
Generating Typing Proofs for

Scaletta

Semester Project

10. June 2005

Author : Grégory Mermoud

Supervisor : Vincent Cremet

Professor : Martin Odersky

Contents

About the cover i

1 Introduction 1

1.1 Goal of the project . 1

2 Background 3

2.1 Inner Classes and Virtual Types 3

2.1.1 Inner classes . 3

2.1.2 Virtual Types . 4

2.1.3 Summary . 5

2.2 Scaletta . 5

2.2.1 Syntax . 5

2.2.2 A Basic Example . 6

2.2.3 The Scaletta compiler 7

2.2.4 The Coq Proof Assistant 7

3 Translation 9

3.1 The Scaletta compiler AST 9

3.2 The proofer AST . 10

3.3 Translation . 11

4 Evaluation 15

4.1 From Semantic Rules to Implementation 15

4.1.1 Evaluating . 16

4.1.2 Strategic choices . 17

4.2 Proving an evaluation . 17

4.2.1 Data Structure for Proofs 18

4.2.2 Proof Generation . 18

5 Well-Formedness 21

5.1 From Typing Rules to Implementation 21

5.1.1 Type Fields and Term Fields 22

5.1.2 Proving WF_Valuation 23

5.1.3 The Lemmas . 23

iv

5.2 Main Di�erences with Semantics 24

6 Conclusion 25

A Scaletta formalization 27

B Scaletta formalization in Coq 31

B.1 Scaletta Calculus . 31
B.2 Semantics Rules . 32
B.3 Typing Rules . 34

C Main sources 39

C.1 Proof term data structure . 39
C.2 Semantics Proofer . 40
C.3 Well-Formedness Proofer . 43

D An example of Well-Formedness Proof 51

Bibliography 57

About the cover

The cover picture illustrates the �rst �computer bug� of history: a moth found
trapped between points at Relay 70, Panel F, of the Mark II Aiken Relay Cal-
culator while it was being tested at Harvard University, 9 September 1945. The
operators a�xed the moth to the computer log, with the entry: �First actual
case of bug being found�. They put out the word that they had �debugged�
the machine, thus introducing the term �debugging a computer program�. In
1988, the log, with the moth still taped by the entry, was in the Naval Surface
Warfare Center Computer Museum at Dahlgren, Virginia.

�To err is human, but for a real disaster you need a computer.�

ii About the cover

Chapter 1

Introduction

1.1 Goal of the project

Scala is a functional and object-oriented language that combines both the
concepts of inner classes and virtual types. An inner class C is a class nested
into another one such that each instance of C contains a reference to an instance
of the enclosing class. Virtual types are types whose occurence in a class needs
to be reinterpreted in the context of a subclass. The combination of these
two features in a type system is quite complex, but also leads to dramatically
increase the expression power of the language. For instance, it enables it to
encode the parametric polymorphism included in Java 5.

Scaletta is an object-based calculus able to capture the essence of the
Scala type system. On one hand, the typing of this calculus is formally
de�ned through typing rules described in Appendix A. On the other hand,
the Scaletta compiler is able to decide whether a program is well typed or
not. The goal of this project is to link the formal description of the typing
rules and their implementation in the compiler. More precisely, we aim to
provide a formal proof of the fact that a program is well typed. We use the
proof assistant Coq and the related language as target for the generated proof.
Section 2.2 and 2.2.4 describes Scaletta and Coq more in details.

Coupled with a formal proof of the fact that all well-typed programs are
safe, that is not part of this project, the typing proof generation is a important
step towards programs veri�cation and certi�cation.

In Chapter 2, we remind the concepts of inner classes and virtual types
before introducing the Scaletta calculus and the Coq proof assistant. In
Chapter 3, we explain the process of translating a Scaletta program in its
Coq equivalent. Chapter 4 aims to introduce smoothly our approach to proof
generation by considering only the proof that a program evaluates in a given
term. In Chapter 5, we explain the main di�erences between generating se-
mantic and well-formedness proofs, and we explain the main issues arising from
them. Finally, Chapter 6 provides some ideas for further work and improve-

2 Introduction

SCALETTA

compiler

Well-Formedness
Proofer

Evaluation
Proofer

COQ semantics
rules

COQ semantics
proof

COQ typing rules

COQ proof of
well-formedness

COQ calculus
definition

COQ program
formalization
(proofer AST)

Calculus definition

SCALETTA

program

SCALETTA abstract
grammar

SCALETTA

compiler AST

S
e
m
a
n
t
i
c
s
.
v

C
a
l
c
u
l
u
s
.
v

T
y
p
i
n
g
.
v

COQ

Valid proof or not

JAVA

Translator

SCALACOQ

Figure 1.1: A diagram of the program �ow, including the name of important �les
and the languages they are written in.

ments.
The Figure 1.1 provides a schematic view of the program �ow, including

the name of important �les and the languages they are written in. You may
notice that the ultimate goal of this project is to produce a Coq proof of
well-formedness that can be veri�ed by the Coq proof assistant.

Chapter 2

Background

2.1 Inner Classes and Virtual Types

This section is a summary of the technical report [AC05]. For any further
details, please report to this paper, available on the Scaletta web page [scab].

2.1.1 Inner classes

A nested class is a class declared within another one. We distinguish two
kinds of nested classes: inner classes which can access the current instance of
their enclosing class and static nested classes which can not. Within an inner
class the current instance of its enclosing class is called the current enclosing
instance and given an instance i of an inner class, it is called the enclosing
instance of i.

Static nested classes are equivalent to top-level classes with some privileged
rights to access static members of their enclosing class. Herein we are only
interested in the issues posed by the presence of a current enclosing instance
in inner classes.

Enclosing instances In Java any non-static class declared within some class
C is an inner class I. Within the inner class I, the expression C.this denotes
the current enclosing instance which is of type C.

In the code below, we consider an explicit declaration of a �eld outerI that
holds the current enclosing instance.

public class C {

class I { final C outerI = C.this; }

}

Actually, every inner class has a hidden �eld that holds this instance and
the syntax C.this is simply a way to access this hidden �eld. We call this �eld
the outer �eld and it is in fact the only element that di�ers an inner class from
a static nested class.

4 Background

Several issues arise from the introduction of inner classes in a language.
Discussing each of them is beyond the scope of this report. You may �nd
further details in the paper [AC05].

2.1.2 Virtual Types

In some object-oriented languages, it is possible to declare abstract type mem-
bers that have no exact type value, but only a type bound. These members
may then be given di�erent type values in di�erent subclasses and therefore
their exact value depends on the exact class of the value from which they are
selected. We call such type members virtual types. We illustrate virtual types
with the following example written in Scala that is a language that supports
virtual types:

abstract class M {

type T <: Object;

val x: T;

val y: T = x;

}

class N extends M {

type T = String;

val x = "foo";

}

In class M, the �elds x and y are both declared with the type T. It is therefore
legal to assign x to y. Within class M, the exact value of type T is unknown; it
is only known that this value is bound by (is a subtype of) Object. Although
"foo" has type String and String is bound by Object, it would be illegal to
assign "foo" to x because in subclasses of M, T may be assigned any subtype,
say S, of Object. If String is not a subtype of S, it would result in a typing
error. Since T is assigned the type String in the subclass N, it is possible to
assign "foo" to x in class N.

Mixing Virtual Types with Inner Classes

Typing virtual types in the presence of inner classes requires some kind of alias
analysis, as shown in the technical report [AC05]. To illustrate this claim we
consider in Scala the following example.

abstract class A {

type T <: Object;

abstract class X {

val outerX = A.this;

val x: T; // T <=> A.this.T <=> this.outerX.T

}

}

class B extends A {

2.2. Scaletta 5

type T = String;

class Y extends X {

val outerY = B.this;

val x = "foo";

}

}

In this example, it is possible to establish that the bound this.outerX.T

of x resolves to the type String in class Y only because it was possible to
establish that for any instance of Y, the �elds outerX and outerY hold the
same value. Without that information, one would only know that x has the
type T and that x is bound by Object.

2.1.3 Summary

To sum up, typing virtual types in the presence of inner classes requires some
kind of alias analysis. This analysis is needed when a virtual type has to be
reinterpreted within a di�erent context from the one where it occurs. It can
be performed by reinterpreting expressions of the form C.this. However, it
can also be performed by reinterpreting the translations of these expressions
into sequences of outer �eld selections. The translated expressions have the
advantage of being relocatable; they remain well-formed and keep the same
meaning in subclasses of the class where they occur which is not the case for
expressions of the form C.this.

2.2 Scaletta

Scaletta is a calculus of classes and objects whose goal is to type virtual
types in the presence of inner classes. The calculus has neither methods nor
class constructors. Instead it has a more general concept of abstract inheritance
which enables a class to extend an arbitrary object. This choice reduces greatly
the number of evaluation rules.

2.2.1 Syntax

A Scaletta program consists of a list of class declarations and a main term
representing the result of the program. Each class has a name, zero or one
parent, a list of �eld de�nitions, and a list of �eld valuations. We distinguish
two types of �eld de�nition:

1. The syntax def f : t declares a new �eld f which can hold a value with
type bound t.

2. The syntax typedef f : t declares a new �eld f which can hold a virtual
type bounded by the type t.

6 Background

We will see later, in Section 5, that this distinction is decisive in handling
virtual typing within Scaletta.

A �eld valuation val f = t gives the value t to an already declared �eld
f . Note that types and terms share the same syntactic structure. Within a
program, classes are referred to through their name, therefore all classes must
have a globally unique name.

