining self and parameter substitutions)
1. T ¢ fp(t) implies t[p][T\7] = t[p[z\7]].
2. T ¢ fp(T) implies T[p][z\v] = T'[p[z\7]].

Proof: By mutual induction on ¢t and 7.

Case (THis).
1. On one hand ¢[p][z\v] = this[p|[z\7] = p[Z\T].

2. On the other hand t[p[Z\7]] = this[p[Z\7]] = p[z\7].

Case (VAR).

1. On one hand nlp|[z\7] = n.



110 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

2. On the other hand n[p[Z\v]] = n.

Case (ParaMm).
1. T ¢ fp(¢) implies = ¢ =.
2. On one hand t[p][Z\7] = z[p][z\7] = z[z\7] = = (since = ¢ T).
3. On the other hand t[p[z\v]] = z[p[z\V]] = «.

Case (SELECT, CALL, NEW, LET, CLASSTYPE, VIRTUALTYPE). By applying
(IH) on case hypotheses followed by the application of the same rule.

Qed.

Lemma A.10 (Chaining self and variable substitutions)

1. fo(t) =0 implies t[p][k := v] = tlp[k := v]].

2. fu(T) = 0 implies Tp|[k := v] = T[p[k = v]].
Proof: By mutual induction on ¢ and T'.
Case (THIS).

1. On one hand t[p|[k := v] = this[p|[k := v] = p[k = v].

2. On the other hand ¢[p[k := v]] = this[plk :=v]] = p[k :

Case (VAR).

1. Case impossible because fv(n) = {n } and by hypothesis fv(¢) = (.

Case (PARAM).

1. On one hand t[p][k := v] = z[p|[k := v] = z[k :=v] = =.

Il
=,

2. On the other hand t[p[k := v]] = z[plk :=]] = =.

Case (SELECT, CALL, NEwW, LET, CLASSTYPE, VIRTUALTYPE). By applying
(IH) on case hypotheses followed by the application of the same rule.

Qed.



A.2. TYPE ORDERING 111

A.2 Type Ordering

Lemma A.11 (Interpretation and substitution)
1. this € q implies 1(q[p]) = I(q) W I(p).
2. this € T implies I[T[p]) = I(T) W I(p).

Proof: Property 1 by induction on ¢, then Property 2 by cases on T using
Property 1.

Case (¢ = this).

1. On one hand, I(g[p]) = I(this[p]) = I(p).

2. On the other hand, I(q) WI(p) = I(this) W1(p) ={ } WI(p) = I(p).
Case (q = z,n,v).

1. Cases impossible because this ¢ q.

Case (¢=¢'.f).
1. this € ¢ implies this € ¢'.
2. By (IH), this € ¢’ implies I(¢'[p]) = I(¢') W I(p).

3. On one hand, I(¢[p]) = I(¢"-flp]) = Ud'[p].f) = U [p)) w{[f} =1(¢") &
Ip)w{f}

4. On the other hand, I(q) W1(p) =1(¢'.f) WI(p) = 1(¢")W{ f } WI(p).

5. We conclude using associativity of multiset union.
Case (T'=C).
1. Cases impossible because this ¢ T
Case (T'=¢q.L).
1. this € T implies this € gq.
2. By Property 1, this € ¢ implies I(¢g[p]) = I(q) ¥ I(p).
3. On one hand, (T'[p]) = I(¢.L[p]) = I(qlp]-L) = Lgp)) & {L} = L(q) ¥
I(p)w{L}.
4. On the other hand, I(T)wWI(p) = I(¢.L) W I(p) =1(¢) W { L } WI(p).

5. We conclude using associativity of multiset union.

Qed.

Lemma A.12 (Interpretation and substitution of a value)



112 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

Proof: By cases on this € T.
Case (YES).

1. By Lemma A.11, this € T implies I(T[v]) = I(T") W I(v).
2. I(v) ={ } implies I(T") W I(v) = I(T).
Case (NO).

1. this ¢ T implies T'[v] = T, implies I[(T'[v]) = I(T).

Qed
Lemma A.13 (Declarations and type ordering)
1. (type L >: Top <: U) implies  Topi[p], Ulp] <1 p.L
2. (type L=T) implies  T[p| <7 p.L

3. (class C extends C' {d }) implies C' <7 C
Proof: We start with the proof of Property 1.

1. By well-formedness of declarations, the declaration (type L >: T, <: U)
implies I(U) <muw { L }.

2. I(p.L)=1(p)W{L}.

3. We prove I(U[p]) <mui I(p.L) by cases on this € p.
Case (YES).

(a) By Lemma A.11, this € p implies I(U[p]) = I(U) W 1(p).
(b) I(U) <muw { L} implies I[(U) W I(p) < I(p) W{L}.
Case (NO).

(a) this ¢ p implies Up] = U.

(b) I(U[p]) = I(U).
() I(U) <mw { L} implies I(U) < I(p) W {L}.

4. By definition of type ordering, I(U[p]) <mw I(p.L) implies U[p] <7 p.L.
5. If Ty = T, there is a completely similar proof that T'[p] < p.L.

Proof of Property 2 is completely similar to proof of Property 1.

We conclude with proof of Property 3.

1. By well-formedness of declarations, (class C extends C’ { d }) implies
c'=<C.

2. 1(C)={C}and I(C") = { " }.
3. ¢" < Cimplies {C"} < {C }.
4. By definition of type ordering, I(C") < I(C) implies C' <1 C.



A.2. TYPE ORDERING 113

Qed.

Lemma A.14 (Type ordering and substitution of a value) T <7 U im-
plies T'[v] <p Ulv].

Proof:

1. T <p U implies I(T") <pmu I(T).

2. By Lemma A.12, I(T[v]) = I(T) and I(U[v]) = I(U).

3. I(T[v]) <muw L(U[v]) implies T'[v] <7 Ulv].

Qed.

Lemma A.15 (Facts about type ordering)

1. T <7 C implies T = C".

2. C <rp.L.

Proof: We prove Property 1 by cases on 7.
Case (T = C’). Done.
Case (T =p.L).

1. p.L <7 C implies I(p.L) < I(C).
I(p-L)=lp)w{ L}, 1(C)={C}.
I(p) W{L} <mw {C} implies L < C.

By well-formedness of programs, C' < L.

BT ol o

There exists an infinite decreasing chain of symbols --- < L < C < L < C,
which contradicts well-foundedness of <.

Proof of Property 2.
LI(C) = {C}, p.L) = 1(p) w{L}.
2. By well-formedness of programs, C' < L.
3. C < Limplies {C} <pu I(p) w{L}.
4. I(C) <muw I(p.L) implies C <7 p.L.
Qed.

Lemma A.16 (Multiset extension preserves well-foundedness)
The multiset extension Ry, of a well-founded relation R is well-founded.

Proof: Standard lemma.

Lemma A.17 (Type ordering is well-founded) The relation < is well-
founded.

Proof: We reason by absurd.



114 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

1. Suppose we have an infinite sequence of types (7;); that is decreasing for
the type ordering <.

2. By definition of <7 we have also an infinite sequence of type multisets
(I(T3)); that is decreasing for the multiset extension —,,; of symbol or-
dering <.

3. By Lemma A.16, the relation <,,,; is well-founded, so such sequence can-
not exist.

Qed.

Lemma A.18 (The multiset extension of type ordering is well-founded)
The multiset extension <, of type ordering < is well-founded.

Proof: By Lemma A.17, the relation <7 is well-founded. By Lemma A.16, its
multiset extension is also well-founded.

Qed.



A.3. SUBCLASSING 115

A.3 Subclassing

Lemma A.19 (Transitivity of subclassing) C'<C’ and C' <C" implies C'<
c”.

Proof: By induction on C <« C".
Qed.

