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1 École Polytechnique Fédérale de Lausanne
INR Ecublens, 1015 Lausanne, Switzerland
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Abstract. We present a minimal core calculus that captures interesting con-
structs of the Scala programming language: nested classes, abstract types, mixin
composition, and path dependent types. We show that the problems of type as-
signment and subtyping in this calculus are decidable.

1 Introduction

The programming language Scala proposes a new model for component systems [28].
Components in this model are classes, which can be combined using nesting and mixin
composition. Classes can contain abstract types which may be instantiated in subclasses.
The Scala component model thus provides a single framework for the construction of
objects and modules. Modules are identified with objects, functors with classes, and
signatures with traits.

The advantage of this approach is that a single fairly small set of language constructs
is sufficient for core programming as well as the definition of components and their
composition. Furthermore, the identification of modules and objects provides new ways
to formulate standard programming tasks such as the expression problem [14,33,27] and
family polymorphism [12,28].

Scala’s approach to component modeling is based on three programming language
constructs: modular mixin composition, abstract type members, and explicit self-types.
All three have been studied in the νObj calculus [25]. A key concept of the νObj calculus,
path-dependent types, is also present in Scala. However, some other constructions of νObj
do not correspond to Scala language constructs. In particular, νObj has first-class classes
which can be passed around as values, but Scala has not.

First-class classes were essential in establishing an encoding of F<: in νObj, which
led to a proof of undecidability of νObj by reduction to the same property in F<: [29].
However, since Scala lacks first-class classes, the undecidability result for the calculus
does not imply that type checking for the programming language is undecidable.

In this paper, we study the problem of decidability of Scala type checking. We con-
struct (algorithmic) Featherweight Scala, abbreviated FSalg, a minimal core calculus of
classes that captures an essential set of features of Scala’s type system. Classes can have
types, values, methods and other classes as members. Types, methods, and values can be
abstract. The calculus is designed to be syntactically a subset of Scala (with the deviation



of explicit self-names, explained below). Its typing rules correspond closely to the ones
implemented in the Scala compiler.

An important aim in developping Featherweight Scala was to show that Scala’s core
type-checking rules are decidable. One particular problem in this respect are cyclic defini-
tions that relate members of different classes. Featherweight Scala allows cyclic references
between members of different mixin classes. Because cycles cannot be ruled out by con-
struction, they have to be detected by the type checker. The typing rules achieve this by
keeping track of the sets of definitions that have already been visited in a typing proof.
This gives the calculus an algorithmic flavor, hence the name FSalg.

All presented deduction rules are syntax-directed and thus lead directly to proce-
dures for subtyping and type assignment. The central result of this paper is that these
procedures are algorithms, i.e. that they terminate in each case.

Related Work: Scala’s component constructions provide a middle ground between the
worlds of object-oriented programming and functional module systems [15,21]. Many of
the concepts in both worlds are unified. Mixin composition in Scala borrows from mixin-
modules [3,4,16], as well as from the more linear object-oriented mixin composition [6,5].
Components in Scala can be mutually recursive, a property which is also addressed by
work on recursive modules [9,23]. Abstract types in Scala are also present in SML style
signatures [21,15], and correspond almost exactly to virtual classes in Beta [22].

Later work on virtual classes [11,13] is more general in that classes, and not just types,
can be abstract. However, references to abstract types in [13] can only refer to members
of an enclosing “self”, not to members of an arbitrary path. Several other variations
on virtual types [32,17,24] and some alternative proposals [8,31,7,20] have also been
researched. Typed class-based calculi for describing Scala’s static analysis are described
in [2] and [1] but the authors do not address the problem of their decidability.

The focus in the paper is on a minimal calculus that captures the essential features
of an existing programming language. In this motivation it follows the work on Feather-
weight Java [19]. Both calculi model a simple, purely functional core language of objects
with fields and methods in a nominal class-based type system. They also take some
similar shortcuts in the interest of conciseness. For instance, both assume call-by-name
evaluation in order not to have to deal with the thorny initialization issues of their under-
lying languages. However, the set of more advanced language constructs that are modeled
are different in each case. Featherweight Java models type casts, and has extensions that
model generics as well as inner classes [18]. Featherweight Scala models inner classes,
member type abstraction, as well as path-dependent types. It can also model most of the
generic constructs in Featherweight Generic Java [19] via encodings.

The rest of this paper is structured as follows. Section 2 explains Scala’s model of
abstract types and path dependent types from a programmer’s perspective. Section 3
introduces the Featherweight Scala calculus FSalg. Section 4 shows that subtyping and
type-assignment are decidable in this calculus. Section 5 relates the obtained results to
the situation in the Scala language. Section 6 concludes.
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trait Any extends { this0 | }
trait Nat extends Any { this0 |

def isZero(): Boolean
def pred(): Nat
trait Succ extends Nat { this1 |

def isZero(): Boolean = false
def pred(): Nat = this0

}
def succ(): Nat = ( val result = new this0.Succ; result )
def add(other : Nat): Nat = (

if (this0.isZero()) other else this0.pred().add(other.succ())
)
def subtract(other : Nat): Nat = (

if (other.isZero()) this0 else this0.pred().subtract(other.pred())
)

}

val zero = new Nat { this0 |
def isZero(): Boolean = true
def pred(): Nat = error(”zero.pred”)

}

Fig. 1. Definition of Peano numbers

2 Programming in Featherweight Scala

Featherweight Scala is a fairly small subset of Scala, but it is expressive enough for one
to write meaningful programs in it. In the following, we show how some common classes
and programming idioms can be encoded in the calculus.

Peano Numbers. We start with an encoding of Peano numbers, shown in Figure 1.
This encoding presents a trait Nat with five member methods. Methods isZero and pred
are abstract, that is, they lack an implementation in trait Nat. By contrast, methods
succ, add and subtract are concrete. A trait in Scala is an abstract class which may be
combined with other traits using mixin composition.

References from one member of a Nat object to another always go via the “self”
reference of the class. The name of the self-reference is given after the opening brace of
the class body. In the example above it is this0. The name can be freely chosen, but
in the examples in this paper we always use thisN, where N is the nesting level of the
enclosing class. As a shorthand notation we sometimes omit the definition of a self-name
which is never used in the class body that follows.