Although all classes are declared at the top-level, all are inner classes;
indeed each one has an implicit outer �eld and an enclosing instance has to be
provided to instantiate them. To bootstrap the whole thing, there is also an
implicit root class Root that may never be explicitly instantiated and whose
unique instance is provided from the outside.

The calculus implements inheritance through delegation. This means that
any instance c of class C with inherited members contains a value that im-
plements those members. This value is called the delegate of c. Each time an
implementation for a member is requested on c, one is �rst searched in class C.
If none is found, the request is forwarded to the delegate of c. In our calculus,
the parent of a class C is a term t that is used to compute the delegate of a
new instance of class C. Note that this term is evaluated in the context of the
enclosing class of C.

Terms are of four di�erent kinds. The traditional this denotes the current
instance. The �eld selection t.f denotes the evaluation of the �eld f on the
term t. he instance creation t!C corresponds to the Java expression t.new C():
it creates a new instance of class C whose implicit outer �eld is initialized with
t. The outer �eld selection t@C corresponds to the Java expression t.outerC
where outerC denotes the implicit outer �eld of class C. Hence it returns the
content of that �eld, provided t is an instance of class C.

In some sense, the operation t@C is the opposite of t!C because it extracts
from an instance of class C the enclosing instance that was used to create it.
Hence it is reasonable to consider that the expression t!C@C is equal to t.

2.2.2 A Basic Example

The following Scaletta program computes the sum of two positive integers
which are inductively encoded with a base class Int and two subclasses Zero
and Succ. Please note that the code below contains a lot of syntactic sugar:
for instance, the term Int.this is actually equivalent to this@Succ@Int!Int.

class Int {

def pred: !Int;

def succ: !Int = !Succ;

def add(that: !Int): !Int;

class Succ extends !Int {

val pred = Int.this; // this@Succ@Int!Int

2.2. Scaletta 7

val add(that) = pred.add(that.succ);

}

}

class Zero extends !Int {

val pred = this;

val add(that) = that;

}

class IntStatic {

def zero: !Int = !Zero;

def one: !Int = zero.succ;

def two: !Int = one.succ;

def three: !Int = one.add(two);

}

def main: !Int = !IntStatic.three;

The program de�nes a class Int which contains two �elds pred and succ

which both hold an instance of the class Int, that is, the predecessor, respec-
tively the successor of the current instance. The class Int also contains the
method add(that:!Int) which takes an instance of the class Int as parameter
and returns another Int instance.

The class Succ is de�ned as an inner class of Int. Moreover, the class
Succ extends Int. Hence it has to de�ne the value of each uninitialized �eld
inherited from Int. The �eld pred holds the current enclosing instance, that
is, the predecessor of this integer. Note that Zero has no predecessor, that is
why it is not an inner class.

In class Succ, the method add(that) returns the value pred.add(that.succ),
that is, a recursive call to the method add on the predecessor of the current
object. The resolution of this call will occur in the the class Zero whose
add method directly returns its parameter. Thus, we can expect the value
one.add(two) to be resolved as this!Zero!Succ!Succ!Succ, that is, the Sca-
letta term encoding the value 3.

2.2.3 The Scaletta compiler

Scaletta is not a strictly theoretical calculus since there is a compiler and a
interpreter for it. The compiler transforms a Scaletta program in a abstract
syntax tree (AST). It also desugarizes the code (methods, blocks with nested
de�nitions, anonymous classes), performs a name analysis and checks the typ-
ing. This compiler is written in Java and it uses a Java extension supporting
algebraic types, Pico [pic], to de�ne the AST.

Our project goal is to re-use the AST provided by the compiler in order to
generate two di�erent proofs for each Scaletta program P : (1) P evaluates

8 Background

in a term t and (2) P is well-formed (or its typing is correct). To validate the
proofs, we are going to use Coq, a computer-aided proof assistant.

2.2.4 The Coq Proof Assistant

Developed in the LogiCal project, the Coq tool is a formal proof management
system: a proof done with Coq is mechanically checked by the machine. In
particular, Coq allows:

• the de�nition of functions or predicates,

• to state mathematical theorems and software speci�cations,

• to develop interactively formal proofs of these theorems,

• to check these proofs by a small certi�cation kernel.

Coq is based on a logical framework called �Calculus of Inductive Con-
structions� extended by a modular development system for theories. Basically,
it accepts two sort of proofs: (1) tactic-based proofs which are closer to the
human way of proving and (2) exact proofs that are terms of the calculus.

Chapter 3

Translation

In this phase, we re-use the AST provided by the original Scaletta compiler
and we translate it into another AST that is closer to the Coq syntax. Note
that, for the project, we start from an AST where all names have been resolved,
which simpli�es the writing of our proof generators. This makes a great di�er-
ence because in the Scaletta compiler name analysis is intrinsically complex
since it has to be performed simultaneously with type-checking. For instance
to relate the application of a method f to its de�nition, it is necessary to �rst
determine a type T for the receiver object of the application. Only then is it
possible to lookup the name f in the type T .

Since Coq is a functional calculus, we decide to use a functional language
such as Scala to implement our proof generator. Thus, we need to translate
a Java-Pico data structure, the Scaletta compiler AST, into a Scala one.
Fortunately, this can be easily achieved thanks to the great interoperability of
Scala with Java. Indeed, both languages share the same foundations1.

3.1 The Scaletta compiler AST

The main nodes of the Scaletta compiler AST are class symbols which con-
tain lists of references to the super classes2, the inner classes, the �elds and
their values, if any.

The Scaletta �elds are also represented by symbols which store the type
of the �eld and a boolean value that is true if the �eld de�nes conceptually a
type or a value. The types are represented by the class CType which provides
bounds. In the scope of this project, a �eld has only one bound, de�ned as a
Scaletta term. Moreover, each �eld can have a valuation that is represented
by a map that associates a term to a �eld in the AST.

1For more information on the relations between Scala and Java, please visit the Scala
web page [scaa].

2In this version of Scaletta, one can de�ne only one super class, but the compiler was
designed in order to easily support future extensions.

10 Translation

The Scaletta terms are encoded by case classes which form a small sub-
tree within the AST. On the top level, a term can be either a This or a
selection. Among the selection case, there is three di�erent selectors: the �eld
selection t.f , the outer �eld selection t@C and the instance creation t!C.

A Scaletta program is encoded by a class symbol that represents the
class Root. From this point, every class of the program is accessible through
recursive calls on the list of inner classes.

3.2 The proofer AST

The AST of the Scaletta compiler presents two drawbacks:

• It is not close enough to the Coq representation. Therefore, it does not
allow an elegant translation of the program to a Coq syntax.

• It is written in Java and we want to write our proofer in Scala in order
to bene�t of the fact that it is a functional language, like Coq.

Therefore, we need to translate the compiler AST into a Scala AST that
will be used for further phases of the project. The Scala code below is a
slightly simpli�ed version of the actual code.

// Scala data structure to represent a Scaletta program in Coq

class CoqTree;

// Program node

case class CoqProg (

olabels : Map[String,OLabel],

clabels : Map[String,CLabel],

flabels : Map[String,FLabel],

getClasz : Map[CLabel, mkClass],

getField : Map[FLabel, mkField],

getFieldValue : Map[Pair[CLabel, FLabel], Option[Term]],

getMain : Term

) extends CoqTree;

// Labels (Classes, Fields, Owners)

case class CLabel(name: String) extends CoqTree;

case class FLabel(name: String, typedef: boolean) extends CoqTree;

abstract class OLabel extends CoqTree;

case class Root extends OLabel;

case class OClasz(L: CLabel) extends OLabel;

// Term node

abstract class Term extends CoqTree;

3.3. Translation 11

// This

case class This extends Term;

// Selectors

// Instance creation -> t!L

case class New(t: Term, L: CLabel) extends Term;

// Field selector -> t.l

case class Get(t: Term, l: FLabel) extends Term;

// Outer field selector -> t@L

case class Out(t: Term, L: CLabel) extends Term;

// Field node

abstract class Field extends CoqTree;

case class mkField(L: CLabel, t: Term) extends Field;

// Class node

abstract class Clasz extends CoqTree;

case class mkClass(owner: OLabel, t: Option[Term]) extends Clasz;

This data structure is almost an exact traduction of the calculus de�nition
in Coq (Calculus.v, Appendix B). Its main interest is the fact that it uses case
classes which allows us to perform pattern matching.

3.3 Translation

The �rst step consists of running the original Scaletta compiler on the pro-
gram to be translated. Then, we use the resulting AST. We can easily identify
the main term since this is the last valued �eld of the Root class. Then, we
recursively visit all its nodes twice:

1. The �rst run collects all labels and builds the lists olabels, clabels and
flabels.

2. The second runs builds the remaining lists such as getClasz, getField
and getFieldValue.

The �nal step is dedicated to print the proofer AST by using the Coq

syntax. This can be done very easily because of the great similarity of the
proofer AST and the actual calculus de�nition. The code below illustrates
the translation of the example of Section 2.2.2, that computes the sum of two
positive integers.

Require Calculus.

Module MyProgram.

12 Translation

(** Class Label **)

Inductive MyCLabel : Set :=

| id_6_Succ : MyCLabel

| id_3_IntStatic : MyCLabel

| id_19_0_add : MyCLabel

| id_11_0 : MyCLabel

| id_21_0 : MyCLabel

| id_2_Zero : MyCLabel

| id_1_Int : MyCLabel

| id_5_add : MyCLabel

| id_10_0_add : MyCLabel

.