Lemma A.20 (Subclassing defines a hierarchy)
C < C1 and C < Cy implies Cy < Cy or Co < Ch

Proof: By induction on C'<C;. In case (SC-CLass), C = C4, so C<Cy implies
Cy < Cy. In case (SC-EXTENDS), class C extends C’ { d } and C' < C;. We
reason now by cases on C'<1Cs. In case (SC-CLass), C = (s, so C' <y implies
C3 < Cy. In case (SC-EXTENDS), class C extends C { d } and C' <« Cs. By
induction hypothesis, C; <Cs or Cy < C].

Qed.

Lemma A.21 (Subtyping implies subclassing) T’ Fgiruce C <: C' implies
C«acC.

Proof: By induction on I' Fgiruee C <: C’. The only applicable rules are
(S-CLass), (S-EXTENDS) and (S-TRANS-S). Case (S-CLASS) is resolved with
(SC-CLass). Case (S-EXTENDS) is a straightforward application of the induc-
tion hypothesis followed by (SC-EXTENDS). For (S-TRANS-S), we know that
the intermediate type S satisfied S <7 C,C’. By Lemma A.15 (Property 1),
it follows that S is necessarily a class type C”. By applying twice the induc-
tion hypothesis we get C' < C” and C"” < C’. We conclude using transitivity of
subclassing (Lemma A.19).

Qed.

Lemma A.22 (Subclassing implies subtyping) C < C’ implies T' Fgpruct
C < C.

Proof: By induction on C < C”’ using rules (S-CLASS) and (S-EXTENDS).

Qed.



116 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

A.4 Admissibility of Transitivity

Lemma A.23 (Unstructuring derivations)
1. T bFgtruce t: T impliesT + ¢ :T.
2. T Fotruet T <:U impliesT' - T <: U.

Proof: By simple mutual induction on I' Fgipyer ¢ @ 7T and T' Fgppper T <:
U. The idea is just to replace every application of rule (S-TRANS-S) with an
application of rule (S-TRANS).

Qed.
Lemma A.24 (Strengthening)
1. this: C bFgpruct A <:T and this & T implies Fgpruey A <: T
2. this: C Fgiruct v: T and this € T implies Fgpruct v : T .

Proof: By mutual induction on this : C' Fgeryer A <: T and this: C Fgiruct
v:T.

Case (S-TRrRANS-S). The hypotheses are:

this : C bFgtruer A< S this: C bgiruee S<:T S =<7 AT

1. By Lemma A.15 (Property 1), S <7 A implies S = B.

2. By (IH), this: C Fgiruet 4 <: B and this ¢ B implies Fggruer A <: B.
3. By (IH), this : C Fgiruer B <: T and this ¢ T implies Fgipuer B <: T
4. By rule (S-TRANS-S), Fgtruct 4 <: T

Case (S-CLASS). The hypothesisis: | T=A

1. By rule (S-CLASS), Fgstruct 4 <: A.

Case (S-EXTENDS). The hypotheses are:
class A extends A’ { d } this:C Fggruee A< T

1. By (IH), this : C Fgpruer A’ <: T and this ¢ T implies Fgppyer A <: T
2. By rule (S-EXTENDS), Fstruct A4 <: T

Case (S-VIRTUAL, S-UP, S-ALIAS-LEFT). These cases are impossible because
the left-hand type in the subtyping judgment should be both a class type and
a virtual type.

Case (S-AL1AS-RIGHT). The hypotheses are:

T=pL this:C Fgipuer p: C’
(type L=U) € ¢ this: C Fgppuer A <: Ulp]

1. T=p.L and this ¢ T implies this ¢ p.
2. By Lemma A.2, this ¢ p implies this & Ulp).



A.4. ADMISSIBILITY OF TRANSITIVITY 117

3. By (IH), this : C' Fggruee A <: Ulp| and this ¢ U[p] implies Fgiruct
A <:Ulp.

4. By definition of paths, p is either this, a parameter z, a variable n or
a value v. this ¢ p implies p is not this. p well-typed in a context
(this : C) without parameter nor variable bindings implies p is not a
parameter nor a variable. So necessarily p is a value v.

5. By (IH), this : C Fggruct v : C" and this ¢ C’ implies Fgppuer v : C7.
6. By rule (S-ALIAS-RIGHT), Fstruct A <:v.L.

Case (S-DowN). Similar to case (S-ALIAS-RIGHT).

For the typing of this : C' Fgypruet v : T, the only applicable rule is the following.
Case (T-NEw). The hypotheses are:

v=new B(f =7) fdisjoint this:C Fggruet 7:U U closed
Vi, S. (val f; : S) implies this : B Fggruct Ui <: S
isComplete(B, f) this: C Fgprger B <: T

1. U closed implies this ¢ U.
2. By (IH), this : C Fgiruer 0 : U and this ¢ U implies Fgpruer 0 : U.
3. By (IH), this: C Fgiruet B <: T and this ¢ T implies Fgpruee B <: T
4. By rule (T-NEW), Fgiruct new B(f =) : T.
Qed.

Lemma A.25 (Admissibility of transitivity for class type subtyping)
I Fetruct A <t B and I’ Fggpyer B <: C implies I Fetruct A <: C.

Proof:
1. By Lemma A.21, T’ Fgepuer A <: B implies A< B.

2. By Lemma A.21, IV Fgipuer B <: C implies B < C.

3. By transitivity of subclassing (Lemma A.19), A< B and B < C implies
A«C.

4. By Lemma A.22, A< C implies I Fgiruer A <: C.

Lemma A.26 (Substitution for self in structured derivations)
Suppose bFgirucy v : C.

1. this: C Fgpruet D A implies Fgiruce P[] @ A.

2. this: C Fggruce T <: U implies Fgiruer T[v] <: Ulv].



118 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

Proof: !
We first prove Property 1 by cases on p.

Case (THIs). The hypotheses are: | p=this this:C Fggue C <t A

1. p[v] = this[v] = v.
2. By hypothesis, Fgtruct v : C.

3. Fstruct v : C implies

v=new B(f =v) fdisjoint  Fgerues v:U U closed
Vi,S. (val f; §) implies this : B Fgiruee U; <: S
isComplete(B, f)  Fstruct B <: C

4. By admissibility of transitivity for class types (Lemma A.25), Fspryct B <:
C and this : C Fgiruer C <: A implies Fgiruer B <: A.

5. By rule (T-NEW), Fgtruct v A.

Case (VALUE). The hypothesisis: | p=w

1. By definition of substitution, p[v] = w[v] = w because this ¢ w.

2. By strengthening lemma, A.24, this : C' Fgipuce w : A implies Fgpruct w :
A.

If
8

Case (PARAM). The hypothesisis: | p

1. Case impossible because z does not appear in the typing context.

n

Case (VAR). The hypothesis is: | p

1. Case impossible because the typing context for variables is empty, which
means we should have n < 0.

Now we prove Property 2 by induction on this : C' Fggpyer T <: U.

Case (S-TRrRANS-S). The hypotheses are:
this: C Fgiruet 1T <:S this:C bFgpruer S<:U S <0 T,U

1. By (IH), Fstruce T[v] <: S[v] and Fgeruee S[v] <: Ufv].
2. By Lemma A.14, S < T, U implies S[v] <7 T[v], Ulv].

3. By rule (S-TRANS-S), Fstruct T[v] <: Ulv].

INote that for proving a more general lemma where A is replaced with an arbitrary type T,
we need the admissibility of transitivity. But for proving the latter we need the former. With
the present version of the lemma there is no such circularity because we just need admissibility
of transitivity for class types, which can be proved independently (Lemma A.25).



A.4. ADMISSIBILITY OF TRANSITIVITY 119

Case (S-CLASS). Straightforward.
Case (S-EXTENDS). Straightforward application of the (TH).
Case (S-VIRTUAL). Straightforward application of the (IH).
Case (S-ALIAS-LEFT).
The hypotheses are:
T=p.L this:C Fgiruer p:C’
(type L=1S5) € ¢’ this: C Fgpruer Slp] <: U

1. (p.L)[v] = p[v].L.