Class Nat also contains a nested class Succ which defines the successor value of the
current object this0. This class is an extension of Nat, which gives concrete definitions
for the two abstract members of Nat: isZero returns always false and the predecessor
method pred always returns the self-reference of the outer Nat class.
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The successor method succ simply creates a new instance of the Succ class and re-
turns it. Note that Featherweight Scala allows instance creation expressions such as
new this0.Succ only as right-hand sides of value definitions; that’s why we were forced
to define in the body of succ an intermediate value result. Regular Scala does not have
this restriction, and also provides many other shorthands that would make the example
more pleasant to write and read.

The final two methods, add and subtract, define addition and subtraction in terms
of the previous three methods. Their implementation uses standard syntax for field se-
lection, method calls, and recursion.

Figure 1 also gives a definition of the zero value for Peano numbers. This value is
defined as a direct specialization of class Nat, which also defines the natural implementa-
tions of Nat’s abstract methods isZero and pred. The right-hand side of zero’s definition
combines a definition of a new anonymous class and a creation of an instance of this
class in a single syntactic construct. Alternatively, one could also proceed in two steps, by
defining a subclass Zero of Nat, and then creating an instance value val zero = new Zero.

The preceding example used exclusively the constructs of the Featherweight Scala
calculus, with two exceptions: First, we assumed a type Boolean with values true and
false and a if-then-else construct. Second, we assumed an error function which aborts a
program with a given error message.

In the example we have also taken some liberty in presenting top-level definitions
for Nat and zero. By contrast, a Featherweight Scala program is simply an expression,
which typically contains embedded definitions for classes and values. To get a complete
program which computes 2+2 one could combine the program fragments in Figure 1 as
follows:

val universe = new { global |
trait Nat { ... }

}
val zero = new universe.Nat { ... };
val two : Nat = zero.succ().succ();
two.add(two)

In this program, references from one top-level definition in universe to another would
go via the top-level self-reference global. Note that according to Featherweight Scala’s
syntax, the above definition of two is invalid, because a local variable can only be initial-
ized with a new instance expression. However, a similar behavior can be obtain with the
following simple programming scheme.

val two = new { val local : Nat = zero.succ().succ() };
two.local.add(two.local)

The syntax used in the examples in this section is also regular Scala, with one ex-
ception: Scala does not have a clause { thisN | ... } which names the self-reference thisN
of the enclosing class. Instead, one always uses the reserved word this. Self-references of
an outer class C can be denoted by prefixing this with the name of the outer class, e.g.,
C.this.
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trait List extends Any { this0 |
type Elem
type ListOfElem = List { this1 | type Elem = this0.Elem }
def isEmpty(): Boolean
def head(): this0.Elem
def tail(): this0.ListOfElem

}

trait Nil extends List { this0 |
def isEmpty(): Boolean = true
def head(): this0.Elem = error(”Nil.head”)
def tail(): this0.ListOfElem = error(”Nil.tail”)

}

trait Cons extends List { this0 |
val hd : this0.Elem
val tl : this0.ListOfElem
def isEmpty(): Boolean = false
def head(): this0.Elem = hd
def tail(): this0.ListOfElem = tl

}

Fig. 2. Definition of the List class hierarchy

Lists. As a second example, Figure 2 presents a class hierarchy for lists in Featherweight
Scala. There are three classes: A base class List and two subclasses Cons and Nil that
define non-empty and empty lists, respectively.

Lists can have arbitrary element types. In the standard Scala library, this is expressed
by a parameterized type, but the featherweight version does not have type parameters.
Instead, we use abstract types to express the genericity of the list abstraction.

The element type of a given list is represented by the type member Elem of class
List. The member is defined as an abstract type in class List. Hence, when a List object
is created, a concrete implementation of this type has to be provided. For instance, the
definition

val nilOfNat = new Nil { type Elem = Nat }

defines a value nilOfNat as an empty list with element type Nat. The type alias
type Elem = Nat is used to “fill in” the abstract type member Elem that Nil inher-
its from List.

The List class also contains a type alias which defines ListOfElem as a type name
for lists whose element type is the same as the element type of the list in question. This
alias does not implement an abstract type member in a parent class; it is there only for
convenience.

The List class also defines a test method isEmpty, as well as methods which return
the head and tail of a list. Method head returns values of type Elem whereas tail returns
values of type ListOfElem. All three methods are abstract in class List.
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The subclass Nil of List represents empty lists. It defines method isEmpty to return
true. Selecting the head or tail of an empty list always results in an error.

The subclass Cons of List represents non-empty lists. The head and tail of a non-
empty list are kept in the fields hd and tl of class Cons. Scala uses val for a definition of
a local value or a field of a class, whereas def is used for a method definition. Classes in
Featherweight Scala do not have constructors; however, one can use member-redefinition
to initialize the values of an object. For instance, the following code defines two lists of
element type Nat which contain the values (2) and (1, 2), respectively.

val list2 = new Cons { this0 |
type Elem = Nat
val hd : Nat = zero.succ().succ()
val tl : this0.ListOfElem = nilOfNat

}
val list12 = new Cons { this0 |

type Elem = Nat
val hd : Nat = zero.succ()
val tl : this0.ListOfElem = list2

}

The List example showed how genericity can be encoded using abstract types. In fact,
there is a general encoding that lets one encode all forms of parameterized types in Scala
into types with abstract members. Details are found in [1].

trait Function extends Any { this0 |
type Dom
type Range
def apply(x : this0.Dom): this0.Range

}
val inc = new Function { this0 |

type Dom = Nat
type Range = Nat
def apply(x : this0.Dom): this0.Range = x.succ()

}

Fig. 3. Definition of first-class functions

Higher-Order Functions. Featherweight Scala has methods, i.e. function-valued class-
members, but it has no function-valued parameters or results. However, it is possible to
encode first-class functional values as instances of a standard Function class, which is
presented in Figure 3. The current Scala implementation uses a similar encoding to map
functional values to the JVM.
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Class Function gives an interface for functions with arbitrary domain and range types.
The interface specifies two abstract types Dom and Range as well as an abstract method
apply that takes arguments of type Dom and that yields results of type Range.