(** Field Label **)

Inductive MyFLabel : Set :=

| id_8_succ : MyFLabel

| id_7_pred : MyFLabel

| id_12_zero : MyFLabel

| id_17_o_ : MyFLabel

| id_15_three : MyFLabel

| id_14_two : MyFLabel

| id_13_one : MyFLabel

| id_16_i_0 : MyFLabel

| id_9_add : MyFLabel

.

Definition CLabel: Set := MyCLabel.

Definition FLabel: Set := MyFLabel.

Definition CLabelDec: forall (L M: CLabel), {L = M} + {L <> M}.

Proof. decide equality. Qed.

Definition FLabelDec: forall (l m: FLabel), {l = m} + {l <> m}.

Proof. decide equality. Qed.

(** Class owner labels - O P Q **)

Inductive OLabel : Set :=

| root : OLabel

| class : CLabel -> OLabel.

(** Terms - p q t u v w x y z **)

Inductive Term : Set :=

| this : Term

| new : Term -> CLabel -> Term

| get : Term -> FLabel -> Term

| out : Term -> CLabel -> Term.

(** Field definitions **)

Inductive Field : Set :=

3.3. Translation 13

| mkField : CLabel (** Field owner **)

-> Term (** Field bound **)

-> Field.

(** Class definitions **)

Inductive Class : Set :=

| mkClass : OLabel (** Class owner **)

-> option Term (** Class super **)

-> Class.

Definition getClass(L: CLabel): Class :=

match L with

| id_11_0 => (mkClass (class id_3_IntStatic) (Some (get (get

this id_13_one) id_9_add)))

| id_2_Zero => (mkClass root (Some (new this id_1_Int)))

| id_19_0_add => (mkClass (class id_6_Succ) (Some (new this

id_5_add)))

| id_1_Int => (mkClass root None)

| id_10_0_add => (mkClass (class id_2_Zero) (Some (new this

id_5_add)))

| id_6_Succ => (mkClass (class id_1_Int) (Some (new (out

this id_1_Int) id_1_Int)))

| id_3_IntStatic => (mkClass root None)

| id_21_0 => (mkClass (class id_19_0_add) (Some (get (get (out

this id_19_0_add) id_7_pred) id_9_add)))

| id_5_add => (mkClass (class id_1_Int) None)

end.

Definition getField(l: FLabel): Field :=

match l with

| id_8_succ => (mkField id_1_Int (new (out this id_1_Int)

id_1_Int))

| id_17_o_ => (mkField id_5_add (new (out (out this

id_5_add) id_1_Int) id_1_Int))

| id_13_one => (mkField id_3_IntStatic (new (out this

id_3_IntStatic) id_1_Int))

| id_12_zero => (mkField id_3_IntStatic (new (out this

id_3_IntStatic) id_1_Int))

| id_15_three => (mkField id_3_IntStatic (new (out this

id_3_IntStatic) id_1_Int))

| id_9_add => (mkField id_1_Int (new this id_5_add))

| id_14_two => (mkField id_3_IntStatic (new (out this

id_3_IntStatic) id_1_Int))

| id_16_i_0 => (mkField id_5_add (new (out (out this

id_5_add) id_1_Int) id_1_Int))

| id_7_pred => (mkField id_1_Int (new (out this id_1_Int)

id_1_Int))

end.

Definition getFieldValue(L: CLabel)(m: FLabel): option Term :=

14 Translation

match L,m with

| id_19_0_add , id_17_o_ => (Some (get (new this id_21_0)

id_17_o_))

| id_3_IntStatic , id_15_three => (Some (get (new this

id_11_0) id_17_o_))

| id_2_Zero , id_7_pred => (Some this)

| id_2_Zero , id_9_add => (Some (new this id_10_0_add))

| id_11_0 , id_16_i_0 => (Some (get (out this id_11_0)

id_14_two))

| id_6_Succ , id_7_pred => (Some (out this id_6_Succ))

| id_10_0_add , id_17_o_ => (Some (get this id_16_i_0))

| id_3_IntStatic , id_12_zero => (Some (new (out this

id_3_IntStatic) id_2_Zero))

| id_3_IntStatic , id_13_one => (Some (get (get this

id_12_zero) id_8_succ))

| id_1_Int , id_8_succ => (Some (new this id_6_Succ))

| id_21_0 , id_16_i_0 => (Some (get (get (out this id_21_0)

id_16_i_0) id_8_succ))

| id_6_Succ , id_9_add => (Some (new this id_19_0_add))

| id_3_IntStatic , id_14_two => (Some (get (get this

id_13_one) id_8_succ))

| _ , _ => None

end.

Definition getMain: Term :=

(get (new this id_3_IntStatic) id_15_three)

.

End MyProgram.

Chapter 4

Evaluation

The main purpose of this phase is to generate a proof of the fact that a program,
say P , evalutes in a term, say t. In fact, such a proof is not really useful and
we implement this part rather as a practice before going on some harder stu�
than as an actual step toward our �nal goal. Indeed, semantics and typing
rules are very similar and such an approach is really valuable since the last
part of the project was far easier after this starter.

4.1 From Semantic Rules to Implementation

The program semantics is de�ned by a set of rules which are divided into two
categories: (1) reduction and (2) expansion. The whole Scaletta semantics
is available in Appendix A. Herein we will show how a given rule is actually
implemented in the proofer.

Let us consider the following rule which claims that a term t1 = t!L can
be expanded to a term t2, that is, the result of substituting t for this in the
declared parent of class L.

(≺ −Ext)
getClassSuper(L) = u

t!L ≺ {t/this}u (4.1)

The following code shows how the (≺ −Ext) rule is translated in a induc-
tive Coq rule called Exp_Ext. You may �nd the whole semantics in Coq in
Appendix B.

Inductive Exp: Term -> Term -> Prop :=

| Exp_Refl :

forall (t: Term),

(Exp t t)

| Exp_Trans :

...

| Exp_Ext :

16 Evaluation

forall (t u: Term) (L: CLabel) (O: OLabel),

(getClass L = mkClass O (Some u)) ->

(Exp (new t L) (append t u))

| Exp_Red :

...

All relations are inductively de�ned on inductive sets. Hence, their imple-
mentation is naturally based on recursive functions, selecting the right branch
by using pattern matching. Considering the expansion for example, we per-
form pattern matching on the term t in order to decide which rule to apply.
Thus, if t is an instance of the case class New(t,L), we apply the constructor
Exp_Ext; otherwise, we apply another constructor of Exp. When several cases
are possible, we have to de�ne strategies. This can be done without restricting
the generality of the formalization, since the rules are designed to be con�uent
in the sense that choosing a rule instead of another one never leads to a dead
end, provided they are both applicable in this case.

4.1.1 Evaluating

The proofer implementation in Scala includes recursive functions of the form:

f : T 7→ (T, P)
t → (u, p)

(4.2)

where T, P are respectively the set of terms and evaluation proofs, and
t, u p are respectively a term, its evaluation and the proof of the fact that t
evaluates to u.

The proofer is roughly composed of 5 functions:

1. The function isValue performs pattern matching on its parameter t and
returns true if t is a value, false otherwise. This function is also recursive:
for instance, if t is of the form v!C, we returns the result of isValue(v).

2. The function evaluate that takes as parameter a term t and returns
both its evaluation and the proof of it. It is a typical recursive function
that is splitted into two cases Step and End. The former �rst reduces
the term t in a term u and then calls again evaluate on u ; the latter
directly returns t, provided that t is a value. The choice among these
cases is done by calling the boolean function isValue on t.

3. The function append takes two parameters t, u and appends t to u, i.e.
it substitutes t for This in u.

4. The function red takes as parameter a term t and returns its one-step
reduction. This function includes many strategies in order to choose the
right constructor to apply. Further details are provided in Section 4.1.2.

4.2. Proving an evaluation 17

5. The function exp involves a slightly more complex approach. Indeed, we
do not want to �nd any expansion of a term t, but one satisfying a given
condition. Hence the function exp returns the one-step expansion of its
parameter, but we seldom directly call this function. Instead, we use
another function lookupExp that recursively calls exp until the obtained
expansion satis�es a condition de�ned as a function fc : T 7→ B, where
B = {true, false}.

4.1.2 Strategic choices

Since some rules are ambiguous, we need to choose which constructor to apply.
Instead of picking up one at random, we prefer to set up strategies. Herein, we
give further details on the strategies involved by the function red. The above
Scala code is the skeleton of red.

def red(t: Term): Pair[Term, Red] = t match {

case New(t1,label) => // Red_CNew

case Get(t1,label) => // Strategy needed

isValue(t1) match {

case true => // Red_Get

case false => // Red_CGet

}

case Out(t1,label) => // Strategy needed

isValue(t1) match {

case true => // Red_Out

case false => // Red_COut

}

case _ =>

}

In the case that t is of the form t1.f or t1@C, a strategy is needed because
two rules are applicable. Here we simply test whether t1, the pre�x of t, is
a value or not. If it is, we apply the rule Red_Get, respectively Red_Out.
Otherwise, we apply the rule Red_CGet, respectively Red_COut. This strategy
implements the simple idea of giving priority to contextual rules to reduce the
pre�x of a term. Once the pre�x is a value, we can apply the central rules
of the semantics, namely Red_Get, Red_Out and Exp_Ext. This makes sense
because a value is anyway not reducible.

4.2 Proving an evaluation

Up to this section, we have not explained how we can produce proofs. In fact,
the evaluation process is only a mean of proving that a program (or rather its
main term) evaluates to a given term.