2. By Property 1, this : C bggruce p: C7 implies bggruce p[v] 0 C7.

3. By (IH), this: C Fggruct S[p] <: U implies Fgiruer S[p][v] <: Ulv].
4. By Lemma A.8, S[p][v] = S[p[v]].

5. By rule (S-ALIAS-LEFT), Fgtruct plv].L <: Ulv].

Case (S-AvLias-RIGHT, S-DowN, S-UP). Similar to case (S-ALIAS-LEFT).

Qed.

Lemma A.27 (Admissibility of transitivity for structured subtyping)

Fstruct 1 <: S and bFgipuce S <: U implies Fegruer T <: U.

Proof: By induction on the multiset extension <r,,,; of type ordering, which
is well-founded after Lemma A.18. We reason by cases on the last subtyping
rules used to derive Fgirucr T <: S and Fggruer S <: U with the hypothesis
that the property is true for every type multiset smaller than {7, 5,U }.

Case (S-EXTENDS,?). The hypotheses are:
T=C classCextendsC' {d} |Fgtrues O’ <: S

1. By Lemma A.13 (Property 3), (class C extends C’ { d }) implies C’ <r
C.

2. C" <r C implies { C", S, U }<7pmui C,S,U }.
3. By (IH), Fstruce €' <: S and Fgprucy S <: U implies Fgprucy € <: U

4. By (S-EXTENDS), bgtrues C <: U.

Case (S-Up,?). The hypotheses are:

T = p.L |_struct p: C
(type L >:Tpp <:T') € C' Fapruer T'[p] <2 S

1. By Lemma A.13, (type L >: T,,; <:T") implies T"'[p] <7 p.L.
2. T'[p| < p.L implies { T'[p], S, U } <7 pmw{p-L, S, U }.

3. By (IH), Fstruct T7[p] <: S and Fgruce S <: U implies Fgpruce T7[p] <:
U.



120 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

4. By (S_UP)a '_Struct pL <:U.

Case (?, S-DOWN). Symmetric to case (S-UP,?).
Case (S-CLAsS,?). The hypotheses are: | T'=C S=C

1. T=C and S =C implies S=T.
2. By replacement, Fgiruct S <: U implies Fggruer T <: U.

Case (S-VIRTUAL,?). The hypotheses are:
T=pL S=pL ‘Ferue p:C (type L > Ty <:T")eC

1. T=p.L and S = p.L implies S =T.
2. By replacement, Fgiruct S <: U implies Fggruer T <: U.

Case (?,S-CLASS). Symmetric to case (S-CLASS,?).

Case (?,S-VIRTUAL). Symmetric to case (S-VIRTUAL,?).

Case (S-ALIAS-LEFT,?). Similar to case (S-Up,?).

Case (?7,S-ALIAS-RIGHT). Symmetric to case (S-ALIAS-LEFT,?).

Case (S-AL1AS-RIGHT,S-EXTENDS). Impossible because the intermediate type
S should be both a virtual type and a class type.

Case (S-DowN,S-EXTENDS). Similar to case (S-ALIAS-RIGHT,S-EXTENDS).
Case (S-AL1AS-RIGHT,S-UP). The hypotheses are:

S=plL
l_strum: D: C (type L = T/) € C l_struct T < Tl[p]
Fstruct p: C' (type L >: Top <:U') € C" Fapruee U'lp] <2 U

1. By well-formedness of declarations, (type L = T") € C and (type L >:
Topt <: U’) implies this : C Fggpuer T7 <: U’

2. By Lemma A.23, bgipuer p: C implies F p: C.
3. By Lemma A.7, - p: C implies p is a value v.

4. By substitution lemma A.26, Fgiruce v : C and this : C bFgipuer TV <: U’
implies Fgeruce T7[v] <: U’[v].

5. By Lemma A.13 (Property 2), (type L = T") implies T"[p] <1 p.L.

6. By Lemma A.13 (Property 1), (type L >: T,,; <: U’) implies U’'[p] <1
p.L.

7. T'[p], U'[p] <7 p.L implies { T, T"[p], U'[p] } <7 mu{ T, p-L, U }.

8. By (IH), Fstruer T <: T'[p] and bgeruee T'[p] <: U’[p] implies Fgeruce
T <:U'[p)].

9. U'lp] <r p.L implies { T, U'[p], U }<rpmwu{T,p.L,U }.

10. By (TH), Fggruce T <: U'[p] and Fepruce U'[p] <: U implies Fgppuer T <:
U.



A.4. ADMISSIBILITY OF TRANSITIVITY 121

Case (S-DOWN,S-ALIAS-LEFT). Symmetric to case (S-AL1AS-RIGHT,S-UP).
Case (S-ALIAS-RIGHT,S-ALIAS-LEFT). The hypotheses are:
S=p.L
Fstruet p:C (type L=T") € C  Fgpruct T <: T'[p]
Fstruet p:C" (type L=U") € C"  tatrues U'lp] <: U

1. By Lemma A.23, Fgirues p: C implies - p: C.

2. By Lemma A.7, - p: C implies p is a value new A(f = 7).

3. By inversion, Fgiruct new A(f =) : C implies Fgppuer A <: C.
4. By Lemma A.21, Fgiryer A <: C implies A< C.

5. Similarly, we deduce that A< C".

6. By Lemma A.20, A<C and A< C’ implies C <C" or C' <« C.

7. It follows by uniqueness of type valuations that C' = C’ and 7' = U’,
which implies T"[p] = U'[p].

oo

. By Lemma A.13 (Property 2), (type L = T”) implies 7”[p] <1 p.L.
9. T'[p] <t p.L implies { T, T'[p], U }<7rmu{ T, p.L, U }.

].0. By (IH), '_struct T <: T’[p] and '_struct T/[p] <: U implies '_struct T <:
U.

Case (S-DowN,S-UP). The hypotheses are:

S=pL Fsgue p: C
(type L >: T/ <: UI) (S C '_struct T <: Tl[p] '_struct U/[p] <U

1. By Lemma A.23, Fgiruer p: C implies - p: C.

[\

. By Lemma A.7, F p: C implies p is a value v.

w

. By inversion, Fgiruce v : C implies

v=new A(f =7) f disjoint  Fggruer 7:U U closed
Vi,U. (val f; : U) implies this : B Fgppuet U; <: U
isComplete(A, f)  Fgpruee A <: C

4. By Lemma A.21, Fgiryer A <: C implies A< C.

5. By completeness of v, (type L >: T" <: U’) € C and A < C implies there
exists C’ and S’ such that A< C’ and (type L = 5’) € C".

6. By well-formedness of type valuations, (type L = S’) € C’ implies this :
C' Fstruct S' <: U’ and this : C bFgpuer 17 <: 5.

7. By Lemma A.22, A< C’ implies Fgruer A <: C”.
8. By rule (T-NEW), Fgiruct A <: C' implies Fgppuer v : C.

9. By substitution lemma A.26, Fgiruer v : C’ and this: C' Fgipuer S <: U’
implies Fggruce S [v] <: U'[v].



122

10

11.
12.

13.
14.

15.
16.

17.
18.

APPENDIX A. COMPLETE PROOF OF SOUNDNESS
. By substitution lemma A.26, Fgiruee v : C' and this : C7 Fgppuer T <: S’
implies Fgeruce T7[v] <: S'[v].
By Lemma A.13 (Property 2), (type L = S’) implies S’[p] <t p.L.

By Lemma A.13 (Property 1), the declaration (type L >: T’ <: U’)
implies T"[p], U'[p] <t p.L.

T'[p], S'[p] < p.L implies { T, T"[p], S"p| } <1t { T, p-L, U }.

By (IH), '_struct T < T,[p] and |_struct T/[p] <: S/[p] implies '_struct
T <: 8[p].