A first-class functional value is then a concrete implementation of class Function,
which gives types for Dom and Range as well as an implementation for method apply.
Figure 3 shows as an example a first-class incrementer function inc over Peano numbers.

trait Mapper extends Any { this0 |
type A
type B
def map(f : Function { type Dom = this0.A; type Range = this0.B },

xs : List { type Elem = this0.A }): List { type Elem = this0.B } =
if (xs.isEmpty()) (

val result = new Nil {
type Elem = this0.B

};
result

) else (
val result = new Cons {

type Elem = this0.B
val hd : this0.B = f.apply(xs.head())
val tl : List { type Elem = this0.B } = this0.map(f, xs.tail())

};
result

)
}

Fig. 4. Encoding of the higher-order map function

Since first-class functions are objects, they can be passed around like any other value.
To apply a first-class function, one simply invokes its apply method (regular Scala defines
syntactic sugar so this is done automatically whenever a first-class function value appears
in function position in an application).

As an example, Figure 4 presents a map function which applies a given argument
function to all elements of a given list and returns a list consisting of all the results of
these applications. In regular Scala, this function would be defined as follows:

def map[A, B](f : A ⇒ B, xs : List[A]): List[B] =
if (xs.isEmpty) Nil else f(x.head) :: map(f, xs.tail)

Since map is conceptually a polymorphic method, its encoding in Featherweight Scala
makes use of a wrapper class Mapper which defines two abstract types A and B, repre-
senting the element types of the argument and result lists, respectively.

The map method in Mapper takes as arguments a function f from type A to type B,
and a list xs of element type A. It returns a list of element type B. An application of
map would be written as follows:
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val list23 : List { type Elem = Nat } = (
val mapper = new Mapper { type A = Nat; type B = Nat };
mapper.map(inc, list12)

)

This instantiates the Mapper class with type Nat as the element type of the argument
and result list, and invokes the map method of the instantiation with inc and list12 as
arguments. The expression would return the encoding of the list (2, 3).

The example shows that monomorphic functions such as inc can be first-class values.
However, the construction cannot be generalized to polymorphic functions. The reason
is that polymorphic functions like map have to be encoded using wrapper classes. Such
wrapper classes are first-class values neither in Featherweight nor in regular Scala. By
contrast, the νObj calculus has classes as first class values, and therefore can encode
polymorphic functional values.

3 The Algorithmic Featherweight Scala Calculus

The FSalg calculus aims at describing some central aspects of the Scala type system in
a simple and formal way. The features whose study has been privileged in this work are:
method overriding, mixins, inner classes, virtual types, singleton types and types with
member refinements. The calculus does not model objects with state and has no concept
of type parameters in classes or methods. Parameterized classes and parameterized class
types can be encoded using virtual types and class types with member refinements.

3.1 Syntax

The abstract syntax of FSalg is given in Figure 5. Amongst the names occurring in a
program, we distinguish the variables, that are used as binders for objects and can be
α-conversed, the value labels, that designate the members defining a field or a method,
and the type labels, that designate the members defining a class or a virtual type.

A member can be a value field, a method, a type field or a class. A value field
is immutable and refers to an object. The types of value fields, method parameters
and method results must be given explicitly. Value fields and methods can be either
concrete or abstract. A declaration is called abstract if the right-hand side is absent.
For instance, a declaration like valna : T = t defines a concrete field a with value t,
whereas the field declaration valna : T is abstract. In order to factorize abstract and
concrete declarations we use the notation valna : T (= t)?. Type fields are also either
concrete or abstract, a concrete type field being sometimes called a type alias. A class
member traitnA extends

(
T

) {
ϕ |M

}
declares a class A with parents T and members

M , where the variable ϕ denotes the current instance of the class. Class members cannot
be abstract.

Every occurrence of a declaration in a program is tagged with a unique integer n.
This integer has no computational meaning, it is simply used for detecting cycles during
the static analysis.

The terms of the calculus are standard. A variable x can represent the current instance
of a class, a method parameter, or the name of an object which has been created locally.
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Syntax

x, y, z, ϕ Variable
a Value label
A Type label

P ::= Program˘
x |M t

¯
M,N ::= Member decl

valna : T (= t)? Field decl

defna
`
y : S

´
: T (= t)? Method decl

typenA (= T )? Type decl

traitnA extends
`
T

´ ˘
ϕ |M

¯
Class decl

s, t, u ::= Term
x Variable
t.a Field selection
s.a

`
t
´

Method call
val x = new T ; t Object creation

p ::= Path
x Variable
p.a Field selection

S, T, U ::= Type
p.A Type selection
p.type Singleton type`
T

´ ˘
ϕ |M

¯
Type signature

Reduction

valna : T = t ∈ Σ(x)

Σ ; x.a→ Σ ; t
(red-value)

defna
`
z : S

´
: T = t ∈ Σ(x)

Σ ; x.a(y) → Σ ; [y/z]t
(red-method)

Σ ` T ≺x M

Σ ; val x = new T ; t→ Σ, x : M ; t
(red-new)

Σ ; t→ Σ′ ; t′

Σ ; e[t] → Σ′ ; e[t′]
(red-context)

Lookup

∀ i, Σ ` Ti ≺ϕ Ni

Σ `
`
T

´ ˘
ϕ |M

¯
≺ϕ

`U
i Ni

´
]M

(lookup-sig)

traitnA extends
`
T

´ ˘
ϕ |M

¯
∈ Σ(y)

Σ `
`
T

´ ˘
ϕ |M

¯
≺ϕ N

Σ ` y.A ≺ϕ N
(lookup-class)

typenA = T ∈ Σ(y)
Σ ` T ≺ϕ M

Σ ` y.A ≺ϕ M
(lookup-alias)

where

e ::= (term evaluation context)
〈〉
e.a
e.a (t)
x.a (s, e, u)
val x = new E; t

E ::= (type evaluation context)
e.A`
T ,E,U

´ ˘
ϕ |M

¯

Fig. 5. The FSalg Calculus : Syntax & Reduction
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Path Typing

x : T ∈ Γ
S, Γ `path x : T

(path-var)
S, Γ ` p.type 3 valna : T (= t)?

S, Γ `path p.a : T
(path-select)

Type Assignment

S, Γ `path p : T

S, Γ ` p : p.type
(path)

S, Γ ` t : S t is not a path

S, Γ ` S 3 valna : T (= u)?

S, Γ ` t.a : T
(select)

S, Γ ` s : S

S, Γ ` t : T ′ S, Γ ` T ′ <: T

S, Γ ` S 3 defna
`
x : T

´
: U (= u)?

