
Adding Type Constructor Parameterization
to Java

Philippe Altherr and Vincent Cremet

Abstract. We present a generalization of Java’s parametric polymor-
phism that enables parameterization of classes and methods by type con-
structors, i.e., functions from types to types. Our extension is formalized
as a calculus called FGJω. It is implemented in a prototype compiler and
its type system is proven safe and decidable. We describe and motivate
our extension through two examples: the definition of generic data-types
with binary methods and the definition of generalized algebraic data-
types. The formalization and the safety and decidability proofs are, for
space reasons, only shortly described.

Introduction

Most mainstream programming languages let the programmer parameterize his
or her data structures and algorithms by types. The general term for this mech-
anism is parametric polymorphism1. It allows the same piece of code to be used
with different type instantiations. Some languages, like Haskell [1], addition-
ally let the programmer parameterize his or her code by type constructors, i.e.,
functions from types to types. One typical application of this feature is to pa-
rameterize a piece of code by a generic data-type (a data-type which is itself
parameterized by a type). Although this mechanism has been widely recognized
as useful, for example to represent monads [2] as a library, no attempt has been
made until now, to our knowledge, to design and implement a similar feature for
Java.

A type constructor is a function that takes a list of types (in full generality, a
list of type constructors) and returns a type. For instance, the Java class List of
the standard library is a type constructor; it can be applied to a type T with the
syntax List〈T 〉 to denote the type of lists of T s. In Java, classes and methods
can be parameterized by types but not by type constructors. Our generalization
of Java’s parametric polymorphism lifts this restriction.

Our design is introduced and explained in the next two sections through
two different examples: the definition of generic data-types with binary methods
and the definition of generalized algebraic data-types. Binary methods [3] are
a well-known challenge for object-oriented programming. Section 1 first recalls
the problem posed by binary methods. Then, it describes a technique based
on F-bounded polymorphism that can sometimes be used to solve it. Finally,

1 In some contexts it is called differently: for instance, generics in Java or templates
in C++.

it shows how type constructor parameterization can be used to generalize this
technique to generic data-types. Section 2 describes how the Visitor design-
pattern can be enhanced through the use of type constructor parameterization
to implement generalized algebraic data-types. Section 3 describes our FGJω

calculus, which formalizes type constructor parameterization and our prototype
compiler, which implements it. Section 4 discusses the safety and decidability of
FGJω. Section 5 reviews related work and our contributions and concludes on
possible continuations.

1 Generic Data-types with Binary Methods

A binary method is a method whose signature contains occurrences of the current
class in contravariant positions, for example as an argument type. A problem
arises if in a subclass these occurrences need to be replaced with occurrences of
the subclass in order to specialize the method. Indeed, it is well-known that it is
unsafe and thus forbidden to covariantly refine types that occur in contravariant
positions.

The problem is illustrated below by the binary method lessThan of the class
Ordered. In order to implement it in the subclass Integer, it is necessary to
have access to the field i of the parameter that. However, changing the type
of that to Integer amounts to a covariant change of a type in a contravariant
position, which is unsafe and thus forbidden.

abstract class Ordered {
abstract boolean lessThan(Ordered that);

}
class Integer extends Ordered { int i;

boolean lessThan(Integer that) { // illegal
return this.i ≤ that. i ; }

}

A classical and simple technique for solving this problem is to use F-bounded
polymorphism [4]; the base class is parameterized by a type Self and occurrences
of the base class in the signature of the binary method are replaced with Self.
The type Self represents the exact type of the current object, also called its
self type. It cannot be known exactly since the base class is open for subclassing.
It is only known that the self type is at least a subtype of the base class. In
our example, this is expressed by the bound Ordered〈Self〉. The fact that Self
appears in its own bound is the essence of F-bounded polymorphism.

abstract class Ordered〈Self extends Ordered〈Self〉〉 {
abstract boolean lessThan(Self that);

}
class Integer extends Ordered〈Integer〉 { int i;

boolean lessThan(Integer that) { return this.i ≤ that.i ; }
}

The subclass Integer instantiates the type parameter Self to itself. This
leads to a signature for the method lessThan that is compatible with its imple-
mentation.