S/[p]aU/[p] =T pL 1mp11es {Ta Sl[p]vU,[p] }'<Tmul{Tap'LvU}'

By (IH), |_struct T < S,[p] and '_struct S,[p] < U,[p] implies '_struct
T <: U],

U'lp] < p.L implies { T, U'[p], U }<rpmu{T,p.L,U }.

By (TH), Fgtructe T <: U'[p] and Fepruce U'[p] <: U implies Fgruer T <:
U.

Case (S-TRANS-S,?). The hypotheses are:

l_struct T <: S/ l_struct S/ <: S S/ ‘<T T, S

w N =

4

. S" <7 T implies {5, S, U }<rpmu{T,S,U }.
. By (IH), Fgtruct S” <: S and Fgipues S <: U implies Fgppyer S <: U.
. 8" <p S implies { T, 5", U }<7ru{T,S,U }.
. By (IH), Fgtruet T <: 5" and Fgpruer S’ <: U implies Fgppuer T <: U.

Case (?,S-TRANS-S). Symmetric to case (S-TRANS-S,?).

Qed.

Lemma A.28 (Structuring derivations)

1
2

. F T < U implies Fggruee T <: U.

. F v T implies Fsiruer v: T

Proof: By mutual induction on + T <: U and + v : T. For all rules but
(S-TRANS) the result follows from a direct application of the current induction
hypothesis. The case of rule (S-TRANS) is resolved using the admissibility of
transitivity for structured subtyping (Lemma A.27).

Qed.



A.5. PROGRESS 123

A.5 Progress

Lemma A.29 (Progress)
F t:T andt not a value implies there exists u s.t. t — u.

Proof: By induction on F ¢:T.

Case (T-THis). The hypotheses contain | ¢ = this

1. By Lemma A.6, it is impossible that F this : T, which contradicts one
of the hypotheses.

Case (T-Param). The hypotheses contain| t=ux

1. By Lemma A.6, it is impossible that + x : T, which contradicts one of
the hypotheses.

Case (T-VAR). The hypotheses contain| t=mn

1. By Lemma A.6, it is impossible that + n : T, which contradicts one of
the hypotheses.

Case (T-NEW). The hypotheses contain| t=newC(f=1%) F1:T

1. We reason by cases on all # being values.

Case (YEs). The hypothesisis: | t=7

(a) After replacement ¢ = new C(f = ) is a value, which contradicts
one of the hypotheses.

Case (N0). The hypotheses are: | 7=75,t,7 and ¢ is not a value

(a) F T:T implies there exists i s.t. ¢/ : Tj.
(b) By (IH), there exists u’ s.t. ¥ — .

Case (T-SELECT). The hypotheses are
t=p.f Fp:C (valf:S5)eC F Sp<:T

1. We reason by cases on p being a value.

Case (NO). The hypothesis is: | p is not a value

(a) By (IH), there exists p’ s.t. p — p'.
(b) By rule (R-PREFIX), p.f — p'.f.

Case (YES). The hypothesis is: | p =new B(f =7)




124 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

(a) By inversion, - new B(f =) : C implies
fdisjoint F T:U U closed
Vi, S. (val f; : S) implies_this : B Fgtruer U <2 S
isComplete(B, f) F B<:C

(b) By Lemma A.28 + B <: C implies Fggruee B <: C.
(c) By Lemma A.21, Fgiruer B <: C implies B<C.

(d) isComplete(B, f), B<C and (val f : S) € C implies there exists i
s.t. f=fi.

(e) By rule (R-SELECT), p.f; — v;.
Case (T-CArLL). The hypotheses are:

t=pm(T=1 Fp:C (defm(T:85):9)€C
FE:S[p) +F Spl<:T

1. We reason by cases on p and t being values.

Case (1). The hypothesis is: | p is not a value

(a) By (IH), there exists p’ s.t. p — p/.
(b) By rule (R-RECEIVE), p.m(T =t) — p'.m(T =1t).

~+

Case (2). The hypotheses are: | p

-/ .
"'t t'is not a value

v =7,

(a) By (IH),there exists u’ s.t. t' — /.
(b) By rule (R-ARG), p.m(T =7,t,T) — p.m(T =7,u,T).

Case (3). The hypotheses are: | p=new B(f =7) t=w

(a) By inversion, - new B(f =) : C implies
£ disjoint F5:U U closed
Vi,S. (val f; : S) implies this: B Fgpruet U; <: S
isComplete(B, f) F B<:C

(b) By admissibility of transitivity (Lemma A.27), v B <: C implies
'_struct B <: C.

(c) By Lemma A.21, Fgiruer B <: C implies B<C.

(d) isComplete(B, f), B<C and (def m(z : S) : S) € C implies there
exist A, t' s.t. B< A and (def m =) € A.

(e) By rule (R-CALL), p.m(ZT =w) — ¢'[p][T\w].

Case (T-LET). The hypotheses are: | t=let:T =t int”

1. We reason by cases on t’ being a value.

Case (NO). The hypothesis is: | ¢’ is not a value




A.5. PROGRESS 125

(a) By (IH), there exists u’ s.t. ' — u/'.
(b) By rule (R-LocAL), let: T =t int” — let:T =u' int".

Case (YES). The hypothesisis: | t' =wv

(a) By rule (R-LET), let:T =wv int’ — ¢"[0 :=v].

Qed.



126 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

A.6 De Bruijn’s Indices

Lemma A.30 (Lifting a closed term or type)
1. fo(t) =0 implies t1™ = t.
2. fo(T) =0 implies T1" =T.

Proof: By mutual induction on ¢ and T'.

Qed.
Lemma A.31 (Dropping a closed term or type)
1. fo(t) =0 implies t| = t.
2. fu(T) =0 implies T| =T.
Proof: Same proof as for Lemma A.30.
Qed
Lemma A.32 (Values are invariant by lifting)
v =0
Proof: By induction on v.
Qed

Lemma A.33 (Permuting lifting and self substitution)
1. t]1™ = 1" [v).
2. T™ = T1"[v].

Proof: We prove t[v]17 = t17[v] and T'[v]1} = T'17[v] by mutual induction on
tand T.
Case (THi1S). The hypothesis is| ¢ = this

1. t]1} = this[v]T} = v1}.
2. By Lemma A.32, v]} = v.

3. t1}[v] = thisT}[v] = thisv] = v.

Case (VAR). The hypothesisis| t=1

1. t]TR =i} =i}
2. 1] = i1E[v].

3. We reason by cases on ¢ < k. If YES, iT} = ¢ and i[v] = . If No,
iy =i+nand (i+n)v] =i+n.

Case (OTHERS). All other cases are straightforward applications of the induc-
tion hypothesis.
Qed.



A.6. DE BRUIJN’S INDICES 127

Lemma A.34 (Permuting lifting and parameter substitution)
1. tz\v]1"™ = t1"[z\v].
2. T[z\v]1" = T1"[Z\7).

Proof: We prove t[z\v]1} = t12[Z\v] and T[z\7]1} = T77[Z\v] by mutual
induction on ¢t and T'.
Case (PArRAM). The hypothesisis| t=a

L t[E\T 1} = of7\0] 17

2. 17 [@\v] = 217 [@\1] = [z \7].

3. We reason by cases on = € T.
Case (YES).

(a) There exists i s.t. z[Z\V] = v;.
(b) z[Z\T|1} = v 1.
(c) By Lemma A.32, v;1} = v;.

Case (NO).

(a) z[T\7] = «.

|1y =2} = 2.

Case (VAR). The hypothesisis| ¢

If
~.

1. tE\T1? = i[F\T]17 = i12.
2. t17[7\7] = i17[7\7.

3. We reason by cases on ¢ < k. If YEs, i} = ¢ and i[Z\v] = i. If No,
i1y =i+nand (i +n)[T\7] =i+ n.

Case (OTHERS). All other cases are straightforward applications of the induc-
tion hypothesis.