S, Γ ` s.a
`
t
´

: U
(method)

S, Γ, x : T ` t : S x 6∈ fn(S)

S, Γ ` T ≺ϕ Mc S, Γ ` T wf

S, Γ ` val x = new T ; t : S
(new)

Expansion

S, Γ ` p.type 3 traitnA extends
`
T

´ ˘
ϕ |M

¯
{n} ∪ S, Γ `

`
T

´ ˘
ϕ |M

¯
≺ϕ N n 6∈ S

S, Γ ` p.A ≺ϕ N
(≺-class)

S, Γ ` p.type 3 typenA = T

{n} ∪ S, Γ ` T ≺ϕ M n 6∈ S
S, Γ ` p.A ≺ϕ M

(≺-type)

∀ i, S, Γ ` Ti ≺ϕ Ni

S, Γ `
`
T

´ ˘
ϕ |M

¯
≺ϕ

`U
i Ni

´
]M

(≺-signature)

Membership

S, Γ ` p ' q S, Γ `path q : T

ψ(p) ∪ S, Γ ` T ≺ϕ M ψ(p) 6⊆ S
S, Γ ` p.type 3 [p/ϕ]Mi

(3-singleton)

T is not a singleton type

S, Γ ` T ≺ϕ M ϕ /∈ fn(Mi)

S, Γ ` T 3Mi

(3-other)

Fig. 6. The FSalg Calculus : Type Assignment, Expansion & Membership
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Field selections and method calls have the same syntax as in Java. The construct val x =
new T ; t allows the user to define a new instance of the type T , with a name x whose
scope is limited to the term t.

A FSalg program is simply a term, which is usually of the form

val z = new
{
ϕ |M

}
; t .

It consists of a list of member declarations M that together make up a universe object
z and a main term t to be evaluated in the context of z. The variable ϕ is an alias
of z; it represents the self reference of the universe object which contains all top-level
declarations.
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Well-Formedness

S, Γ `path p : T ψ(p) 6⊆ S
ψ(p) ∪ S, Γ ` T wf

S, Γ ` p.type wf
(wf-singleton)

S, Γ ` p.type 3 traitnA extends
`
T

´ ˘
ϕ |M

¯
S, Γ ` p.A wf

(wf-class)

S, Γ, ϕ :
`
T

´ ˘
ϕ |M

¯
`

`
T

´ ˘
ϕ |M

¯
wfϕ

S, Γ `
`
T

´ ˘
ϕ |M

¯
wf

(wf-signature)

S, Γ ` p.type 3 typenA (= T )?“
{n} ∪ S, Γ ` T wf n 6∈ S

”?

S, Γ ` p.A wf
(wf-type)

MemberWell-Formedness

(S, Γ ` T wf)?

S, Γ ` typenA (= T )? wfx

(wf-x-type)

S, Γ ` T wf

(S, Γ ` t : T ′ S, Γ ` T ′ <: T )
?

S, Γ ` valna : T (= t)? wfx

(wf-x-field)

S, Γ, ϕ : x.A `
`
T

´ ˘
ϕ |M

¯
wfϕ

S, Γ ` traitnA extends
`
T

´ ˘
ϕ |M

¯
wfx

(wf-x-class)

S, Γ ` S, T wf

S does not contain singleton types`
S, Γ, x : S ` t : T ′ S, Γ ` T ′ <: T

´?

S, Γ ` defna
`
x : S

´
: T (= t)? wfx

(wf-x-method)

∀i, S, Γ ` Ti ≺ϕ Ni S, Γ `M wfϕ

S, Γ ` T wf ∀ (i, j), S, Γ ` (Ni+j ,M) � Ni

S, Γ `
`
T

´ ˘
ϕ |M

¯
wfϕ

(wf-x-signature)

Path Alias Expansion

S, Γ `path p : q.type
ψ(p) ∪ S, Γ ` q ' q′ ψ(p) 6⊆ S

S, Γ ` p ' q′
('-Step)

S, Γ `path p : T
T is not a singleton type

S, Γ ` p ' p
('-Refl)

Fig. 7. The FSalg Calculus : Well-Formedness and Path Alias Expansion
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Type Alias Expansion

S, Γ ` p.type 3 typenA = T
{n} ∪ S, Γ ` T ' U n 6∈ S

S, Γ ` p.A ' U
('-type)

S, Γ ` p.type 3 typenA

S, Γ ` p.A ' p.A
('-abstype)

S, Γ ` p.type 3 traitnA extends
`
T

´ ˘
ϕ |M

¯
S, Γ ` p.A ' p.A

('-class)

S, Γ `
`
T

´ ˘
ϕ |M

¯
'

`
T

´ ˘
ϕ |M

¯
('-signature)

S, Γ ` p.type ' p.type ('-singleton)

Algorithmic Subtyping

S, Γ ` T ' T ′ S, Γ ` U ' U ′

S, Γ `∗ T
′ <: U ′

S, Γ ` T <: U
(<:-unalias)

S, Γ ` p ' p′ S, Γ ` q ' p′

S, Γ `∗ p.type <: q.type
(<:-singleton-right)

U is not a singleton type
S, Γ ` p ' q S, Γ `path q : T S, Γ ` T <: U

S, Γ `∗ p.type <: U
(<:-singleton-left)

S, Γ ` p ' p′ S, Γ ` q ' p′

S, Γ `∗ p.A <: q.A
(<:-paths)

A 6= A′ {n} ∪ S, Γ ` Ti <: p′.A′ n /∈ S
S, Γ ` p.type 3 traitnA extends

`
T

´ ˘
ϕ |M

¯
S, Γ `∗ p.A <: p′.A′

(<:-class)

S, Γ ` Ti <: p.A

S, Γ `∗
`
T

´ ˘
ϕ |M

¯
<: p.A

(<:-sig-left)

T is not a singleton type

∀i, S, Γ ` T <: Ti S, Γ ` T ≺ϕ N

dom(M) ⊆ dom(N) S, Γ, ϕ :
`
T

´ ˘
ϕ |M

¯
` N �M

S, Γ `∗ T <:
`
T

´ ˘
ϕ |M

¯
(<:-sig-right)

Member Subtyping

S, Γ ` T <: T ′

S, Γ ` valna : T (= t)? <: valma : T ′ (= t′)
?

(<:-member-field)

S, Γ ` typenA = T <: typenA (= T )?