The above technique does not always directly apply when the base class is
generic. To see why, we consider a class Collection, representing immutable
collections of objects, that is parameterized by the type X of its elements. For
our purpose, a collection declares just two methods: append and flatMap. The
first one merges into a new collection the receiving one and the one passed as an
argument. The second method applies the functions passed as an argument to
each element of the receiving collection and merges all returned collections into
a new one.

abstract class Function〈X,Y〉 { abstract Y apply(X x); }
abstract class Collection〈X〉 {

abstract Collection〈X〉 append(Collection〈X〉 that);
abstract 〈Y〉 Collection〈Y〉 flatMap(Function〈X,Collection〈Y〉〉 f);

}

Both methods are binary methods because the current class occurs in the
type of their parameter. Both methods also raise similar problems as the method
lessThan when they are implemented in subclasses. This is illustrated below by
the subclass List, which implements linked lists.

class List〈X〉 extends Collection〈X〉 {
List() { ... } // construct an empty list

boolean isEmpty() { ... } // test emptiness
X head() { ... } // get first element
List〈X〉 tail () { ... } // get all elements but the first
List〈X〉 add(X that) { ... } // add an element
List〈X〉 append(List〈X〉 that) { // illegal

return isEmpty() ? that : tail (). append(that).add(head());
}
〈Y〉 List〈Y〉 flatMap(Function〈X,List〈Y〉〉 f) { // illegal

return isEmpty() ? new List〈Y〉()
: f .apply(head()).append(tail(). 〈Y〉flatMap(f));

}
}

As for the method lessThan, we have been forced to change the signature
of both binary methods by replacing each occurrence of Collection with List.
Indeed, if the method append did not return an instance of List, the call to add
would be illegal and if its parameter was not an instance of List, returning that
would be illegal. Similarly, if the method flatMap did not return an instance of
List, passing tail().〈Y〉flatMap(f) as argument to append would be illegal
and if the function f did not return instances of List, calling the method append

on f.apply(head()) would be illegal2. The covariant change of the return types
is safe, but the covariant change of the argument types is not.

If we try to encode the self type of the class Collection with the same
technique as for the class Ordered, we obtain the following definition.

abstract class Collection〈Self extends Collection〈Self,X〉,X〉 {
abstract Collection〈Self ,X〉 append(Self that);
abstract 〈Y〉 Collection〈Self,Y〉 flatMap(Function〈X,???〉 f);

}

This solves the problem for the method append (provided the superclass of
List is replaced with Collection〈List〈X〉,X〉) but this is helpless to express
the type of the parameter f of flatMap. And worse, even the return type of
flatMap seems dubious now as it describes a collection of Ys whose self type is
a collection of Xs. The problem of flatMap is that it instantiates the class type
Collection with a type Y which is a priori different from the parameter X of
the class. Here, we need more than a self type, we need a self type constructor ;
Self should represent a type constructor instead of a type. This is expressed in
the following definition.

abstract class Collection〈Self〈Z〉 extends Collection〈Self,Z〉,X〉 {
abstract Collection〈Self ,X〉 append(Self〈X〉 that);
abstract 〈Y〉 Collection〈Self,Y〉 flatMap(Function〈X,Self〈Y〉〉 f);

}

In this definition, the class Collection declares that its first parameter is
a unary type constructor named Self such that when it is applied to some
type Z it returns a subtype of Collection〈Self,Z〉. Here, the type of the
argument of both methods can be correctly expressed and their implementa-
tion in the class List is now possible provided its superclass is replaced with
Collection〈List,X〉.

class List〈X〉 extends Collection〈List,X〉 { ...
List〈X〉 append(List〈X〉 that) { ... }

〈Y〉 List〈Y〉 flatMap(Function〈X,List〈Y〉〉 f) { ... }
}

2 Generalized Algebraic Data-types

An algebraic data-type is a type that is inductively defined by the union of
different cases; functions operating on objects of an algebraic data-type can be
defined by pattern-matching on the different cases. A generic algebraic data-type
is called a generalized algebraic data-type (GADT) [5] when different cases in its

2 Strictly speaking, this is true only if the method append is not declared in the base
class Collection but only in the class List.

definition instantiate its type parameter with different types. Indeed, such an al-
gebraic data-type needs a generalization of the way pattern-matching constructs
are typed in order to fully exploit its type parameter. We present a solution to
this problem that is based on the Visitor design-pattern [6], enhanced with type
constructor parameterization.