Qed.
Lemma A.35 (Permuting lifting and variable substitution)
1. tlk == v = 1"k + n = v].
2. Tk =" =T1"k +n:=v).
Proof: We prove
L VE <k tlk =10 =15k +n =)
2.VE <k Tk:=v1% =T10k+n:=v.

by mutual induction on ¢ and T', and then we take kK’ = 0.
Case (VAR). The hypothesisis| t=1




128 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

1. We reason by cases on ¢ and k.
Case (i < k).

(a) i[k :=v] =1.
(b) We reason by cases on i and k'.
Case (i < k').
o i =1.
e ¢ < k implies i < k + n.
o i < k+n implies i[k +n :=v] =i.
Case (i = k).
o i =i+ n.
e | < kimplies i + n < k + n.
e i+n < k+nimplies (i + n)[k+n:=v] =i+ n.
Case (i > k).
o iTh =i+mn.
e | < k implies i +n < k + n.
e i+n < k+nimplies (i +n)[k+n:=v] =i+ n.

Case (i = k).

) [k == v] = vk,

) By Lemma A.32, v1* = v.
(c) By Lemma A.32, v17, = v.

) We reason by cases on i and k'
Case (i < k').

e i =k and ¢ < k' implies k < k&, which contradicts ¥’ < k.
Case (i = K').

e i =k’ implies ¢ > k'

e i > k' implies i1}, =i+ n.

o i = kimplies (i+n)[k+n :=v] = (k+n)[k+n = v] = 0" = 0.
Case (i > k).

e 7> k' implies 7 > K'.

e i >k’ implies i1}, =i+ n.

e i = kimplies (i+n)[k+n = v] = (k+n)[k+n :=v] = vF*" = 0.
Case (i > k).

(a) ilk:=v]=i-1.
(b) We reason by cases on i and k'
Case (i < k).
e i >k and ¢ < k' implies k < k&, which contradicts ¥’ < k.
Case (i = K').



A.6. DE BRUIJN’S INDICES 129

e i >k and i = k¥’ implies k¥’ > k, which contradicts &’ < k.
Case (i > k).
e i >k implies i — 1 > K/, implies (i — 1)1 =i—1+n
e i > k' implies ¢ > £/, implies i1}, =i + n.
e i > kimplies i+n > k+mn, implies (i +n)[k+n:=v] =i+n—1.

Case (LET). The hypothesis is| ¢=1let:T =1t int”

1. On one hand

(let:T =t int")[k :
(let: Tk :=v] =t'[k
let: Tk := v} =t

= 'U] Z/
=l int"k+1:= )1}
(k=01 int"[k +1 =01,

2. On the other hand

1 [k +n = v (let:T =t int")} [k +n = 0]
(let: 13 =13 in "1} [k +n =]

let: Tk +n:=v] =tk +n:=v] int"T% [k +n+1:= ]

w

By (IH), Tk := v} = T1u[k 4+ n = v].

=

By (IH), t/[k = ’U] Z/ = t/Tn, [k +n:= ’U].
5. K <kimplies ¥’ +1 < k+1.
6. By (IH), t"[k + 1 := |13, = T [k +1+n:=0]

Case (OTHERS). All other cases are straightforward applications of the induc-
tion hypothesis.

Qed.
Lemma A.36 (Permuting dropping and substitutions)
1. tl]] = tl[v] and T[v]] = T1[v].
2. t[7\7]| = t|[7\7] and T[7\7]] = T1[7\7].

3.0 ¢ fu(t) implies tlk + 1 := v]] = tl[k := v], and 0 ¢ fu(T) implies
Tk+1:=v]] =T[[k:=v].

Proof: Proofs are similar to those of Lemmas A.33, A.34 and A.35.
Qed.

Lemma A.37 (Facts about lifting)
1. fo(t) = 0 implies t[k = u] = t.

Proof: !!!

Qed.



130 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

A.7 Substitution Lemmas
Lemma A.38 (Weakening)
1. S &+ t:T implies root; T:T; U,S + t:T
2. S F T <:U implies root; T: T, U,S+F T <:U

Proof: By mutual induction on typing and subtyping derivations.
Case (T-THis). The hypotheses are| t=this I'=S T'F C<:T

1. Case impossible because this is not typable in the root context.

Case (T-PArRAM). The hypotheses contain | t ==z

1. Case impossible because x is not typable in a context without bindings
for parameters.

Case (T-VaR). The hypotheses are
t=n I'=S N=I[S| n<N TF Sn_i_nI"t<:T

1. By (IH), root; Z: T; U,S + Sn_1—py "™ <: T
2. Let V.=U,S and N' = |V]|.

3. N< N and n < N implies n < N'.

4. n < N implies Viy/_1_n) = SN—1-n)-

5. By rule (T-VAR), root; 7:T; U,S F n:1T.

Case (T-SeLeEcT, T-CALL, T-NEW). By applying (IH) on premises followed
by the same typing rule.
Case (T-LET). The hypotheses are
t=1let:T) =t, int, I'=S
Ft:Ty E,Tl F oty : Ty 0¢fV(T2) F"TQl<ZT

1. By (IH), root; T:T; U,S F ¢, : Ty
2. By (IH), root; Z:T; U,S, Ty F ty: T
3. By (IH), root; 7:T; U,S F Tp| <: T.

4. By rule (T-LET), root; Z:T; U,S F let:T) =t inty : T.

Case (S-TrANS, S-Crass, S-EXTENDS, S-VIrruarL, S-Up, S-DowN, S-
ALIAS-LEFT, S-ALIAS-RIGHT). By applying (IH) on case hypotheses followed
by the same subtyping rule.
Qed.
For stating and proving the substitution lemmas we need the concept of well-
formed typing context. Well-formedness of contexts is defined in Figure A.1.

Lemma A.39 (Substitution lemmas)



A.7. SUBSTITUTION LEMMAS 131

fp(T)=0 Viel0,|U|-1], Vketv(U,), k<i
(WF-CTx) -
wellFormed(T'o; T: T U)

Figure A.1: Context Well-formedness (wellFormed(T'))

1. SupposeT =C; Z:T; U and F v:C. Then,
(a) T = t:T implies root; T: T[v]; U] F t[v] : T[v].
(b) T = T <: U implies root; T: Tv]; U] + T[] <: Uv].
2. Suppose I' = root; T:T; U, wellFormed(I') and - ©:T. Then,
(a) T & t:T implies Uz\7] - t[z\0] : T[T\1].
(b) T = T <: U implies U[z\v] F T[z\v] <: U[Z\7].
3. Suppose T' = root; ¢; U, U, wellFormed(I'), N = |U| and - v:U. Then,

(a) T = t:T implies (Uj[i := v])ico,n—1) F t[N :=v]: T[N :=v].

(b) T' = Sy <: Sy implies (Us[i := v])ico,n—1) = S1[N = v] <: [N =
v].

Proof: Each property by mutual induction on typing and subtyping derivations.
We start with Property 1.
Case (T-THis). The hypotheses are

t=this I'=C;z2:T;U T'+HC<:T

1. t[v] = this[v] = v.

2. By (IH), ' = C <: T implies root; 7 : T[v]; Uv] F C <: T[v].

3. By weakening (Lemma A.38)), I v : C implies root; T: T[v]; U] F v :
C.

4. By subsumption (Lemma A.1), the two previous points imply root; T :

T); U] F v: T[]

Case (T-VAR). The hypotheses are
t=n I'=C;7:T;U N=|Ul Tk Un-1-n)"tt < T

2. By (IH), root; T : T[v]; U] b Un—1-n) 1" o] <: T0].
3. By Lemma A.33, U(N,l,n)T”Jrl[v] = U(N,l,n)[v]T"Jrl.

4. By rule (T-VAR), root; T : T[v]; U] F n: T[v].

Case (T-Param). The hypotheses are
t=x; I'=C;2:T;U0 THT;<:T




132 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

1. tlv] = zi[v] = .
2. By (IH), root; T : T[v]; U] + Ti[v] <: T[v].
3. By rule (T-PARAM), root; T : T[v]; U] F x; : T[v].