18 Evaluation

4.2.1 Data Structure for Proofs

The �rst step toward this goal is to de�ne a data structure for these proofs,
that is very close to the actual Coq structure. The code below provides a
snippet of both data structures.

In Coq:

Inductive Red: Term -> Term -> Prop :=

| Red_CNew:

forall (t u: Term) (L: CLabel),

(Red t u) -> (Red (new t L) (new u L))

| Red_CGet:

forall (t u: Term) (l:F FLabel),

(Red t u) -> (Red (get t l) (get u l))

In Scala:

trait ProofTerm;

abstract class Red extends ProofTerm;

case class RedCNew(t: Term, u: Term, L: CLabel, H: Red)

extends Red;

case class RedCGet(t: Term, u: Term, l: FLabel, H: Red)

extends Red;

This representation allows to perform pattern matching on each proof term.
It is particularly interesting when implementing the proofer since it enables the
compiler to detect many errors which would not have been detected otherwise.
For instance, if we are waiting for a proof term Red and we get Exp, then
this error will arise at compile time. Moreover, the greatest advantage of this
representation is that it is easy to build in parallel with the evaluation process
and easy to print in the Coq format.

4.2.2 Proof Generation

A Coq proof can be either an exact term of the underlying calculus or a �ow
of tactics. We choose the former rather than the latter because our approach
is far better suited to a calculus term, naturally inductive, than to a �ow
of tactics, naturally iterative. The main drawback is the fact that a human
cannot read the generated proofs even if they are very simple. The proof term
below intends to illustrate this fact; it is a snipet of the proof that the example
of Section 2.2.2 whose goal is to compute the sum of 1 and 2 evaluates in a
term that actually corresponds to 3.

Require Semantics.

Module MySemantics := Semantics.SetProgram(MyProgram).

Import MyProgram.

Import MySemantics.

4.2. Proving an evaluation 19

Lemma value: MySemantics.EvaluateMain (new (new (new (new this

id_2_Zero) id_6_Succ) id_6_Succ) id_6_Succ).

exact(Evaluate_Step (get (new this id_3_IntStatic) id_15_three) (get

(new (new this id_3_IntStatic) id_11_0) id_17_o_) (new (new (new (new

this id_2_Zero) id_6_Succ) id_6_Succ) id_6_Succ) (Red_Get (new this

id_3_IntStatic) this (get (new this id_11_0) id_17_o_) id_15_three

id_3_IntStatic (Exp_Refl (new this id_3_IntStatic)) (refl_equal (Some

(get (new this id_11_0) id_17_o_)))) (Evaluate_Step (get (new (new

this id_3_IntStatic) id_11_0) id_17_o_) (get (new (new (new this

id_3_IntStatic) id_11_0) id_21_0) id_17_o_) (new (new (new (new this

id_2_Zero) id_6_Succ) id_6_Succ) id_6_Succ) (Red_Get (new (new this

id_3_IntStatic) id_11_0) (new (new this id_2_Zero) id_6_Succ) (get

(new this id_21_0) id_17_o_) id_17_o_ id_19_0_add (Exp_Trans (new (new

this id_3_IntStatic) id_11_0) (get (get (new this id_3_IntStatic)

id_13_one) id_9_add) (new (new (new this id_2_Zero) id_6_Succ)

...

id_1_Int) id_1_Int))))) (Exp_Red (new (out (new this id_2_Zero)

id_1_Int) id_1_Int) (new this id_1_Int) (Red_CNew (out (new this

id_2_Zero) id_1_Int) this id_1_Int (Red_Out (new this id_2_Zero) this

id_1_Int (Exp_Ext (new this id_2_Zero) (new this id_1_Int) id_2_Zero

root (refl_equal (mkClass root (Some (new this id_1_Int)))))))))))))

(refl_equal (Some (new this id_6_Succ)))) (Evaluate_End (new (new (new

(new this id_2_Zero) id_6_Succ) id_6_Succ) id_6_Succ) (IsValue_Red

(new (new (new this id_2_Zero) id_6_Succ) id_6_Succ) id_6_Succ

(IsValue_Red (new (new this id_2_Zero) id_6_Succ) id_6_Succ

(IsValue_Red (new this id_2_Zero) id_6_Succ (IsValue_Red this

id_2_Zero (IsValue_Value)))))))))))))))))))).

Qed.

The process of generating such a proof from our dedicated data structure
is straightforward since it consists in printing each node recursively. The main
issue arises from �lling the data structure.

Building a Proof

Recall that each method of the proofer returns a term u resulting from the
evaluation, the expansion or the reduction of the parameter t, together with a
proof of that fact. Basically, a proof of an evaluation, say e, is a term that has
the same structure as the tree of calls which lead to e.

Actually, it works because the evaluation is designed to �t to a proof gener-
ation and relies on the semantics rules. It shows that these rules are expressive
enough to evaluate any Scaletta program.

20 Evaluation

Chapter 5

Well-Formedness

This phase is the last one and its purpose is to type-check a Scaletta program
and to generate a proof of the fact that this program is actually well-formed.
We say that a program P is well-formed if and only if it respects the type
system rules.

As you will notice, this phase is quite similar to the previous one from
many points of view. That is why we are not going to provide highly detailed
explanation, but only the points the two phases di�er in.

5.1 From Typing Rules to Implementation

The typing rules have roughly the same structure as the semantic rules, but
they di�er in two important points.

The �rst di�erence is that for the semantics, all terms occurring through
the evaluation process were interpreted in the context of the implicit root
instance, as the main term of the program from which they stem. For typing,
terms must be interpreted in the context of their enclosing class. To denote
the interpretation of a term t in the context of a class L, we just replace in t
the initial this with the abstract root [L].

The other di�erence is that a type-checker must deal with abstract �elds,
i.e. �elds whose value is unknown in the current context. Fortunately there
exists a way of compensating this lack of information, it consists in approxi-
mating them with their declared bound.

To show the general form of a typing rule, we just comment the following
expansion rule.

Inductive Exp: ATerm -> ATerm -> Prop :=

| Exp_This:

forall (C: CLabel) (o: OLabel) (s: option Term),

(getClass C = mkClass o s) ->

(Exp (This (class C)) (New (This o) C))

22 Well-Formedness

This rule claims that a term of the form [C], written (This (class C)) in
Coq, can be expanded to [o]!C, written (New (This o) C) in Coq, where o
corresponds to the enclosing class of C. In other words, in the context of a class
C, the current instance this is known to be an instance of C. Furthermore,
its C enclosing instance is known to be the current instance of the enclosing
class of C.

You may get a complete list of typing rules in Appendix B.

5.1.1 Type Fields and Term Fields

For this phase, we modi�ed the original compiler in order to add a �eld property
which speci�es whether a �eld denotes a type or a term (a value). This piece
of information is really important for de�ning typing strategies: contrary to
type �elds, the exact value of a term �eld is never used for type-checking; a
term �eld can only be approximated by its declared bound.

In the Scaletta code below the class A de�nes two �elds: T, that denotes
a type, and x, that denotes a value. In the original compiler, the type of a
�eld is inferred by the context, but we cannot easily do the same. Hence we
slightly modi�ed the Scaletta syntax in order to introduce a new key word
that is typedef instead of the inexpressive def.

class A {

typedef T: !Object;

def x: T;

}

class B extends !A {

val T = !Int;

val x = 3;

}

If T was declared as a term �eld (using def instead of typedef), the x

valuation would not be well-formed in class B, because T would only be known
by its bound, i.e. !Object and 3 is not an instance of all subtypes of Object
(for instance 3 is not an instance of List).

But declaring T as a type �eld allows the type-checker to make use of its
value in class B, i.e. !Int, in order to accept the x valuation.

The rule of WF_Valuation formalizes the idea that the bound of a �eld
must be re-interpreted in every class that contains a valuation for this �eld.

Inductive WF_Valuation: CLabel -> FLabel -> Term -> Prop :=

| WF_Val:

forall (L: CLabel) (l: FLabel) (t u: Term) (M: CLabel) (u1: ATerm),

(getField l) = (mkField M u) -> (** def 1 **)

(WF_Term (append (This (class L)) t)) -> (** hyp 1 **)

(Inst (This (class L)) (class M)) -> (** hyp 2 **)

(Red (append (This (class L)) u) u1) -> (** hyp 3 **)

5.1. From Typing Rules to Implementation 23

(Exp (append (This (class L)) t) u1) -> (** hyp 4 **)

(WF_Valuation L l t).

The rule claims that a �eld valuation val l = t is well-formed in the context
of a class L if and only if the following properties are satis�ed:

(hyp 1) The term t is well-formed in the context of the class L.

(hyp 2) The current instance of L is an instance of the class M , the owner of
the �eld l.

(hyp 3) The bound u of the �eld l can be reduced to a term u1 in the context
of the class L.

(hyp 4) The term t can be expanded to u1 in the context of L.

Let us recall the above example for illustrating the rule WF_Valuation. In
this case, the term t is 3, the �eld l is x, the class L is B and the owner M of
the �eld x is A. Hence we can verify that it is actually well-formed by checking
each hypothesis. The �rst two are quite straightforward, but some di�culties
arise with the others.

5.1.2 Proving WF_Valuation

The main problem with WF_Valuation is that we need to �nd a term u1 which
satis�es both the third and the fourth hypothesis. Therefore, we face an al-
ternative, that is, either (1) we �rst reduce completely the bound u and then
we look for an expansion of t that matches or (2) we perform an interlinked
search. The latter can provide a complete set of possible values for u1 and
some shorter proofs, but the former is conceptually far simpler and therefore
easier to implement.