The classical example to illustrate GADTs is a safe evaluator for a simple
programming language. In this example, an algebraic data-type Expr is used
to represent the expressions of the language. The different cases of the alge-
braic data-type correspond to the different constructs of the language (constants,
arithmetic operations, conditionals, etc). The type Expr is parameterized by a
type X; for a given expression, X represents the type of the value returned by its
evaluation. Thus, the case IntLit, for literal integers, instantiates X to Integer,
while the case If, for conditionals, instantiates X to the same type as its two
branches (then & else). A first benefit of encoding the type of the evaluation of an
expression in the type of its representation is to enable the type-checker to reject
ill-formed expressions like new Plus(new IntLit(2), new BoolLit(false)).

Following the structure of the visitor design-pattern, we start by defining a
base class for expressions and one for visitors.

abstract class Expr〈X〉 {
abstract 〈R〈 〉〉 R〈X〉 accept(Visitor〈R〉 v);

}
abstract class Visitor〈R〈 〉〉 {

abstract R〈Integer〉 caseIntLit(int x);
abstract R〈Boolean〉 caseBoolLit(boolean x);
abstract R〈Integer〉 casePlus(Expr〈Integer〉 x, Expr〈Integer〉 y);
abstract R〈Boolean〉 caseCompare(Expr〈Integer〉 x, Expr〈Integer〉 y);
abstract 〈X〉 R〈X〉 caseIf(Expr〈Boolean〉 x, Expr〈X〉 y, Expr〈X〉 z);

}

The method accept, which applies a visitor to an expression of type Expr〈X〉,
is parameterized by a type constructor R and returns an object of type R〈X〉. It
means that the type returned by the matching of an expression will functionally
depend on the type X that characterizes the expression. The syntax R〈_〉 indicates
that R stands for a unary type constructor and that we are not interested in
naming its argument. The class Visitor is standard except for the fact that it
is parameterized by a type constructor, which is used in the return type of its
methods.

Finally, there is one subclass of Expr for each kind of expression. In these
classes the implementation of the method accept simply forwards the class at-
tributes to the corresponding method of the visitor argument. For conciseness,
we give only two representative subclasses.

class IntLit extends Expr〈Integer〉 { int x;
〈R〈 〉〉 R〈Integer〉 accept(Visitor〈R〉 v) { return v.caseIntLit(x); }

}
class If 〈Y〉 extends Expr〈Y〉 { Expr〈Boolean〉 x; Expr〈Y〉 y; Expr〈Y〉 z;
〈R〈 〉〉 R〈Y〉 accept(Visitor〈R〉 v) { return v.〈Y〉caseIf(x, y, z); }

}

A safe evaluator for our language of expressions will maintain the consistency
between the type of an expression and the type of the values to which it evaluates.
It is implemented as a polymorphic method eval that takes an expression e of
type Expr〈T〉 and returns a value of type T, as shown below.

class Eval extends Visitor〈〈Y〉 ⇒ Y〉 {
〈T〉 T eval(Expr〈T〉 e) { return e.〈〈Y〉 ⇒ Y〉accept(this); }

Integer caseIntLit(int x) { return new Integer(x); }
...
〈X〉 X caseIf(Expr〈Boolean〉 x, Expr〈X〉 y, Expr〈X〉 z) {

return this.〈Boolean〉eval(x).booleanValue()
? this.〈X〉eval(y);
: this.〈X〉eval(z);

}
}

The method eval is implemented as a member of a Visitor subclass whose
parameter R is instantiated with the type constructor 〈Y〉 ⇒ Y. Such an ex-
pression is called an anonymous type constructor. It represents an anonymous
function over types. In our example, the anonymous type constructor 〈Y〉 ⇒ Y
is the identity function, it takes a type Y as argument and returns the same type
Y.

Let us check that the members of the class Eval are well-typed. In the
method eval, since e is of type Expr〈T〉 the type returned by the call to the
method accept is R〈T〉 with R instantiated to 〈Y〉 ⇒ Y, i.e., (〈Y〉 ⇒ Y)〈T〉.
This type reduces in one step to T, which is indeed the return type declared by
the method eval. In the class Visitor the method caseIntLit is defined with
the return type R〈Integer〉. In the class Eval, R is instantiated to 〈Y〉 ⇒ Y, thus
caseIntLit should return a value of type (〈Y〉 ⇒ Y)〈Integer〉 (i.e., Integer),
which is indeed the case. Similarly one can check that the other methods of the
visitor return values of the right type.