Case (T-SELECT). The hypotheses are

t=pf IT'=C;7:T;U TFp:A (valf:8)€A T F Sp<:T

1. to] = p.flo] = pll-f
2. By (IH), root; 7 : T[u]; Uv] F plu] : A.

3. By (IH), root; 7 : T[v]; U] F S[pllv] <: T[u].

4. By Lemma A8, S[p][v] = S[p[v]].

5. By rule (T-SELECT), root; 7 : T[v]; Ulv] & plv].f : T[v].

Case (T-CaLL). Similar to case (T-SELECT).
Case (T-NEw). The hypotheses are

t=newC(f=1%) I'=C;2:T;U T Ft:U Uclosed TFC<:T

1. t[v] = new C(f = ?)[v] = new C(f = 1[v]).
2. By (IH), root; T : T[v]; U] F #[v] : Ulv)].
U closed implies U[v] = U.

- w

By (IH), root; 7 : T[v]; Ulv] F C <: T|v].

5. By rule (T-SELECT), root; T : T[v]; Ulv] - new C(f = t[v]) : T[v].

Case (T-LET). The hypotheses are
tEleESl_:tl int, I'=C;z:T; U
PrHt1:5 Cz:T,U,S1Fta:5 0&fv(Sy) 'k S|l <:T

1. tlv] = (let: S1 = t1 into)[v] = let: S1[v] = t1[v] in ta[v)].

2. By (IH), root; T : T[v]; U] F ti[v] : S1[v].

&

By (IH), root; 7 : T[v]; U[v], S1[v] F ta[v] : S2[v].

- w

0 ¢ fv(S2) and v closed implies 0 ¢ fv(Sz[v]).

[}

By (IH), root; 7 : T[v]; Ulv] F (S2l)[v] <: T[v].
6. By Lemma A.36 (Property 1), (S2])[v] = S2[v]].
7. By rule (T-LET), root; T : T[v]; Ulv] - let: Si[v] = t1[v] in ta[v] : T[v].

Case (S-VIRTUAL). The hypotheses are
T=pL U=pL T'Fp:A (typeL > T, <:S)eA

1. Tlv] = U] = p.Llv] = p[v].L.



A.7. SUBSTITUTION LEMMAS 133

2. By (IH), root; T : T[v]; Uv] F plv] : A.
3. By rule (S-VIRTUAL), root; T : T[v]; Ulv] = p[v].L <: p[v].L.

Case (S-TRrANS, S-CLASS, S-EXTENDS). By applying (IH) on case hypotheses
followed by the same subtyping rule.

Case (S-Up, S-DowN, S-ALIAS-LEFT, S-ALIAS-RIGHT). Similar to case (T-
SELECT).

Qed.
Proof: We continue with Property 2 of Lemma A.39.

Case (T-THi1s). Impossible because the typing environment should start both
with a class context and a root context.
Case (T-VAR). The hypotheses are

t=n I'=root;z:T;U N=|Ul TtF Upn_1—pI™ <:T

1. t[7\7] = n[7\7] = n.

2. By (IH), Uz\?] b Un_1-nT" T [2\V] <: T[Z\7].

3. By Lemma A.34, Un_1-n) 1" Z\V] = Uy—1-n)[@\0] 1"
4. By rule (T-VAR), U[z\v] F n: T[z\1)].

Case (T-Param). The hypotheses are
t=x; I=root;2:T;U0 THT;<:T

1. t[Z\v] = %;[T\7] = v;.
2. By (IH), U[z\v] + T;[z\v] <: T[Z\7].

©w

wellFormed(T") implies fp(T') = 0.

=

fp(T) = 0 implies T;[z\7] = T;.

5. F 7:T implies F v; : T}.

6. By weakening (Lemma A.38), - v; : T; implies U[Z\7] - v; : T;.
7. By subsumption (Lemma A.1), U[z\v] F v; : T[7\9].

Case (T-SELECT). The hypotheses are

t=pf T=root;z:T;U ThrFp:A (valf:8)€A T F Sppl<:T

L. t[z\7] = p.f[2\7] = plz\T]. .
By (IH), U[Z\7] - p[z\7] : A.

By (IH), U[z\v] - S[p|[E\v] <: T[Z\7).

(val f:S) € A well-formed implies this: A - .S WF.

By Lemma A.3 (Property 3), this: A = S WF implies fp(S) C 0.
By Lemma A.9, T ¢ fp(S) implies S[p|[Z\v] = S[p[z\7]].

A T



134 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

7. By rule (T-SeLECT), UZ\7] F p[E\7].f : T[Z\7].

Case (T-LET). The hypotheses are

t=1let:S; =t inty, I'=root; T:T; U
I'Ft:8 root;T:T; U,S1F ta:S8 0¢fv(Sy) Tk So <:T

[t

tF\T] = (let: Sy = t1 in t2)[T\7] = let: S1[F\D] = £1[F\7] in t2[7\7].
. By (IH), U[z\7] F t,[z\v] : S1[7\7].

. By (IH), U[z\v], S1[z\v] F t2[7\7] : S2[Z\1)].

. 0 ¢ fv(S,) and v closed implies 0 ¢ fv(So[Z\7]).

. By (IH), U[z\v] + S2l[z\v] <: T[z\v].

. By Lemma A.36 (Property 2), S2|[Z\7] = S2[Z\7]/.

N

~N O Ot

. By rule (T-LET), U[Z\7] - let: Si[Z\7] = t1[Z\7] in t2[7\7] : T[Z\7).

Case (S-VIRTUAL). The hypotheses are
T=pL U=pL Tkp:A (typeL > T, <:S)eA

1. T[z\v] = U[z\v] = p.L[z\v] = p[z\V].L.
2. By (IH), U[z\?] + p[z\1] : A.
3. By rule (S-VirtuaL), U[z\v] - p[z\v].L <: p[z\v].L.

Case (T-NEw). Similar to case (T-NEW) in the proof of Property 1 using the
fact that if U are closed then U[Z\7] = U.

Case (S-TRrANS, S-CLASS, S-EXTENDS). By applying (IH) on case hypotheses
followed by the same subtyping rule.

Case (S-Upr, S-DowN, S-ALIAS-LEFT, S-ALIAS-RIGHT). Similar to case (T-
SELECT).

Qed.
Proof: We continue with Property 3 of Lemma A.39.

Case (T-THis). The hypotheses are
t=this I'=UU TFC<:T

1. t[N :=v] = this[N := v] = this.
2. By (IH), (U;[i :=v]); F C <: T[N :=).
3. By rule (T-THis), (U;[i :=v]); F this: T[N :=].

Case (T-VaR). The hypotheses are
t=n I'=UU V=UU n<N+1 I't Vy_pI" <:T

1. By (IH), (Uili :=v])i = Vin—m)1"THN := 0] <: T[N :=v].

2. We reason by cases on n.
Case (n = N).



A.7. SUBSTITUTION LEMMAS 135

(a) t[N :=v] = N[N :=v] = vV = .

Case (n < N).

(a) t[N :=v] =n[N :=v] =n (since n < N).
(b) n < N implies Viy_n) 1" TN := 0] = Un_1-n) 1" TN := ]

(c) By Lelmma A35, Un_1-n) "N := 0] = Un_1—n)[N =1 —n =
v] 1L

(d) By rule (T-VAR), (U;[i :=v]); b n: T[N :=v].

Case (T-Param). The hypotheses are| t==

1. Case impossible because z is not typable in context U, U.

Case (T-SELECT). The hypotheses are
t=p.f T'=UU TFp:C (valf:5)e€C TF Spl<:T

1. t[N :=v] = p.f[N :=v| = p[N :=v].f.

2. By (IH), (Us[i := v]); F p[N =] : C.

By (IH), (Uifi = o])i b SIp]IV i= o] <: T[N = o]

(val f:5) € C well-formed implies this: C' S WF.