Again, our goal is not to produce short proofs which are easily readable by
humans. Hence, we prefer a simple and elegant solution to another one leading
to the same result in practice, we choose the �rst strategy.

5.1.3 The Lemmas

To conclude the proof that a program is well-formed we need three lemmas:
proveGetSuper, proveGetField and proveGetFieldValue. Their goal is to
simplify the proof by factorizing it. Indeed, the term WF_Prog, that is the
proof that a program is well-formed, is composed of 4 sub-proofs which claim
that the main term, each �eld valuation, each �eld bound and each super class
is well-formed. The �rst one is not a problem since the main term is unique,
but the others have to be generated for each �eld valuation, bound and super
class.

24 Well-Formedness

That is why we use lemmas as shortcut. The Coq code below provides an
illustration of the lemma proveGetFieldValue, which relies on another lemma
impliesGetFieldValue that is �xed and therefore not provided herein.

Lemma proveGetFieldValue:

forall (P: CLabel -> FLabel -> Term -> Prop),

...

(P Li li ti) ->

...

(forall (L: CLabel) (l: FLabel) (t: Term),

(getFieldValue L l) = (Some t) ->

(P L l t)).

Proof.

intros.

apply GetFieldValue_ind; trivial.

apply impliesGetFieldValue; trivial.

Qed.

Basically, we have to �ll this skeleton with a list of proofs that each �eld
valuation is well-formed. Instead of P Li li ti, we write WF_Valuation L

l t where L, l and t are respectively a class label, a �eld label and a term
among all the �eld valuations of a given program.

Thus, the generation is quite straightforward since we simply iterate on
the lists getClass, getField and getFieldValue that constitutes the Scala
representation of a Scaletta program.

5.2 Main Di�erences with Semantics

Even if the principles remain the same as in the semantics, many parts are
more complex, such as the proof of WF_Valuation detailled in Section 5.1.2.
Most of the problems arise from the fact that even a reduction may fail in
the type checker; for instance the selection t.l of an abstract type l cannot be
reduced even though it is not a value. In WF_Valuation we look for the most
reduced term u1 of a term u, i.e. we de�ne u1 as the reduction of u such as
any further reduction would fail. Hence, we have to handle the case when it
actually fails. This can be done by using the Option class in Scala.

Chapter 6

Conclusion

The original goal and the main contribution of this project is to prove the ex-
pressiveness of the Scaletta calculus by generating a proof of well-formedness
for a large and meaningful Scaletta program. This program computes prime
numbers based on the sieve of Eratosthenes implemented by lists of integers.
More precisely it contains the de�nitions of booleans, integers and lists of inte-
gers. These inductive datatypes are modeled as classes using the visitor design
pattern. Visitors are polymorphic in their result type and polymorphism is
naturally encoded via virtual types.

Moreover, it allowed to discover some errors in the typing rules by imple-
menting them thoroughly. We are now absolutely sure that they are coherent
while allowing the implementation of expressive programs.

This report and the source code of the program can be useful for further
projects in the �eld of typing proofers. The next step is to make this program
support the new features of further versions of Scaletta and deal e�ciently
with even larger programs such as Scala programs translated in Scaletta.

Nevertheless, to ful�ll these requirements, it would be necessary to attach
more importance to its optimization. For example, it would be interesting
to keep track of the analysis of a term in order to avoid analyzing another
occurrence of the same term.

26 Conclusion

Appendix A

Scaletta formalization

In Figure A.1, we provide the rules which formalize both the syntax and the se-
mantics of Scaletta. Figure A.2 contains rules for the abstract reduction and
expansion, as well as the formal de�nition of a well-formed term. Figure A.3
provides a formal de�nition of a well-formed program.

These rules are written in mathematical notation. You can �nd their Coq
version in Appendix B.

28 Scaletta formalization

Class name L,M
Field name l,m
Term t, u, v ::= this current instance

| t!L instance creation
| t@L outer �eld selection
| t.l �eld selection

Owner O ::= Root root
| L class

Value V ::= this

| V !L

getClassOwner(L) = O
partial getClassSuper(L) = t

getFieldOwner(l) = L
getFieldBound(l) = t

partial getFieldValue(L, l) = t

getMain = t

(t → u) Reduction

(→-cnew)
t → u

t!L → u!L

(→-cout)
t → u

t@L → u@L

(→-cget)
t → u

t.l → u.l

(→-out)
t ≺ u!L

t@L → u

(→-get)

t ≺ u!L
getFieldValue(L, l) = v

t.l → {t/this}v

(t ≺ u) Expansion

(≺-red)
t → u

t ≺ u

(≺-re�)
t ≺ t

(≺-trans) t ≺ u u ≺ v

t ≺ v

(≺-super) getClassSuper(L) = u

t!L ≺ {t/this}u

Figure A.1: Syntax and Semantics

29

Rooted term t̂, û, v̂ ::= [O]
| t̂!L

| t̂@L

| t̂.l

(t̂ =: û) Abstract Reduction

(=:-re�)
t̂ =: t̂

(=:-trans)
t̂ =: û û =: v̂

t̂ =: v̂

(=:-cnew)
t̂ =: û

t̂!L =: û!L

(=:-cout)
t̂ =: û

t̂@L =: û@L

(=:-cget)
t̂ =: û

t̂.l =: û.l

(=:-out)
t̂ <: û!L

t̂@L =: û

(=:-get)

t̂ <: û!L
getFieldValue(L, l) = v

t̂.l =: {t̂/this}v

(t̂ <: û) Abstract Expansion

(<:-red)
t̂ =: û

t̂ <: û

(<:-re�)
t̂ <: t̂

(<:-trans)
t̂ <: û û <: v̂

t̂ <: v̂

(<:-super)
getClassSuper(L) = u

t̂!L <: {t̂/this}u

(<:-this)
getClassOwner(L) = O

[L] <: [O]!L

(<:-get)
getFieldBound(l) = u

t̂.l <: {t̂/this}u

(t̂ : O) Instance Test

(:-root)
t̂ <: [Root]

t̂ : Root

(:-class)
t̂ <: û!L

t̂ : L

(t̂ �) Rooted Term Well-formedness

(�-this)
[O] �

(�-new)

t̂ �
t̂ : getClassOwner(L)

t̂!L �

(�-out) t̂ � t̂ : L

t̂@L �

(�-get)

t̂ �
t̂ : getFieldOwner(l)

t̂.l �

Figure A.2: Typing 1/2

30 Scaletta formalization

Program Well-formedness

(�-super) {[getClassOwner(L)]/this}t �
getClassSuper(L) = t �

(�-bound)
{[getFieldOwner(l)]/this}t �

getFieldBound(l) = t �

(�-main)
{[Root]/this}t �
getMain = t �

(�-val)

t̂ = {[L]/this}t
t̂ �

[L] : getFieldOwner(l)
{[L]/this}getFieldBound(l) =: û

t̂ <: û

getFieldValue(L, l) = t

Figure A.3: Typing 2/2

Appendix B

Scaletta formalization in Coq

B.1 Scaletta Calculus

(∗∗ Program d e f i n i t i o n s ∗∗)
Module Type Program .

(∗∗ Class l a b e l s − K L M ∗∗)
Parameter CLabel : Set .
Parameter CLabelDec : f o r a l l (L M: CLabel) , {L = M} + {L <>

M}.

(∗∗ Fie ld l a b e l s − k l m ∗∗)
Parameter FLabel : Set .
Parameter FLabelDec : f o r a l l (l m: FLabel) , { l = m} + { l <>

m} .

(∗∗ Class owner l a b e l s − O P Q ∗∗)
Induct ive OLabel : Set :=

| root : OLabel
| c l a s s : CLabel −> OLabel .

(∗∗ Terms − p q t u v w x y z ∗∗)
Induct ive Term : Set :=

| t h i s : Term
| new : Term −> CLabel −> Term
| get : Term −> FLabel −> Term
| out : Term −> CLabel −> Term .

(∗∗ Fie ld d e f i n i t i o n s ∗∗)
Induct ive F i e ld : Set :=

| mkField : CLabel (∗∗ Fie ld owner ∗∗)
−> Term (∗∗ Fie ld bound ∗∗)
−> Fie ld .

(∗∗ Class d e f i n i t i o n s ∗∗)

32 Scaletta formalization in Coq

Induct ive Class : Set :=
| mkClass : OLabel (∗∗ Class owner ∗∗)

−> opt ion Term (∗∗ Class super ∗∗)
−> Class .

(∗∗ Returns the d e f i n i t i o n o f a c l a s s ∗∗)
Parameter ge tC la s s : CLabel −> Class .

(∗∗ Returns the d e f i n i t i o n o f a f i e l d ∗∗)
Parameter g e tF i e l d : FLabel −> Fie ld .

(∗∗ Returns the va luat i on o f a f i e l d in a c l a s s ∗∗)
Parameter getF ie ldValue : CLabel −> FLabel −> opt ion Term .

(∗∗ Returns the main term . ∗∗)
Parameter getMain : Term .

End Program .

Listing B.1: Calculus.v

B.2 Semantics Rules

Require Import Calcu lus .

Module SetProgram (MyProgram : Program) .

Import MyProgram .

(∗∗ Subs t i tu t i on o f t f o r t h i s in u ∗∗)
Fixpo int append (t u : Term) { s t r u c t u } : Term :=

match u with
| t h i s => t
| (new u1 L) => (new (append t u1) L)
| (out u1 L) => (out (append t u1) L)
| (get u1 l) => (get (append t u1) l)

end .