3 Formalization: The FGJω Calculus

The calculus FGJω (pronounce “FGJ-omega”) is a formalization of our de-
sign for type constructor parameterization. It is an extension of Featherweight
Generic Java [7] (FGJ), which is a core language for Java with a focus on gener-
ics. Our calculus enhances FGJ by replacing all parameters representing types

by parameters representing type constructors. Its name is derived from an anal-
ogy with λω [8], which enhances the simply typed lambda-calculus [9] with type
operators.

The syntax of FGJω and FGJ are very similar. The main change is that
parameters and arguments representing types are replaced with parameters and
arguments representing type constructors. The elements of the syntax that differ
are summarized below.

type parameter P ::= X〈P 〉 extendsN
type constructor K ::= X | C | 〈P 〉 ⇒ T
type T ::= K〈K〉
class type N ::= C〈K〉

A type parameter declaration P always represents a type constructor. Its
syntax X〈P 〉 extendsN specifies that the parameter is named X, that the type
constructor it represents accepts arguments that conform to the parameters P
and that the type it returns when it is applied to such arguments conforms to
the type N . A type constructor K is either a type parameter X, a class C, or
an anonymous type constructor 〈P 〉 ⇒ T that expects arguments conforming to
the parameters P and that returns the type T . This last construct is analogous
to anonymous functions in functional programming languages except that it
operates at the level of types and not at the level of values. All types T consist
of a type constructor K applied to a list of type constructors K. Class types N
are a restriction of types T used as upper-bounds of type parameters in order to
guarantee the decidability of subtyping. All other syntactic constructs of FGJω

are identical to those of FGJ except that all sequences X /T of type parameters
(in class and method declarations) are replaced with sequences of parameters P .

Modifying FGJ’s typing rules to take into account parameters representing
type constructors is relatively straightforward. The main issue is that, because
of anonymous type constructors, the subtyping judgement must now include the
reduction of types. For instance, (〈X〉 ⇒ List〈X〉)〈Integer〉 must be considered
a subtype of List〈Integer〉 since the former reduces in one replacement step to
the latter.

In our examples, we have types that consist of a simple class like Integer
or a simple parameter like X and other that consists of a type constructor ap-
plied to a list of arguments; but our calculus supports only the latter ones.
Similarly, in our examples, we have both parameters that represent types and
parameters that represent type constructors; but again FGJω supports only the
latter ones. This apparent contradiction is not one if one considers that param-
eters representing types represent in fact type constructors with zero arguments
whose empty lists of parameters have been omitted and that types without type
arguments are in fact applications of type constructors with zero arguments
whose empty lists of arguments have been omitted. Thus, Integer and X are
syntactic sugar for Integer〈〉 and X〈〉 and a type parameter declaration like
Self〈Z〉 extends Collection〈Self,Z〉 is syntactic sugar for

Self〈Z〈〉 extends Object〈〉〉 extends Collection〈Self,Z〉

This declaration defines a unary type constructor parameter named Self.
It specifies that the domain of Self, i.e., the set of arguments for which it is
well-defined, contains the set S of type constructors Z1 taking no arguments
such that Z1〈〉 is a subtype of Object〈〉. The declaration also specifies that the
type constructor Self must satisfy the property that Self〈Z2〉 is a subtype of
Collection〈Self,Z2〉 if Z2 is an element of S.

As exemplified by this declaration, the domain of a type constructor param-
eter (Self) is syntactically expressed by other type constructor parameters (Z〈〉
extends Object〈〉). This recursiveness in the syntax of type constructor param-
eters is one reason why their declarations are so compact. The other reason is
the versatility of binders: in the above declaration, the name Z is a binder that
serves simultaneously two purposes, (1) defining the domain of Self and (2)
defining the upper-bound of Self. In the above description of the parameter
Self we made this double role explicit by using a different variable for each role,
namely Z1 and Z2.