(<:-member-type)

S, Γ ` traitnA extends
`
T

´ ˘
ϕ |M

¯
<: traitnA extends

`
T

´ ˘
ϕ |M

¯
(<:-member-class)

S, Γ ` S′ <: S S, Γ ` T <: T ′

S, Γ ` defna
`
x : S

´
: T (= t)? <: defma

`
x : S′

´
: T ′ (= t′)

?
(<:-member-method)

Fig. 8. The FSalg Calculus : Subtyping
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We distinguish a subcategory of terms that can be used inside types, and that we
call paths. A path is either a variable or the selection of a field on a term that is itself
a path. The introduction of paths is motivated by their property of always evaluating
to the same object value and of being strongly normalizable. Both properties are needed
if we want type soundness to hold. However, this goes beyond the scope of the present
paper.

Our calculus has a rich syntax of types. A type selection p.A is either a class type
if A is a class label, a virtual type if A is an abstract type label, or an alias type if A
is a concrete type label. A class type p.A has as values all instances of class A whose
enclosing instance associated with A is the object denoted by p. Virtual and alias types
p.A have a rather different meaning: they represent the type held by the type field A in
the object p. A singleton type p.type represents the type of which p is the unique element.
Finally, a type signature

(
T

) {
ϕ |M

}
combines the concepts of intersection types and

member refinements: it represents the intersection of types T with additional constraints
on members expressed by declarations M .

3.2 Operational semantics

Figure 5 contains the inference rules that define a small-step operational semantics for our
calculus. It is composed of a reduction relation and a lookup relation. Both relations use
the concept of evaluation environment Σ, which is a list of bindings x : M that associates
an object name x with its set of members. The reduction relation Σ ; t → Σ′ ; t′

reduces t to t′ in the environment Σ. The reduction of a term can imply the creation of
new objects that are added to the environment, leading to a new environment Σ′. The
lookup relation Σ ` T ≺ϕ M collects all declarations M in a type T . Together with
the concept of evaluation context for terms and types, the rule red-context lets us
reduce inside a term. The evaluation of a program val z = new

{
ϕ |M

}
; t consists in

repeatedly reducing the term t in the environment context z : [z/ϕ]M until reaching a
term that is a value, i.e. a variable y. Such a semantics is needed if we want to state
and prove a theorem of type safety. Note that in this semantics the value attached to
a field member is re-evaluated each time the field is selected, which corresponds to a
call-by-name semantics.

3.3 Type system

The type system of FSalg is described by an algorithmic system of inference rules. In
such a system, any judgment is matched by the conclusion of at most one rule, which
means that the application of rules is completely deterministic. Typing FSalg requires
the definition of several auxiliary judgments about types in addition to the classical
judgment that assigns a type T to a term t: membership (S, Γ ` T 3 M), subtyping
(S, Γ ` T <: U), expansion (S, Γ ` T ≺ϕ M) and type well-formedness (S, Γ ` T wf).
Most of the judgments are parameterized by a typing context S, Γ , where S is a set
of indices representing locked declarations, and Γ is a set of bindings x : T between
variables and types such that all variables x are pairwise distinct.
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Type assignment. The first two boxes of Figure 6 present the judgments that assign
types to terms. The judgment S, Γ ` t : T always assigns the most precise type to a
term, in particular a path p always receives the type p.type according to this judgment,
provided it can be assigned a bound T (rule path). A field selection t.a is typable if it
is possible to type t and to establish, using the membership judgment, that the type S
of t contains a field declaration valna : T (= u)?; in this case type T is assigned to the
selection t.a (rule select). Note that this rule is only applicable if t is not a path. In case
t is a path p, we fall back to rule path. Rule method allows to type method calls s.a

(
t
)
:

the type of s must contain a declaration for the method a, and each argument must have
a type which is compatible with the one required by the method declaration, i.e. which
is a subtype of the expected type. If these conditions are fulfilled, the type announced
by the method declaration is given to the term s.a

(
t
)
. Finally, rule new allows the

typing of a local object creation val x = new T ; t. Such a term gets the type of t if
several conditions are satisfied. The members declared inside type T must be concrete:
the expansion judgment S, Γ ` T ≺ϕ M returns all the member declarations M of a
type T such that x represents the self reference. The type T must be well-formed. The
term t must be typable in the environment Γ extended with the binding x : T . Finally,
because the scope of x is limited to t, the variable x must not appear in the type S of t.

The judgment S, Γ `path p : T is a typing judgment specialized for paths. Contrary
to the previous judgment, it does not always return the singleton type p.type for a path
p. Rather, it returns the less precise but more informative type associated with it, called
its bound. If p is a variable x, its bound is the type associated with x in the environment
(rule path-var), if p is a selection p′.a, its bound is the declared type T of a as seen
from p′ (rule path-select).

Membership and expansion. In Featherweight Java [19] (FJ), there is a lookup rela-
tion that computes the most precise signature of a method visible from a given class. In
FSalg the member judgment S, Γ ` T 3M presented at the bottom of Figure 6 general-
izes this relation to the computation of any kind of declaration (not just methods) visible
from any kind of type (not just class types). In FJ the lookup relation is quite simple,
it returns the signature of the method as it appears in the program; in Featherweight
Generic Java (FGJ), since classes can have type parameters and since a member signa-
ture can refer to some type parameters of its enclosing class, the lookup relation requires
also the computation of type values for such type parameters. In FSalg, things are more
complicated: because types depend on paths, the signature of a member can depend on
the self reference x of its enclosing class, or more generally on the self reference of any
enclosing class, direct or indirect. Thus, the result of the lookup must replace x with
the actual value of the enclosing instance. To illustrate this, suppose we have a method
declaration defna () : x.A in a class C where x is the self reference. If the starting type
T of the membership judgment is a singleton type p.type, then it is possible to replace
x with p and obtain p.A. But if the starting type T is a class type q.C, then the lookup
fails because there is no available instance of C with which to replace x. However, if the
signature of a does not depend on x (for instance if the return type of a is an external
type root.Int), then the lookup succeeds, even from q.C (because in root.Int there is no
self reference to be replaced). Rules 3-singleton and 3-other respectively implement
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the situation where the starting type T is a singleton type and where it is not. In the
first case, the path p is first expanded into q with the path alias expansion judgment.
Then, we take the type T of q which, by construction, is not a singleton type. Using the
type expansion judgment we collect all declarations M of T and we substitute p for the
self reference ϕ in the declaration we are interested in. In case the starting type T is not
a singleton type, we can immediately collect its declarations, but we have to check that
the declaration we are looking for does not contain the self reference ϕ.