By Lemma A.4 (Property 3), this : C' S WF implies fv(S) = 0.
By Lemma A.10, fv(S) = () implies S[p][N := v] = S[p[N := v]].

N ok W

By rule (T-SELECT), (U;[i :==v]); b p[N :=v].f : T[N :=v].

Case (T-LET). The hypotheses are

t=1let:S; =t inty, I'=U,U
Ft:5 U,U,Sll_tQ:SQ 0§éfV(SQ) Fl_SQl/<:T

1. ¢t[N :=v] = (Let:S1 = t1 in to)[N = v] = let: S1[N = v] = {1]|N =
v] in to[N 4+ 1 := ).

2. By (IH), (Ui[i :=v]); = t1[N = v]: S1[N = v].
3. By (IH), (U;[i :==v]);, S1[N =] b t2[N +1:=v]: So[N + 1:=].
4. 0 ¢ fv(S3) and v closed implies 0 ¢ fv(Sa[N + 1 := v]).



136 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

5. By (IH), (Ui[i :=v]); b S2l[N :=v] <: T[N :=v].
6. By Lemma A.36, So|[N :=v] = S3[N + 1 :=v]].

7. By rule (T-LET), (U;[i :=v]); b let: S1[N :=v] = 1[N := v] in t2[N +
1:=wv]: T[N :=v].

Case (T-NEw, S-TRrRANS, S-CLASS, S-VIRTUAL, S-EXTENDS, S-UP).
Case (S-DOWN, S-ALIAS-LEFT, S-ALIAS-RIGHT).

By applying (IH) on case hypotheses followed by the same typing or subtyp-
ing rule.

Qed.



A.8. SUBJECT-REDUCTION 137

A.8 Subject-reduction
Lemma A.40 (Subject reduction) F ¢:7T andt — wu implies - u:T.

Proof: By induction on the typing derivation F t:T.

Case (T-THis). The hypotheses contain: | ¢ = this

1. Case impossible because there is no rule for reducing this (or equivalently
this is not typable in empty context by Lemma A.6).

Case (T-Param). The hypotheses contain: | t ==z

1. Case impossible, because x is not reducible.

Case (T-VAR). The hypotheses contain: | t=n

1. Case impossible, because n is not reducible.

Case (T-SELECT). The hypotheses are:
t=p.f Fp:C (valf:S5)eC F Sp|<:T

1. By Lemma A.7,  p: C implies p is a value v.

2. We reason by cases on the last rule used to derive t — wu.

Case (R-PREFIX). The hypotheses are: | p — p/ uw=p'.f

(a) By Lemma A.5, p value implies p irreducible, so this case is impossi-
ble.

Case (R-SELECT). The hypotheses are:

p=new B(f=7) f=f u=uv

(a) By inversion, - v : C implies:

f disjoint +F T:U U closed
Vi, S. (val f; : S) implies this: B Fggpucy Ui <: S
isComplete(B, f) F B<:C

After replacement, f = f; implies (val f; : .S).

By hypothesis, (val f; : S) implies this : B Fggruce Ui <: S.

By Lemma A.23, this : B Fgiruer U; <: S implies this: B + U; <:
S.

(e) By rule (S-CLass), - B <: B.

(f) By rule (T-NEw), - v : B.

(g) By substitution Lemma A.39 (Property 1), - v: B and this: B I
U; <: S implies  U; <: S[v] (since U; closed).

(h) By rule (S-TrANS),  U; <: S[v] and + S[v] <: T implies - U; <:
T.

~ o~
Qo T
SN’ e N



138 APPENDIX A. COMPLETE PROOF OF SOUNDNESS
(i) By subsumption Lemma A.1, + v; : U; and + U; <: T implies
- v; - T.

Case (T-LET). The hypotheses are:
t=let:S=t'int” +Ft':5 SEH:8 0¢fv(S) F S| <:T

1. We reason by cases on the last rule used to derive t — u.

Case (R-LocAL). The hypotheses are:

t - u=1let:S=4u int"

(a) By (IH), F o' : S.
(b) By rule (T-LET), - let:S=u'int" : T.

Case (R-LET). The hypotheses are: | t' =v u=1t"[0:= 1]

(a) By Lemma A.4 (Property 1), - v : .S implies Vk € fv(S), k < 0.
(b) By rule (WF-Ctx), Vk € {v(S5), k < 0 implies wellFormed(.S).
(c) By substitution Lemma A.39 (Property 3), - v: Sand S F ¢ :5
and wellFormed(S) implies F ¢”[0 :=v] : S'[0 := v].
(d) By Lemma A.4, S + ¢ : 5" implies (V& € fv(5'). k < 1).
(e) (Vketv(S). k<1)and0 ¢ fv(S’) implies fv(S’) = 0.
(f) By Lemma A.37, fv(S’) = 0 implies S’[0 :=v] = 5.
g) By Lemma A.31, fv(S") = 0 implies 5’| = 5.
)

(
(h) By subsumption Lemma A.1, - ”[0 := o] : S’ and F & < T

implies F ¢"[0:=v]: T.

Case (T-CArLL). The hypotheses are:

t=pm@T=1% Fp:C (detm(@T:5):9)€C Fit:8)p F Sp<:T

1. By Lemma A.7, - p: C implies p is a value v.

2. We reason by cases on the last rule used to derive t — u.

Case (R-RECEIVE). The hypotheses are: | p — p' u=p' .m(T =1)

(a) By Lemma A.5, p value implies p irreducible, so this case is impossi-
ble.

Case (R-ARG). The hypotheses are:

-/

t=u,t,1

- u=pmE=1,u,T)

(a) Let @ = 7,¢/,7 and n = [5]. We show that Vi. F wu; : Si[p] by
considering two cases.
Case (i # n).
e i # n implies u; = t;, implies F u; : S;[p].



A.8. SUBJECT-REDUCTION 139

Case (i = n).
e t, =t and u, = v'.
e By (IH), F ¢’ : S,[p| implies F u': S,[p].

(b) By rule (T-CALL), F pm(T=7,u/,7) : T.

Case (R-CALL). The hypotheses are:

v=newC'(f=w) t=0 C'9A (deftm=t)cA u=t[z\7]

(a) By well-formedness of (def m=t'), A; 7:S; e - t': S.
(b) By Lemma A.22, C’' < A implies - C’ <: A.

(c) By inversion, - new C'(f =) : C implies:
fdisjoint F w:U U closed

Vi, U. (val f; : U) implies this : C' Fgpuet Us <: U
isComplete(C’, f) F C' <:C

(d) By (T-NEw), F C’ <: A implies F v : A.

(e) By substitution Lemma A.39 (Property 1), = v : A and A4; 7 :
S; e B t': S implies root; T: S[v]; € b ¢'[v] : S[v].

(f) Well-formedness of (def m(z : S) : S) € C implies this: C S WF.
(g) By Lemma A.3, this: C S wr implies fp(S) C 0.
)

(h) v closed implies fp(S[v]) = fp(S).

(i) By rule (WF-Ctx), fp(S[v]) = 0 implies wellFormed(root; 7 :
S[v]; €).
(j) By substitution Lemma A.39 (Property 2), - o : S[v] and root; T :
Slv]; e B t'[v] : S[v] and wellFormed(root; T : S[v]; €) implies
F ¢'[v][z\7] : S[v][Z\7].
(k) By well-formedness of (def m(z: S):S) € C, this: C S Wr.
(1) By Lemma A.3, this: C' - S WF implies fp(S) = 0.
(m) T ¢ fp(S) implies S[v|[Z\7] = S[v].
(n) By subsumption Lemma A.1, F ¢[v][Z\7] : S[v] and F S[v] <: T
implies + ¢'[v][Z\7] : T.