Implementation All examples of this paper have been tested by our prototype
FGJω compiler [10] (actually, just a type-checker and an interpreter for now). It
integrates all the syntactic sugar described above. In addition to that, it replaces
types that are in position of type constructors with parameterless anonymous
functions, so that a type like List〈List〈Integer〉〉 is internally represented by
List〈〈〉 ⇒ List〈Integer〉〉.

4 Theoretical Study of FGJω

The type system of FGJω is both safe and decidable. The proofs of these proper-
ties can be found in a companion paper [11]. Here we outline the main arguments
of the proofs.

Safety By definition, FGJω’s type system is safe if every well-formed FGJω

program is safe. A FGJω program is safe if every time a member (method or
field) is selected on an object at runtime, it will be found in the object.

Our proof of type safety is based on the small-step operational semantics
that comes with FGJ. Classically [12], the proof is split into a progress theo-
rem and a subject-reduction (type preservation) theorem. These properties are
proven on a more general type system, called FGJΩ , with the same syntax and
semantics as FGJω but different (less constraining) typing rules. Compared to
the original type system (FGJω), FGJΩ alleviates some constraints that were
introduced to ensure decidability. More importantly, while checking that a type
application K〈K〉 is well-formed, FGJΩ never tests that the arguments K sat-
isfy the subtyping conditions expected by the parameters of K, it only tests that
the arities are appropriate. It turns out that the test of subtyping conformance
has no impact on type safety and that its sole role is to disallow the definition of
empty types. By removing this test, type well-formedness no longer depends on
subtyping and the proof becomes easier. Finally, the fact that every well-formed

FGJω program is also a well-formed FGJΩ program allows us to derive the type
safety of FGJω from the type safety of FGJΩ .

Decidability By definition, FGJω’s type system is decidable if there exists an
algorithm which, for every input program, returns “yes” if the program is well-
formed and “no” otherwise.

The more challenging judgement with regard to decidability is subtyping.
In FGJ, the decidability of subtyping essentially relies on the fact that there
is no cycle in the class inheritance relation. This ensures that by following the
superclass of a class, in the process of establishing that a type is a subtype of
another, we always stop, either because we found an appropriate supertype or
because we reached a class that has no superclass.

The proof that FGJω’s type system is decidable is a bit more complex be-
cause types sometimes need to be reduced in order to establish a subtyping
judgement. So, what prevents the type-checker from being caught in an infinite
reduction sequence? Actually, it can be shown that types that are well-formed
with respect to the conformance of arities (we call such types well-kinded types)
can never be infinitely reduced (they are strongly normalizable). The proof of
this property is similar to the proof of strong normalization for terms of the sim-
ply typed lambda calculus [13, 14]. This is not surprising since well-kinded FGJω

types are almost isomorphic to well-typed lambda-terms. The only difference is
the presence of type bounds attached to FGJω’s type parameters and the fact
that these bounds are reducible. For example, the anonymous type constructor
〈X extends T 〉 ⇒ U reduces to 〈X extends T ′〉 ⇒ U if T reduces to T ′. There
is no similar reduction step in the lambda-calculus.

However, this difference between both formalisms does not prevent us from
interpreting FGJω types as lambda-terms. The solution is to consider an ex-
tension of the simply typed lambda-calculus with tuples, for which strong nor-
malization still holds. Then, we interpret well-kinded FGJω types as well-typed
lambda-terms thanks to a translation function J·K whose interesting cases are
the following ones.

J〈P 〉 ⇒ T K = λX : type(P).(JT K, JP K)
JK〈K〉K = fst (JKK JKK)

In these translations, X stands for the variables declared by P , type(P) denotes
a suitable type obtained from P and fst returns the first component of a tuple.

We can easily prove that each time a FGJω type T reduces to U , the lambda-
term JT K reduces to JUK. Suppose now, by contradiction, there exists an infinite
sequence of reductions starting from a well-kinded type T , then there exists
an infinite sequence of reductions starting from the well-typed term JT K, which
contradicts the strong normalization of lambda-terms.