The type expansion judgment S, Γ ` T ≺ϕ M (third box of Figure 6) collects all dec-
larations M of a type T where ϕ is used to represent the self reference inside declarations
M . The expansion of a class type p.A is the expansion of the type signature

(
T

) {
ϕ |M

}
composed of its parents T and its direct members M (rule ≺-class). The index n of the
class is added to the set S of locks in order to avoid falling into an infinite expansion
(for instance if a class extends itself). Rule ≺-type is completely analogous. It expands
a type alias while performing the same actions on locks in order to prevent infinite alias
expansion. Finally, rule ≺-signature expands a type signature: it starts by expanding
all parents T and then merges all collected declarations N with the direct members M
of the type signature. The concatenation with rewriting of common members ] of sev-
eral sets of declarations is defined by M ]N = M |dom(M)\ dom(N), N , where the domain
dom(M) of a sequence of declarations is the set of labels it defines and the restriction
M |L of declarations M to a set of labels L consists of all of those declarations in M that
define labels in L.

Type and path alias expansion. We introduce here two auxiliary judgments, type
alias expansion and path alias expansion that will be used when defining the subtyping
judgment. The idea of the type alias expansion judgment S, Γ ` T ' U is very simple:
we take a type T and if T is a type alias p.A for another type T ′, we recursively expand
T ′ until we reach a type that is no longer a type alias. This simple behavior is formalized
by the five rules in the first box of Figure 8.

There exists also a relation of aliasing between paths. For instance, with a field dec-
laration valna : p.type in a class where x is the self reference, the path x.a has type
p.type. Because p.type is a singleton type and x.a belongs to this type, this really means
that x.a and p represent the same object, or equivalently that x.a is an alias for p. In
this reasoning, we have performed a one-step alias expansion going from x.a to p. The
judgment defined at the bottom of Figure 7 implements the complete alias expansion of
a path by repeating the operation we have performed in this example. Once again, we
prevent falling into a loop by adding an index to the set S of locks (rule '-Step). This
index is the one of the last selected field in the considered path p. It is computed by the
function ψ(p). This function takes as implicit arguments the environments S and Γ and
is defined as follows.

ψ(p.a) = n if S, Γ ` p.type 3 valna : T (= t)?

ψ(x) = x

The expansion terminates when we reach a path that cannot be given a singleton
type (rule '-Refl).
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Subtyping. The subtyping judgment S, Γ ` T <: U (central box of Figure 8) is used to
compare two types T and U . In theory, such a relation must be defined by considering
all possible kinds of types for T and all possible kinds of types for U . But in practice
it is possible to factorize and eliminate a great number of cases. First we expand both
types into types T ′ and U ′ (rule <:-unalias). This simple operation allows to quickly
eliminate all cases where T ′ or U ′ is an abstract type p.A, because if a type is still
abstract after alias expansion nothing can be said about it. As a consequence, in the
auxiliary judgment S, Γ `∗ T <: U we assume that T and U are not abstract types. If
U is a singleton type q.type, then only another singleton type p.type can be a subtype
of it (rule <:-singleton-right), and in this case paths p and q must be equivalent, i.e.
they must be aliases for the same path p′. If the left-hand side is a singleton type p.type
and the right-hand side U is not, then we just take the bound T of p and recursively
compare it with U (rule <:-singleton-left). If both types are a selection of the same
type label A (rule <:-singleton-left), then their prefixes must be equivalent. Suppose
now that the right-hand side is a class type. We just have to consider the cases where
the left-hand side is a class type or a type signature. If the left hand-side is a class
type p.A then we recursively check that there exists one parent of the class that is a
subtype of p′.A′ (rule <:-class). If the left-hand side is a type signature

(
T

) {
ϕ |M

}
the procedure is analogous. Finally, we are left with the case where the right-hand side is
a type signature

(
T

) {
ϕ |M

}
. There are then two things to check: first that the type T

is a subtype of all parents T in the type signature, which expresses the fact that a type
signature represents the intersection of its parents. And secondly, that type T satisfies
the constraints expressed by the declarations M . This is the case if T expands to a set of
declarations N , with a greater domain than M , and if the declarations that are common
to N and M are more precise in N , which is expressed by the subtyping test between
members S, Γ ` N �M .

The subtyping between members is standard (bottom of Figure 8): it is covariant for
the types of field declarations and for the result types of methods, contravariant for the
method parameter types, and invariant for type and class declarations. The invariance for
type aliases is crucial since an alias conceptually represents an equality between types.
The member subtyping relation is lifted to sequences of members using the following
definitions:

N � N ′ ⇔
(
∀(N,N ′) ∈ N ×N ′, dom(N) = dom(N ′) ⇒ N <: N ′)

Well-formedness. There are two well-formedness judgments: one for types S, Γ ` T wf
(top of Figure 7), and one for members S, Γ `M wfϕ (top of Figure 7)

For a singleton type p.type to be well-formed, the path p must be typable (rule wf-
singleton). In order to avoid a cyclic dependence between a path and its type, we also
check the well-formedness of the bound T of p. Because we do not want to fall into a
loop, we extend the set of locked indices with ψ(p). For a class type p.A to be well-formed
(rule wf-class), it is sufficient to check that a class named A is accessible from p, which
is expressed by a membership judgment starting from the type p.type. For an abstract
type p.A, a declaration of the type A must also be visible from p. In addition, if the type
is an alias for a type T we also check that T is well-formed. This is needed since we do not
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want type aliases to let us define recursive types. Such a test serves for detecting illegal
cycles, as for the rule wf-singleton. Finally, the well-formedness of a type signature
is checked by first putting a binding with the type signature in the environment (rule
wf-type).