(∗∗ Expansion ∗∗)
Induct ive Exp : Term −> Term −> Prop :=

| Exp_Refl :
f o r a l l (t : Term) ,
(Exp t t)

B.2. Semantics Rules 33

| Exp_Trans :
f o r a l l (t u v : Term) ,
(Exp t u) −> (Exp u v) −> (Exp t v)

| Exp_Ext :
f o r a l l (t u : Term) (L : CLabel) (O: OLabel) ,
(ge tC la s s L = mkClass O (Some u)) −>
(Exp (new t L) (append t u))

| Exp_Red :
f o r a l l (t u : Term) ,
(Red t u) −> (Exp t u)

(∗∗ Reduction ∗∗)
with Red : Term −> Term −> Prop :=

| Red_CNew:
f o r a l l (t u : Term) (L : CLabel) ,
(Red t u) −> (Red (new t L) (new u L))

| Red_CGet :
f o r a l l (t u : Term) (l : FLabel) ,
(Red t u) −> (Red (get t l) (get u l))

| Red_COut :
f o r a l l (t u : Term) (L : CLabel) ,
(Red t u) −> (Red (out t L) (out u L))

| Red_Out :
f o r a l l (t u : Term) (L : CLabel) ,
(Exp t (new u L)) −> (Red (out t L) u)

| Red_Get :
f o r a l l (t u x : Term) (l : FLabel) (L : CLabel) ,
(Exp t (new u L)) −>
(getFie ldValue L l = Some x) −>
(Red (get t l) (append t x)) .

(∗∗ Values ∗∗)
Induct ive IsValue : Term −> Prop :=

| IsValue_Value : (IsValue t h i s)
| IsValue_Red :

f o r a l l (v : Term) (L : CLabel) ,
(I sValue v) −> (IsValue (new v L)) .

(∗∗ Evaluat ion ∗∗)
Induct ive Evaluate : Term −> Term −> Prop :=

| Evaluate_End :
f o r a l l (t : Term) ,

34 Scaletta formalization in Coq

(IsValue t) −> (Evaluate t t)
| Evaluate_Step :

f o r a l l (t u v : Term) ,
(Red t u) −>
(Evaluate u v) −> (Evaluate t v) .

Lemma Evaluat ion : f o r a l l (t u : Term) , (Evaluate t u) −> (
IsValue u) .

Proof .
i n t r o s .
induct i on H.
t r i v i a l . t r i v i a l .
Qed .

De f i n i t i o n EvaluateMain (t : Term) : Prop :=
Evaluate getMain t .

End SetProgram .

Listing B.2: Semantics.v

B.3 Typing Rules

Require Import Calcu lus .

Module SetProgram (MyProgram : Program) .

Import MyProgram .

(∗∗ Abstract Terms − p q t u v w x y z ∗∗)
Induct ive ATerm : Set :=

| This : OLabel −> ATerm
| New : ATerm −> CLabel −> ATerm
| Get : ATerm −> FLabel −> ATerm
| Out : ATerm −> CLabel −> ATerm.

(∗∗ Subs t i tu t i on o f t f o r t h i s in u ∗∗)
Fixpo int append (t : ATerm) (u : Term) { s t r u c t u } : ATerm :=

match u with
| t h i s => t
| (new u1 L) => (New (append t u1) L)
| (out u1 L) => (Out (append t u1) L)
| (get u1 l) => (Get (append t u1) l)

end .

B.3. Typing Rules 35

(∗∗ Abstract Expansion ∗∗)
Induct ive Exp : ATerm −> ATerm −> Prop :=

| Exp_Refl :
f o r a l l (t : ATerm) ,
(Exp t t)

| Exp_Trans :
f o r a l l (t u v : ATerm) ,
(Exp t u) −> (Exp u v) −> (Exp t v)

| Exp_Ext :
f o r a l l (t : ATerm) (u : Term) (L : CLabel) (o : OLabel) ,
(ge tC la s s L = mkClass o (Some u)) −>
(Exp (New t L) (append t u))

| Exp_Red :
f o r a l l (t u : ATerm) ,
(Red t u) −> (Exp t u)

| Exp_This :
f o r a l l (L : CLabel) (o : OLabel) (s : opt ion Term) ,
(ge tC la s s L) = (mkClass o s) −>
(Exp (This (c l a s s L)) (New (This o) L))

| Exp_Def :
f o r a l l (t : ATerm) (l : FLabel) (L : CLabel) (u : Term) ,
(g e tF i e l d l) = (mkField L u) −>
(Exp (Get t l) (append t u))

(∗∗ Abstract Reduction ∗∗)
with Red : ATerm −> ATerm −> Prop :=

| Red_CNew:
f o r a l l (t u : ATerm) (L : CLabel) ,
(Red t u) −> (Red (New t L) (New u L))

| Red_CGet :
f o r a l l (t u : ATerm) (l : FLabel) ,
(Red t u) −> (Red (Get t l) (Get u l))

| Red_COut :
f o r a l l (t u : ATerm) (L : CLabel) ,
(Red t u) −> (Red (Out t L) (Out u L))

| Red_Out :
f o r a l l (t u : ATerm) (L : CLabel) ,
(Exp t (New u L)) −> (Red (Out t L) u)

36 Scaletta formalization in Coq

| Red_Get :
f o r a l l (t : ATerm) (u : Term) (l : FLabel) (L : CLabel) ,
(I n s t t (c l a s s L)) −>
(getF ie ldValue L l = Some u) −>
(Red (Get t l) (append t u))

| Red_Refl :
f o r a l l (t : ATerm) ,
(Red t t)

| Red_Trans :
f o r a l l (t u v : ATerm) ,
(Red t u) −> (Red u v) −> (Red t v)

(∗∗ In s tance ∗∗)
with In s t : ATerm −> OLabel −> Prop :=

| Inst_Root :
f o r a l l (t : ATerm) ,

(Exp t (This root)) −>
(In s t t root)

| Inst_Class :
f o r a l l (t u : ATerm) (L : CLabel) ,
(Exp t (New u L)) −>
(In s t t (c l a s s L)) .

(∗∗ Abstract term Well−formedness ∗∗)
Induct ive WF_Term: ATerm −> Prop :=

| WF_This :
f o r a l l (o : OLabel) ,
(WF_Term (This o))

| WF_New:
f o r a l l (t : ATerm) (L : CLabel) (o : OLabel) (s : opt ion Term

) ,
(WF_Term t) −>
(getC la s s L) = (mkClass o s) −>
(In s t t o) −>
(WF_Term (New t L))

| WF_Out:
f o r a l l (t : ATerm) (L : CLabel) ,
(WF_Term t) −>
(In s t t (c l a s s L)) −>
(WF_Term (Out t L))

| WF_Get:

B.3. Typing Rules 37

f o r a l l (t : ATerm) (l : FLabel) (L : CLabel) (u : Term) ,
(WF_Term t) −>
(ge tF i e l d l) = (mkField L u) −>
(In s t t (c l a s s L)) −>
(WF_Term (Get t l)) .

Induct ive WF_Valuation : CLabel −> FLabel −> Term −> Prop :=

| WF_Val:
f o r a l l (L : CLabel) (l : FLabel) (t u : Term) (M: CLabel) (

u1 : ATerm) ,
(g e tF i e l d l) = (mkField M u) −>
(WF_Term (append (This (c l a s s L)) t)) −>
(In s t (This (c l a s s L)) (c l a s s M)) −>
(Red (append (This (c l a s s L)) u) u1) −>
(Exp (append (This (c l a s s L)) t) u1) −>
(WF_Valuation L l t) .

Induct ive WF_Program: Prop :=

| WF_Prog :

(f o r a l l (L : CLabel) (o : OLabel) (t : Term) ,
(ge tC la s s L) = (mkClass o (Some t)) −>
(WF_Term (append (This o) t))) −>

(f o r a l l (l : FLabel) (L : CLabel) (t : Term) ,
(g e tF i e l d l) = (mkField L t) −>
(WF_Term (append (This (c l a s s L)) t))) −>

(f o r a l l (L : CLabel) (l : FLabel) (t : Term) ,
(getF ie ldValue L l) = (Some t) −>
(WF_Valuation L l t)) −>

(WF_Term (append (This root) getMain)) −>

WF_Program.

End SetProgram .