5 Conclusion

Related work The combination of subtyping and higher-order polymorphism has
been extensively studied in the context of lambda-calculi and object-calculi un-

der the name of higher-order subtyping (Fω
<: [15], Fω

≤ [16], Obω<:µ [17]). The
originality of our work is to consider a calculus that is close to a real program-
ming language so that no encoding is needed, neither for objects nor for classes.
Furthermore, our calculus incorporates the features of F-bounded polymorphism
(the property of type parameter declarations to be mutually recursive in their
bounds) and nominal subtyping, which are not covered by any of the calculi cited
above. Like these calculi, FGJω does not identify eta-convertible type construc-
tors like List and 〈X〉 ⇒ List〈X〉. It is left to the programmer the responsibility
of writing types in such a manner that the compiler never has to compare such
type constructors.

The example presented in Section 1 is nothing but what Haskell program-
mers call monads [2], an abstraction for pluggable computations. One peculiarity
of our implementation is that the “plug” operation (flatMap) is a method of the
class representing the monadic data-type (Collection), while it is an external
function (written >>= and called ”bind”) in Haskell.

In Section 2, our encoding of GADTs relies on an extension of Java with
type constructor parameterization. In [5], the authors found a similar solution
by considering an extension with type equality constraints.

Scala’s type system [18] is able to express some use cases of type constructor
parameterization [19, 20]. The principle is to encode the declaration of a param-
eter representing a type constructor like X〈_〉 as the declaration of an abstract
type (type parameter or virtual type) X bounded by Arity1, where Arity1 is a
class with a single type field (say A1). A type like X〈String〉 can then be ex-
pressed in Scala by the refined type X{type A1 = String}, which represents all
instances of X in which the type field A1 is equal to String. It is an open ques-
tion whether FGJω can be entirely encoded this way, especially if more complex
bounds and anonymous type constructors are involved.

Shortly after we implemented and made public a prototype compiler for
FGJω, type constructor parameterization was independently integrated to the
Scala compiler under the name of type constructor polymorphism [21]. The
authors of the Scala implementation based their syntax on an unpublished
version of the present paper where type constructor parameterization were de-
scribed in the context of Scala. However they extended our syntax to make
type constructor parameterization smoothly interact with pre-existing features
of the language. In particular, the Scala implementation provides declaration-
site variance annotation for type constructor parameters and adds the concept
of class members representing type constructors. This last feature is an exten-
sion of the mechanism of virtual types in Scala, it allows abstract declarations,
like type T[X] <: Pair[X,X], and concrete ones like type T[X] = Pair[X,X]. The
latter can be used to emulate FGJω’s anonymous type constructors since they
are missing in Scala. As for FGJω, the problem of inferring type constructor
arguments for methods and classes is not addressed by the Scala implemen-
tation (such arguments must be explicitly given by the programmer). For the
subset of Scala that corresponds to FGJω, our work can be thought of as a
theoretical foundation.

Contrary to our calculus, there is no syntax for anonymous type constructors
in Haskell. However a restricted form of anonymous type constructors exist
internally; they arise from partial applications of type constructors. For instance,
Haskell lets the programmer write types like (Pair A) even if Pair has been
declared with two type parameters. Such a construct is actually a partial type
application and is equivalent to 〈X〉 ⇒ Pair〈A,X〉 in our design. Thus, Haskell
is able to represent all anonymous type constructors that correspond to partial
type applications but not the others. This is clearly a restriction compared to our
design: for example, the FGJω anonymous type constructor 〈X〉 ⇒ Pair〈X,A〉
is not expressible as a partial application of Pair. In Haskell, which has a
complete type inference mechanism based on unification, such a limitation is
needed to ensure decidability of type-checking, because higher-order unification
is known to be undecidable. Since we adopt in FGJω the Java philosophy of
explicit type annotations along with some type inference (in fact none in our
prototype), we are not bound to this limitation. In [22], the authors study an
extension of Haskell with functions at the level of types, which shows there is
an interest for this feature even in the Haskell context.

Summary This paper describes a simple way of adding type constructor param-
eterization to Java. The main elements of this extension, a generalized syntax
for type parameters and generalized typing rules, have been gradually intro-
duced through two concrete examples that cannot be expressed just with type
parameterization. These examples are the definition of generic data-types with
binary methods and the definition of generalized algebraic data-types. Our ex-
tension, called FGJω, has been formalized, implemented in a prototype compiler,
and important properties of its type system, like decidability and safety, have
been proven. To our knowledge, our work is the first to propose a design (that
is proven sound) for integrating type constructor parameterization to Java. It
constitutes also the first proof of safety for a type system that mixes higher-order
polymorphism and F-bounded polymorphism.