The well-formedness of fields and methods is standard. For a field declaration the type
T ′ of the optional value t must conform to the declared bound T (rule wf-x-field). For
a method, the types of parameters S and the method type T must be well-formed in
the current environment, which means that the judgment excludes the possibility for the
type Si of a parameter, or for the result type T , to depend on parameters x. The body
t of the method must be typable in an environment extended with the parameters, and
its type T ′ must conform to the return type (rule wf-x-method). Note that we require
parameter types not to contain singleton types. This restriction has almost no impact on
expressiveness and it has the advantage of simplifying the termination proof of path alias
expansion. The well-formedness of a type declaration is equivalent to the well-formedness
of the type T it is an alias for (rule wf-x-type). Eventual cycles in this definition are
detected indirectly by the well-formedness of T . For typing a class declaration (rule
wf-x-class) we check the well-formedness of its associated type signature

(
T

) {
ϕ |M

}
composed of its parents and direct members, in an environment extended with a binding
for the class self reference ϕ. It might be surprising that here we do not check for the
absence of cycles in the class hierarchy, but such cycles are actually detected by the
well-formedness of the type signature: if a class inherits, directly or indirectly, of itself,
there cannot exist an expansion of the parents T . A type signature

(
T

) {
ϕ |M

}
(rule

wf-x-signature) is well-formed w.r.t. a self reference ϕ if the T can be expanded, which
forbids singleton types and abstract types in the parents of a signature, and if all new
members of the type, directly present in M , are compatible. The compatibility of a list
of groups of members is defined in such a way that a member declaration is always
more precise than another declaration defined in a previous group in this list, which is
expressed by the formula ∀ (i, j), S, Γ ` (Ni+j ,M) � Ni.

4 Decidability of the Algorithmic Type System

Lemma 4.1 If a term t can be assigned a type T by the Path Typing judgment, then
it is unique.

Proof. It is easy to see that a variable only has a single type assignment in the context at
any time, so all that remains to prove is that field declarations of the form valna : T (= t)?

for a given a are unique in a given p.type. We do it by induction on the Expansion
judgment and pathselect, using the semantics of ], a method that we are going to
detail in the following.

Lemma 4.2 The calculus defines a deterministic algorithm.

Proof. The rules are syntax-directed (the form of the input determines the rule that must
be used, and all the parameters of any recursive calls), except for ≺-class, ≺-type and
'-step.
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≺-class and ≺-type seem to create an ambiguity, but they are in fact algorithmically
equivalent, since they only differ on the member that will be sought in the expansion of
the type of the path that is in the conclusion.

The path in the premises of '-step is uniquely defined by the Path Typing judg-
ment using Lemma 4.1.

Lemma 4.3 The Path Typing, Expansion, Membership, and Path Alias Expan-
sion judgments terminate on all inputs.

Proof. We start by inlining the membership rule 3-singleton in the recursive calls of
the three other judgments, leading to the following rules:

S, Γ ` p ' q S, Γ `path q : T

ψ(p) ∪ S, Γ ` T ≺ϕ M, [ϕ/p](valna : T ′ (= t)?),M ′ ψ(p) 6⊆ S
S, Γ `path p.a : T ′ (path-select)

S, Γ ` p ' q S, Γ `path q : T

ψ(p) ∪ S, Γ ` T ≺ϕ M, [ϕ/p](traitnA extends
`
S

´ ˘
x |N

¯
,M ′) ψ(p) 6⊆ S

{n} ∪ S, Γ `
`
S

´ ˘
x |N

¯
≺x N ′ n /∈ S

S, Γ ` p.A ≺x N ′
(≺-class)

S, Γ ` p ' q S, Γ `path q : T

ψ(p) ∪ S, Γ ` T ≺ϕ M, [ϕ/p](typenA = S),M ′ ψ(p) 6⊆ S
{n} ∪ S, Γ ` S ≺x N ′ n /∈ S

S, Γ ` p.A ≺x N ′
(≺-type)

The other rules are left unchanged, and the system with those updated rules is trivially
equivalent to the previous one. We prove the termination of the Expansion, Path
Typing and Path Alias Expansion judgments by mutual induction, reasoning by case
on the last rule of the derivation. The result is then easily extended to the Membership
judgmement by inspection.

Cases '-refl and pathvar are easy. For the others, we consider that several rules in
those judgments make all their recursive calls on a strictly larger set of locked symbols,
and can therefore appear at most a finite number of times in any derivation. We can then
concentrate on the remaining case, ≺-signature. Let us define the size of a type by the
lexicographical pair (N,L) where N is the number of its members and L its textual size.
Then this size is finite and positive, and ≺-signature only makes recursive calls on
strictly smaller types. Those recursive calls conclude when reduced to a type signature
with no inherited types, in which case the conclusion is true by vacuity.

Corollary 1. The Type Alias Expansion judgment terminates on all inputs.

Proof. Easy induction, considering that the rule '-type can only be applied a finite
number of times.

Lemma 4.4 The Algorithmic Subtyping and Member Subtyping judgments ter-
minate on all inputs.
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Proof. We proceed by mutual induction on those two judgments, and then by case on
the last step of the derivation. Using Corollary 1, we can concentrate on the subtyping
of unaliased terms (`∗) using rule <:-unalias.

Case 1 (Algorithmic Subtyping). Cases <:-singleton-right and <:-paths are easy
using Lemma 4.3. Moreover, it is easy to show using the Path Alias Expansion judg-
ment, that the type T in the premises of <:-singleton-left is not a singleton type.
This rule therefore allows us to unfold a subtyping problem referring to a singleton type
to a subtyping problem between non-singleton types in a single step. Since our subtyping
rules do not contain singleton types in their premises, the only singleton types we can
encounter in a subtyping derivation are those explicitly mentioned in the program, and
their number is finite. We can therefore consider that we work modulo this unfolding.

Using the definition of the size of a type given in the proof of Lemma 4.3, we can
show that all the recursive calls to the Algorithmic Subtyping judgment are made
on a strictly smaller type, noticing in the case of <:-class that a given trait can not
extend itself.

The remaining case is <:-sig-right, where the call to the Member Subtyping
judgment could potentially create a cycle. Let us proceed by contradiction: if there is
such a cycle, it means that we have found a type signature

(
T

) {
x |M

}
such that one of

its member declarations contains a declared type that is is either
(
T

) {
x |M

}
or some(

S
) {
y |N

}
such that ∃ i, Si =

(
T

) {
x |M

}
. Then the textual length of this type is

larger than the textual length of the type signature that contains it, which is absurd.

Case 2 (Member Subtyping). Easy with the previous case.

Lemma 4.5 The Type Assignement, Well-Formedness and Member Well-
Formedness judgments terminate on all inputs.