Case (T-NEw). The hypotheses are:

t=newC(f=1%)  fdisjoint + #:U U closed
Vi, S. (val f; :.S) impliei this : C Fgiruct U; 1 S
isComplete(C, f) F C<:T

1. We reason by cases on the last rule used to derive t — wu (there is only
one).

Case (R-FIELD). The hypotheses are:

-/

t=5,t,1 t - u u=newC(f=1,u,T)




140 APPENDIX A. COMPLETE PROOF OF SOUNDNESS

(a) Let w = v,o/,f and n = [7]. We show that Vi. F wu; : U; by
considering two cases.
Case (i # n).
e i # n implies u; = t;, implies F wu; : U;.
Case (i =n).
o t, =t and u, = v’
e By (IH), + t': U, implies F ' : U,.
(b) By rule (T-NEW), - new C(f =7,u/,7) : T.



A.9. SOUNDNESS 141

A.9 Soundness

Lemma A.41 (Multi-step subject reduction) + ¢t : T and t reduces in
zero or more steps to u (noted t —* w) implies b w:T.

Proof: By induction on the length of the sequence of reductions in ¢ —* u,
using Subject-reduction (Theorem A.40).

Qed.

Lemma A.42 (Soundness) IfII is a well-formed program, IL.main —* ¢ and
t is not reducible, then t is a value.

Proof:

1. II well-formed implies there exists T" such that + II.main : 7' (Property 3
of well-formed programs in Definition 3.9).

2. By Lemma A.41, F Il.main : T and II.main —* ¢ implies - ¢:T.

3. Suppose now by contradiction that ¢ is not a value. By the property of
Progress (Theorem A.29), F ¢ : T implies that there exists u such that
t — wu, which contradicts the hypothesis that ¢ is not reducible. It means
that t is necessarily a value.

Qed.



Index

admissible rule, 83
auto-combination, 29

class
virtual, 34
combination
class, 50
object, 28
template, 28

inner class, 19
model of computation, 25
nominal type system, 33

object, 25
owner, 54

path, 74

self variable, 25
self recursion, 25
self reference, 25
subtyping
general, 83
structured, 90
super-call, 29
dynamic, 29
static, 29
super-selection, 29

template, 25
atomic, 25
combination, 25

type, 81
expansion, 93
lowering, 94

typing
general, 83
structured, 90

virtual type, 19

142



Bibliography

1]

2]

3]

4]

[5]

(6]

7]

18]

[9]

Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer Verlag, 1996.

Philippe Altherr. A Typed Intermediate Language and Algorithms for Com-
piling Scala by Successive Rewritings. PhD thesis, EPFL, March 2006. No.
3509.

Philippe Altherr and Vincent Cremet. Inner Classes and Virtual Types.
EPFL Technical Report IC/2005/013, March 2005.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Ce-
sar Munoz, Chetan Murthy, Catherine Parent, Christine Paulin-Mohring,
Amokrane Saibi, and Benjamin Werner. The Coq proof assistant reference
manual: Version 6.1. Technical Report RT-0203, INRIA, 1997.

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing Object
Encodings. Information and Computation, 155(1/2):108-133, November
1999. Special issue of papers from Theoretical Aspects of Computer Soft-
ware (TACS 1997). An earlier version appeared as an invited lecture in
the Third International Workshop on Foundations of Object Oriented Lan-
guages (FOOL 3), July 1996.

Kim B. Bruce, Martin Odersky, and Philip Wadler. A Statically Safe Al-
ternative to Virtual Types. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 1445 of Lecture Notes in
Computer Science, pages 523-549, Brussels, Belgium, July 1998. Springer-
Verlag.

Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven Language
Design: Statically type-safe virtual types in object-oriented languages. In
Fifteenth Workshop on the Mathematical Foundations of Programming Se-
mantics (MFPS), April 1999.

Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John
Mitchell. F-bounded Polymorphism for Object-Oriented Programming. In
ACM Symposium on Functional Programming Languages and Computer
Architecture (FPCA), London, England, pages 273-280, September 1989.

Castagna and Chen. Dependent Types with Subtyping and Late-bound
Overloading. INFCTRL: Information and Computation (formerly Infor-
mation and Control), 168, 2001.

143



144

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

Vincent Cremet, Francois Garillot, Serguei Lenglet, and Martin Odersky.
A Core Calculus for Scala Type Checking. In Proceedings of the 81st In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS), Springer LNCS, September 2006. Invited talk.

Vincent Cremet and Grégory Mermoud. Generating Typing Proofs for
Scaletta, June 2005. Semester project at EPFL.

Nicolas G. de Bruijn. Lambda-calculus notation with nameless dummies:
a tool for automatic formula manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381-392, 1972.

Erik Ernst. gbeta — a Language with Virtual Attributes, Block Structure,
and Propagating, Dynamic Inheritance. PhD thesis, Department of Com-
puter Science, University of Aarhus, Arhus, Denmark, 1999.

Erik Ernst. Propagating Class and Method Combination. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP),
LNCS 1628, pages 67-91, Lisboa, Portugal, June 1999. Springer-Verlag.

Erik Ernst, Klaus Ostermann, and William R. Cook. A Virtual Class
Calculus. In Proceedings of the Symposium on Principles of Programming
Languages (POPL), January 2006.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Java Series, Sun Microsystems, 1996. ISBN 0-201-63451-1.

Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In ACM SIGPLAN Conference
on Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA ), October 1999. Full version in ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 23(3), May 2001.

Atsushi Igarashi and Benjamin C. Pierce. Foundations for Virtual Types.
In European Conference on Object-Oriented Programming (ECOOP), Lis-
bon, Portugal, June 1999. Also in informal proceedings of the Workshop
on Foundations of Object-Oriented Languages (FOOL), January 1999. Full
version in Information and Computation, 175(1): 34-49, May 2002.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. An Overview of the Scala Programming
Language. Technical report IC/2004/64, EPFL, Switzerland, 2004.

Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias Zenger.
A Nominal Theory of Objects with Dependent Types. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), Darm-
stadt, Germany, July 2003.

Kresten Krab Thorup. Genericity in Java with Virtual Types. In European
Conference on Object-Oriented Programming (ECOOP), Jyvaskyld, Fin-
land, volume 1241 of Lecture Notes in Computer Science, pages 444-471.
Springer-Verlag, June 1997.



BIBLIOGRAPHY 145

[22] Mads Torgersen. Virtual Types are Statically Safe. In International Work-
shop on Foundations of Object-Oriented Languages (FOOL), informal pro-
ceedings, January 1998.

[23] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ. In
FOOL’12: Proceedings of The Twelth International Workshop on Founda-
tions of Object-Oriented Languages, 2005.

[24] David Ungar and Randall B. Smith. Self: The power of simplicity. Lisp
and Symbolic Computation, 4(3):187-205, 1991.

[25] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundness. Information and Computation, 115, 1994.



146 BIBLIOGRAPHY



Curriculum Vitae

Personal information

Name
Citizenship
Date of birth
Place of birth

Education
2001-2006
1999-2000
1996-1999
1995-1996

1993-1995
juin 1993

Vincent Cremet
France

Februar 11th, 1975
Belfort, France

Ph.D., Laboratoire des Méthodes de Programmation (LAMP),
EPFL, Switzerland

DEA d’Informatique "Programmation : Sémantique, Preuves et
Langages", Université Paris 7

Ecole Nationale Supérieure des Mines de Nancy, option Infor-
matique

Licence de Mathématiques, Université Claude Bernard, Lyon 1
DEUG A, Université Claude Bernard, Lyon 1

Baccalauréat série C (scientifique), Lycée Lamartine, Macon

Professional experience and Projects

2001-2006

2000

1999

Teaching Assistant, Laboratoire des Méthodes de Programma-
tion (LAMP), EPFL

Diploma project (DEA), Design and implementation of a model
checker for a real-time language based on linear logic, supervised
by J-P. Jouannaud et M. Okada, LRI (Université d’Orsay—Paris
Sud)

Diploma project (Ecole des Mines), (5 months), C++ coding
rules and generation of design patterns from UML, Dassault
Electronique, Paris

147