Listing B.3: Typing.v

38 Scaletta formalization in Coq

Appendix C

Main sources

C.1 Proof term data structure

package s c a l e t t a . l i nked . f u l l . p r oo f e r ;

import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CoqTree ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Term ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CLabel ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . FLabel ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . OLabel ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . mkClass ;

t r a i t ProofTerm ;

ab s t r a c t c l a s s Equ extends ProofTerm ;

case c l a s s EquClass (L : CLabel , t : mkClass) extends Equ ;
case c l a s s EquField (C: CLabel , f : FLabel , t : Term) extends

Equ ;

// Induct ive Expansion
abs t r a c t c l a s s Exp extends ProofTerm with Red ;

case c l a s s ExpRefl (t : Term) extends Exp ;
case c l a s s ExpTrans (t : Term , u : Term , v : Term , H1 : Exp , H2 :

Exp) extends Exp ;
case c l a s s ExpExt (t : Term , u : Term , l : CLabel , O: OLabel , H:

Equ) extends Exp ;
case c l a s s ExpRed(t : Term , u : Term , H: Red) extends Exp ;

// Reduction
abs t r a c t c l a s s Red extends ProofTerm ;

case c l a s s RedCNew(t : Term , u : Term , L : CLabel , H: Red)
extends Red ;

40 Main sources

case c l a s s RedCGet(t : Term , u : Term , l : FLabel , H: Red)
extends Red ;

case c l a s s RedCOut(t : Term , u : Term , L : CLabel , H: Red)
extends Red ;

case c l a s s RedOut(t : Term , u : Term , L : CLabel , H: Exp)
extends Red ;

case c l a s s RedGet (t : Term , u : Term , x : Term , l : FLabel , L :
CLabel , H1 : Exp , H2 : Equ) extends Red ;

// Values
ab s t r a c t c l a s s IsValue extends ProofTerm ;

case c l a s s IsValueValue (t : Term) extends IsValue ;
case c l a s s IsValueRed (v : Term , L : CLabel , H: IsValue) extends

IsValue ;

// Evaluat ion
abs t r a c t c l a s s Evaluate extends ProofTerm ;

case c l a s s EvaluateEnd (t : Term , H: IsValue) extends Evaluate ;
case c l a s s EvaluateStep (t : Term , u : Term , v : Term , H1 : Red ,

H2 : Evaluate) extends Evaluate ;

Listing C.1: ProofTerm.scala

C.2 Semantics Proofer

package s c a l e t t a . l i nked . f u l l . p r oo f e r ;

import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CoqTree ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Term ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CoqProg ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . mkClass ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . This ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r .New;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Get ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Out ;

c l a s s Proo fe r {

de f proo f (prog : CoqProg) : Pair [Term , ProofTerm] = {
eva luate (prog , prog . getMain) ;

}

C.2. Semantics Proofer 41

de f i sVa lue (prog : CoqProg , t : Term) : Pair [Boolean , IsValue]
= t match {

case This () => // IsValue_Value
new Pair (true , new IsValueValue (t)) ;

case New(v , l a b e l) => // IsValue_Red
va l Pair (b , h) = isVa lue (prog , v) ;
new Pair (b , new IsValueRed (v , l abe l , h)) ;

case _ => new Pair (f a l s e , nu l l) ;
}

de f append (prog : CoqProg , t : Term , u : Term) : Term = u match
{

case This () => t ;
case New(u1 , l a b e l) => new New(append (prog , t , u1) , l a b e l) ;
case Out(u1 , l a b e l) => new Out(append (prog , t , u1) , l a b e l) ;
case Get (u1 , l a b e l) => new Get (append (prog , t , u1) , l a b e l) ;
case _ => System . out . p r i n t l n (" Error : unkown (probably

nu l l) term in append ! ") ; nu l l ;
}

de f eva luate (prog : CoqProg , t : Term) : Pair [Term , Evaluate]
= {

va l i s v a l = i sVa lue (prog , t) ;
i f (i s v a l ._1) {
new Pair (t , new EvaluateEnd (t , i s v a l ._2)) ;

} e l s e {
va l Pair (u , h1) = red (prog , t) ;
va l Pair (v , h2) = eva luate (prog , u) ; // (Red t u) −> (

Evaluate u v) −> (Evaluate t v)
new Pair (v , new EvaluateStep (t , u , v , h1 , h2)) ;

}
}

de f red (prog : CoqProg , t : Term) : Pair [Term , Red] = t match
{

case New(t1 , l a b e l) => // Red_CNew
val Pair (u , h) = red (prog , t1) ;
va l r e s = new New(u , l a b e l) ;
new Pair (res , new RedCNew(t1 , u , l abe l , h)) ;

case Get (t1 , l a b e l) => // Red_CGet
va l Pair (i s v a l , i s va l_proo f) = i sVa lue (prog , t1) ;
i f (! i s v a l) { // s t r a t e gy cho i c e Red_CGet

va l Pair (u , h) = red (prog , t1) ;
va l r e s = new Get (u , l a b e l) ;
new Pair (res , new RedCGet(t1 , u , l abe l , h)) ; // (Red t u) −>

(Red (get t l) (get t u))
} e l s e { // Red_Get

va l Pair (lu , hlu) = lookup (prog , t1 , x : Term => x match {

42 Main sources

// (Exp t (new u L)) −> (getF ie ldValue L l = Some u
)

case New(u , labe lnew) i f (i sVa lue (prog , u) ._1) => prog .
getF ie ldValue . conta in s (new Pair (labelnew , l a b e l)) && !
prog . getF ie ldValue (new Pair (labelnew , l a b e l)) . isEmpty ;

case _ => f a l s e ;
}) ;
va l u = lu . as InstanceOf [New] . t ;
va l labe lnew = lu . as InstanceOf [New] . L ;
va l Some(x) = prog . getF ie ldValue (Pair (labelnew , l a b e l)) ;
va l r e s = append (prog , t1 , x) ;
new Pair (res , new RedGet (t1 , u , x , l abe l , labelnew , hlu ,

new EquField (labelnew , l abe l , x))) ; // (Exp t (new u L)
) −> (getF ie ldValue L l = Some u) −> (Red (get t l) (
append t u))
}

case Out(t1 , l a b e l) => // Red_COut
va l Pair (i s v a l , i s va l_proo f) = i sVa lue (prog , t1) ;
i f (! i s v a l) { // s t r a t e gy cho i c e : (I sValue t) −>

Red_COut
va l Pair (u , h) = red (prog , t1) ;
va l r e s = new Out(u , l a b e l) ;
new Pair (res , new RedCOut(t1 , u , l abe l , h)) ;

} e l s e { // Red_Out
va l lu = lookup (prog , t1 , x : Term => x match {

case New(u , labe lnew) i f (i sVa lue (prog , u) ._1) => l ab e l ==
labelnew ;

case _ => f a l s e ;
}) ;
va l u = lu ._1 . as InstanceOf [New] ;
new Pair (u . t , new RedOut(t1 , u . t , u . L , lu ._2)) ;

}
case _ => System . out . p r i n t l n (" Error : unknown term > " + t

) ; nu l l ;
}

/∗ Lookup in expanded terms s e t f o r a term t matching with
f ∗/

de f lookup (prog : CoqProg , t : Term , f : Term => Boolean) :
Pair [Term ,Exp] = {

i f (f (t)) {
new Pair (t , new ExpRefl (t)) ; // Exp_Refl

} e l s e {
va l stepexp = exp (prog , t) ; // one s tep expansion
i f (f (stepexp ._1)) {

stepexp ;
} e l s e { // Exp_Trans

va l morestep = lookup (prog , stepexp ._1, f) ;

C.3. Well-Formedness Proofer 43

new Pair (morestep ._1, new ExpTrans (t , stepexp ._1, morestep
._1, stepexp ._2, morestep ._2)) ;
}

}
}

// One−s tep expansion o f term t
de f exp (prog : CoqProg , t : Term) : Pair [Term , Exp] = t match

{
case New(t1 , l a b e l) i f (i sVa lue (prog , t1) ._1) =>

val mkc : mkClass = prog . ge tClasz . apply (l a b e l) .
as InstanceOf [mkClass] ;

va l u = mkc . t . get ;
va l r e s = append (prog , t1 , u) ;
new Pair (res , new ExpExt (t , u , l abe l , mkc . owner , new

EquClass (l abe l ,mkc))) ;
case _ => // Exp_Red

va l Pair (tred , h) = red (prog , t) ;
new Pair (tred , new ExpRed(t , tred , h)) ;

}
}

Listing C.2: Proofer.scala

C.3 Well-Formedness Proofer

package s c a l e t t a . l i nked . f u l l . typechecker ;

import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CoqTree ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Term ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CoqProg ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Clasz ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . mkClass ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . This ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r .New;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Get ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Out ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . F i e ld ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . mkField ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . OLabel ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . CLabel ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . FLabel ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . Root ;
import s c a l e t t a . l i nked . f u l l . t r a n s l a t o r . OClasz ;

44 Main sources

c l a s s WFProofer {

de f proo f (prog : CoqProg) : WFProofTerm = {

de f append (t : ATerm, u : Term) : ATerm = u match {
case This () => t ;
case New(u1 , l a b e l) => ANew(append (t , u1) , l a b e l) ;
case Out(u1 , l a b e l) => AOut(append (t , u1) , l a b e l) ;
case Get (u1 , f l a b) => AGet(append (t , u1) , f l a b) ;
case _ => er r o r ("TC − Error : unkown (probably nu l l)

term in append ! ") ;
}

de f lookupExp (t : ATerm, f : ATerm => Boolean) : Option [Pair
[ATerm, Exp]] = {

i f (f (t)) {
Some(Pair (t , ExpRefl (t))) ; // Exp_Refl

} e l s e {
exp (t) match { // one step expansion

case None => None ;
case Some(Pair (stepexp , stepexph)) =>

i f (f (stepexp)) {
Some(Pair (stepexp , stepexph)) ;