Future work Our calculus still misses some useful features of Java-like lan-
guages. Wildcard types [23, 24] have been popularized by their implementation
in Java. A continuation of this work would be to study, at a theoretical level,
the interaction between type constructor parameters and wildcard types. From
a more pragmatic point of view, it would also be interesting to see whether type
constructor parameters are compatible with the most common strategies for type
argument inference in Java-like languages.

References

1. Jones, S.P.: The Haskell 98 language and libraries: The revised report. Cambridge
University Press (2003)

2. Wadler, P.: Monads for functional programming. In Broy, M., ed.: Marktoberdorf
Summer School on Program Design Calculi. Volume 118 of NATO ASI Series F:
Computer and systems sciences. Springer-Verlag (August 1992) Also in J. Jeuring

and E. Meijer, editors, Advanced Functional Programming, Springer Verlag, LNCS
925, 1995.

3. Bruce, K.B., Cardelli, L., Castagna, G., the Hopkins Objects Group (Jonathan
Eifrig, Scott Smith, Valery Trifonov), Leavens, G.T., Pierce, B.: On binary meth-
ods. Theory and Practice of Object Systems 1(3) (1996) 221–242

4. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded poly-
morphism for object-oriented programming. In: Proceedings of the fourth interna-
tional conference on Functional programming languages and computer architecture
(FPCA’89), New York, NY, USA, ACM Press (1989) 273–280

5. Kennedy, A., Russo, C.: Generalized algebraic data types and object-oriented
programming. In: ACM Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), ACM Press (October 2005)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts (1994)

7. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for
Java and GJ. In: ACM Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA). (October 1999) Full version in ACM
Transactions on Programming Languages and Systems (TOPLAS), 23(3), May
2001.

8. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
9. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic

5 (1940) 56–68
10. Altherr, P., Cremet, V.: FGJ-omega web page. http://lamp.epfl.ch/∼cremet/FGJ-

omega/
11. Cremet, V.: FGJ-omega: Definitions and proofs.

http://lamp.epfl.ch/∼cremet/FGJ-omega/FGJ-omega-metatheory.pdf (April
2007)

12. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115 (1994)

13. Tait, W.W.: Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic 32(2) (June 1967) 198–212

14. Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program extraction
from normalization proofs. Studia Logica 82 (2005) Special issue.

15. Pierce, B.C., Steffen, M.: Higher-order subtyping. In: IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET). (1994) Full version
in Theoretical Computer Science, vol. 176, no. 1–2, pp. 235–282, 1997 (corrigendum
in TCS vol. 184 (1997), p. 247).

16. Compagnoni, A.B., Goguen, H.H.: Typed operational semantics for higher order
subtyping. Information and Computation 184 (August 2003) 242–297

17. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science.
Springer Verlag (1996)

18. Odersky, M., the Scala Team: The Scala Language Specification (version 2.5).
http://www.scala-lang.org/docu/files/ScalaReference.pdf (June 2007)

19. Altherr, P., Cremet, V.: Messages posted on the Scala mailing list. Accessible from
http://lamp.epfl.ch/∼cremet/FGJ-omega/

20. Moors, A., Piessens, F., Joosen, W.: An object-oriented approach to datatype-
generic programming. In: Workshop on Generic Programming (WGP’2006), ACM
(September 2006)

21. Moors, A., Piessens, F., Odersky, M.: Towards equal rights for higher-kinded types.
Accepted for the 6th International Workshop on Multiparadigm Programming with

Object-Oriented Languages at the European Conference on Object-Oriented Pro-
gramming (ECOOP) (2007)

22. Neubauer, M., Thiemann, P.: Type classes with more higher-order polymorphism.
In: Proceedings of the seventh ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’02), New York, NY, USA, ACM Press (2002) 179–190

23. Igarashi, A., Viroli, M.: On variance-based subtyping for parametric types.
In: Proceedings of the European Conference on Object-oriented Programming
(ECOOP’02), Springer-Verlag (June 2002) 441–469

24. Torgersen, M., Hansen, C.P., Ernst, E., von der Ah, P., Bracha, G., Gafter, N.:
Adding wildcards to the Java programming language. In: Proceedings of the 2004
ACM symposium on Applied computing, ACM Press (2004) 1289–1296