Proof. We proceed by mutual induction on those judgments, then by case on the last
rule of the derivation.

Case 3 (Member Well-Formedness). Considering wf-x-signature, we notice that,
in a similar way to the problem we encountered with rule <:-sig-right in Case 1 of
Lemma 4.4, we are in presence of a judgement that makes several potentially cyclic re-
cursive calls to the Well-Formedness judgment. However, since the judgment is syntax-
directed, we notice that such a cycle would require us to find a type signature

(
T

) {
x |M

}
directly containing a member whose declared type lexically contains

(
T

) {
x |M

}
itself,

which would give this type signature an infinite textual length.
The remaining interesting cases are wf-x-field and wf-x-method. in both cases,

making a derivation involving those rules cyclic requires defining a type signature that
directly contains a field or method whose value contains an instantiation of this very type
signature:

M 3 valna : T = val x = new
(
T

) {
x |M

}
; t

This would again give an infinite textual length to the term
(
T

) {
x |M

}
.
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Case 4 (Well-Formedness). We start by noticing that wf-singleton and wf-type
can only occur a finite number of times, since they make their recursive calls on a strictly
larger set of recursive types. We then conclude using the previous case and the termination
lemma for the Membership judgment (Lemma 4.3).

Case 5 (Type Assignement). We conclude remarking that we make recursive calls to
the Type Assignement judgment on structurally smaller terms, and using the previous
termination lemmas.

5 Type Checking and Type Inference in Scala

The previous section showed that type-checking in FSalg is decidable. Does the same
hold for full Scala? It is at present too hard to give a definite answer since full Scala is
too complicated to admit a formalization of its type system which is complete yet still
manageable enough to admit a proof of decidability. But one can conjecture. To do this,
we need to compare full Scala with Featherweight Scala. Most of the additional syntactic
constructs in full Scala do not cause particular problems for type-checking. However,
unlike Featherweight Scala, full Scala has local type inference [30,26].

Local type inference needs to construct least upper bounds and greatest lower bounds
(wrt the subtype ordering) of sets of types. The decidability of these lub and glb operations
in FSalg is currently an open question. To see the problem, consider the following three
class definitions.

trait A { this0 |
type T
def fromT(x : T): A

}
trait B { this0 |

type T
def fromT(x : T): B

}
trait C extends A with B { this0 |

def fromT(x : T): C
}

Now assume that we want to find the greatest lower bound of A and B. Clearly, C is
a lower bound of A and B, but it is not the greatest one. A greater lower bound is
represented by the following refinement type:

A with B { this0 | fromT(x : T): C }

One can apply the same step to the result type of fromT to obtain a still greater lower
bound. Repeating this step infinitely often one obtains the following limit of an ascending
chain of lower bounds:
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A with B { this0 |
fromT(x : T): A with B { this1 |

fromT(x : T): A with B { this2 |
fromT(x : T): A with B { this3 |

...
}

}
}

}

This limit does not exist as a finite type in FSalg, but the natural algorithm for computing
lower bounds is likely to try to construct it, and this would result in non-termination.
A similar infinite approximation can be constructed for the lub operation by using the
contravariance of method parameters. An example is the lub of the two refinements

{ def f(x : A): Int } and { def f(x : B): Int } .

The problem of infinite approximations of lub’s and glb’s also occurs when type-checking
Java 1.5 programs with generics and wildcards [34]. The decidability of the latter is
currently open [35].

The Scala compiler addresses this problem by imposing a maximum size on the types
computed by its lub and glb operations. It is currently set at 10 levels of parameterizations
or refinements. If a type computed by lub or glb exceeds this limit the system will reply
with an error such as the one below:

error : failure to compute least upper bound of types
(A) ⇒ scala.Int and (B) ⇒ scala.Int;
an approximation is :
(A with B{

def fromT(this.T): (A with B{
def fromT(this.T): (A with B{

def fromT(this.T): (A with B{...})})})}) ⇒ Int
additional type annotations are needed

if (cond) (x : A) ⇒ 1 else (x : B) ⇒ 1
ˆ

The Scala compiler thus turns the potential problem of undecidability of type inference
into a completeness problem: local type inference might now fail to give a solution even
if a best type would exist. However, in practice such complicated types arise very rarely.
Moreover, it is always possible to guide the type inference process by adding more type
annotations, so that infinite approximations are avoided.

In the failed example above, the problem would have been avoided by giving an
explicit annotation of the desired type of the problematic conditional. For instance, the
following compiles without error.

(if (cond) (x : A) ⇒ 1 else (x : B) ⇒ 1): (C ⇒ Int)

To summarize, the results on type-checking Featherweight Scala give some degree of con-
fidence that type-checking regular Scala is also decidable. Furthermore, the formalization
of locks in FSalg corresponds closely to the present implementation in the Scala compiler,
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so that there is hope that this implementation does in fact represent an algorithm for
type checking Scala programs. Type-inference, on the other hand, needs to compute lub’s
and glb’s of types and is believed to be undecidable. The Scala compiler avoids potential
non-termination at the price of incompleteness by imposing an upper limit on the size of
the types computed by a lub or glb.

Note that we have classified here the typing of an if-then-else expression as a type-
inference problem, not a type checking problem. The justification of this classification is
that it is possible (and, at rare occasions, necessary) to provide a type for the expression
with an explicit annotation.

6 Conclusion

We have presented a calculus for type-checking core Scala programs. Featherweight Scala
describes the central constructs for programming components in Scala: nested classes,
modular mixin composition, abstract types, type aliases, and path-dependent types. Un-
like previous work on foundations of Scala [25], this calculus is decidable and admits a
straight-forward type-checking algorithm.

Featherweight Scala programs are essentially a syntactic subset of regular Scala pro-
grams. The subset is kept minimal, so that one can concentrate on a small set of typing
issues. In future work it would be interesting to extend the calculus to a larger fragment of
Scala. Among the most interesting extensions are a call-by-value semantics, polymorphic
methods, and mutable state.

The correctness of the calculus also remains to be verified. The operational semantics
of FSalg is defined by a small-step reduction semantics. We intend to show in future work
that it satisfies the subject-reduction and type-soundness properties. Judging from our
experience with previous calculi [25,10] this looks plausible, but a formal proof still needs
to be completed.

Acknowledgement. We thank Rachele Fuzzati for proofreading the formal description of
the calculus.
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