} e l s e { // Exp_Trans
lookupExp (stepexp , f) match {

case Some(Pair (morestep , moresteph)) => (Some(Pair (
morestep , ExpTrans (t , stepexp , morestep , stepexph ,
moresteph))) : Option [Pair [ATerm, Exp]]) ;

case None => None ;
}

}
}

}
}

// one−s tep expansion
de f exp (t : ATerm) : Option [Pair [ATerm, Exp]] = {

red (t) match {
case None => // a l l but Exp_Red

t match {
case ANew(t1 , l a b e l) => // Exp_Ext
va l mkc = prog . ge tClasz . apply (l a b e l) . as InstanceOf [

mkClass] ;
mkc . t match {

case Some(u) => Some(Pair (append (t1 , u) , ExpExt (t1 ,
u , l abe l , mkc . owner , EquClass (l abe l ,mkc)))) ;

case None => None ;
}

C.3. Well-Formedness Proofer 45

case AThis (Root ()) => None ;
case AThis (OClasz (l a b e l)) =>

val mkc = prog . ge tClasz . apply (l a b e l) . as InstanceOf [
mkClass] ;

va l r e s = ANew(AThis (mkc . owner) , l a b e l) ;
Some(Pair (res , ExpThis (l abe l , mkc . owner , mkc . t ,

EquClass (l abe l ,mkc)))) ;

case AGet(t1 , f l a b e l) => // Exp_Def
va l mkf = prog . g e tF i e l d . apply (f l a b e l) . as InstanceOf [

mkField] ;
va l r e s = append (t1 , mkf . t) ;
Some(Pair (res , ExpDef (t1 , f l a b e l , mkf . L , mkf . t , EquField (

mkf . L , f l a b e l , mkf . t)))) ;
case _ => None ; // reduct ion f a i l e d and not in above

ca s e s
}

case Some(Pair (tred , redProof)) => // ExpRed
Some(Pair (tred , ExpRed(t , tred , redProof))) ;
}

}

// lookup f o r r educt ion
de f lookupRed (t : ATerm, f : ATerm => Boolean) : Option [Pair

[ATerm, Red]] = {
i f (f (t)) {

Some(Pair (t , RedRefl (t))) // Exp_Refl
} e l s e {

red (t) match { // one step expansion
case None => None ;
case Some(Pair (stepred , s tepredh)) =>

i f (f (s t epred)) {
Some(Pair (stepred , s tepredh))

} e l s e { // Exp_Trans
lookupRed (stepred , f) match {

case Some(Pair (morestep , moresteph)) => (Some(Pair (
morestep , RedTrans (t , s tepred , morestep , stepredh ,
moresteph))) : Option [Pair [ATerm, Red]])

case None => None
}

}
}

}
}

// one−s tep reduct i on
de f red (t : ATerm) : Option [Pair [ATerm, Red]] = {

46 Main sources

t match {
case ANew(t1 , l a b e l) => // Red_CNew

red (t1) match {
case Some(Pair (u , h)) =>
Some(Pair (ANew(u , l a b e l) , RedCNew(t1 , u , l abe l , h)))

case None => None
}

case AGet(t1 , f l a b) => // Red_Get or Red_CGet ?
red (t1) match {

case None i f f l a b . typede f => // s t r a t e gy cho i c e
Red_Get i f t1 i s i r r e d u c t i b l e and l a b e l i s a
typede f

lookupExp (t1 , {
case ANew(tnew , newlab) i f prog . getF ie ldValue . conta in s (

Pair (newlab , f l a b)) => prog . getF ie ldValue (Pair (
newlab , f l a b)) match {

case Some(nimp) => true
case None => f a l s e

}
case _ => f a l s e

}) match {
case Some(Pair (ANew(tnew , newlab) , exph)) => prog .

getF ie ldValue (Pair (newlab , f l a b)) match {
case Some(u) => Some(Pair (append (t1 , u) , RedGet (t1 , u ,

f l ab , newlab , I n s tC l a s s (t1 , tnew , newlab , exph) ,
EquFieldValue (newlab , f l ab , u)))) // (In s t t (
c l a s s L)) −> (getF ie ldValue L l = Some u) −> (Red
(get t l) (append t u))

}
case None => None

}
case Some(Pair (u , h)) => // Red_CGet
Some(Pair (AGet(u , f l a b) , RedCGet(t1 , u , f l ab , h))) ; // (

Red t u) −> (Red (get t l) (get t u))
case None => None

}
case AOut(t1 , l a b e l) => // Red_COut or Red_out ?

red (t1) match {
case Some(Pair (u , h)) => // Red_COut
Some(Pair (AOut(u , l a b e l) , RedCOut(t1 , u , l abe l , h))) ;

case None =>
// Looking f o r an expanded term that has the form (u

l a b e l)
lookupExp (t1 , {

case ANew(aterm , labe lnew) => l ab e l == labelnew ;
case _ => f a l s e ;

}) match {

C.3. Well-Formedness Proofer 47

case Some(Pair (ANew(u , c lab) , hexp)) => Some(Pair (u ,
RedOut(t1 , u , c lab , hexp)))

case None => None
}

}
case _ => None

}}

// in s t anc e o f
de f i n s t (t : ATerm, o : OLabel) : Option [I n s t] = {

o match {
case Root () =>

lookupExp (t , {
case AThis (Root ()) => true
case _ => f a l s e

}) match {
case None => None
case Some(Pair (AThis (Root ()) , exph)) => Some(InstRoot (

t , exph))
}

case OClasz (c lab) =>
lookupExp (t , {

case ANew(u , newlab) => clab == newlab
case _ => f a l s e

}) match {
case None => None
case Some(Pair (ANew(u , newlab) , exph)) => Some(

In s tC l a s s (t , u , newlab , exph))
}
}

}

de f wfTerm(t : ATerm) : WFTerm = {
t match {

case AThis (o) => WFThis(o)
case ANew(t1 , l a b e l) =>

val wft = wfTerm(t1) ; // (WF_Term t) −>
val mkc = prog . ge tClasz . apply (l a b e l) ; // (ge tC la s s L) =

(mkClass o s) −>
val Some(t i n s t h) = i n s t (t1 , mkc . owner) ; // (In s t t o) −>
WFNew(t1 , l abe l , mkc . owner , mkc . t , wft , EquClass (l abe l ,

mkc) , t i n s t h)
case AOut(t1 , l a b e l) =>

val wft = wfTerm(t1) ; // (WF_Term t) −>
val Some(t i n s t h) = i n s t (t1 , prog . o l a b e l s (l a b e l . name)) ;

// (In s t t (c l a s s L)) −>
WFOut(t1 , l abe l , wft , t i n s t h)

case AGet(t1 , f l a b e l) =>
val wft = wfTerm(t1) ; // (WF_Term t) −>

48 Main sources

va l mkf = prog . g e tF i e l d (f l a b e l) ; // (g e tF i e l d l) = (
mkField L u) −>

val Some(t i n s t h) = i n s t (t1 , OClasz (mkf . L)) ; // (In s t t (
c l a s s L)) −>

WFGet(t1 , f l a b e l , mkf . L , mkf . t , wft , EquField (mkf . L ,
f l a b e l , mkf . t) , t i n s t h)
}

}

de f wfValuation (c lab : CLabel , f l a b : FLabel , t : Term) :
WFVal = {

// (g e tF i e l d l) = (mkField M u)
va l mkf = prog . g e tF i e l d (f l a b) ;
// (WF_Term (append (This (c l a s s L))) t)
va l th i sL = AThis (OClasz (c lab)) ;
va l wft = wfTerm(append (thisL , t)) ;
// (In s t (This (c l a s s L)) (c l a s s M))
va l olabM = OClasz (mkf . L) ;
va l Some(i n s t t h i sLh) = i n s t (thisL , olabM) ;
// (Red (append (This (c l a s s L)) u) u1) −> (Exp (append

(This (c l a s s L)) t) u1)
va l Some(Pair (l r ed , l r edh)) = lookupRed (append (thisL ,

mkf . t) , x : ATerm => red (x) == None) ; // l ook ing f o r
the most reduced term

va l Some(Pair (u1 , u1h)) = lookupExp (append (thisL , t) , x
: ATerm => l r ed == x) ; // l ook ing f o r an exans ion o f
(append (This (c l a s s L)) t) that equa l s u1

WFVal(clab , f l ab , t , mkf . t , mkf . L , u1 , EquField (mkf . L ,
f l ab , mkf . t) , wft , i n s t th i sLh , l redh , u1h)

}

de f wfProgram : WFProgram = {
// f o r a l l g e tC la s s
va l c l a s s l = prog . ge tClasz . t oL i s t f latMap ({ case Pair (

clab , mkClass (owner , t)) => t match {
case None => Ni l
case Some(x) => L i s t (wfTerm(append (AThis (owner) , x)))

}}) ;
// f o r a l l g e tF i e l d
va l f i e l d l = prog . g e tF i e l d . t oL i s t map ({ case Pair (f l ab

, mkf) => wfTerm(append (AThis (OClasz (mkf . L)) , mkf . t))
}) ;

// f o r a l l ge tF ie ldValue
va l f i e l d v a l u e l = prog . getF ie ldValue . t oL i s t f latMap ({

case Pair (Pair (clab , f l a b) , t) => t match {
case None => Ni l
case Some(x) => L i s t (wfValuation (clab , f l ab , x))

}}) ;

C.3. Well-Formedness Proofer 49

WFProg(c l a s s l , f i e l d l , f i e l d v a l u e l , wfTerm(append (AThis
(Root ()) , prog . getMain)))

}

wfProgram ;
}

}

Listing C.3: WFProofer.scala

50 Main sources

Appendix D

An example of

Well-Formedness Proof

We provide herein an example of well-formedness proof for the very simple
program below. Even if it is one of the most basic Scaletta program that
one can write, the proof that it is well-formed is quite long. We also provide
the formalization of the program in Coq.

class A {

def t: !A;

}

class B extends !A {

val t = !B;

}

def main: !A = !B;

(∗∗ Coq t r a n s l a t i o n o f the program ∗∗)
Require Calcu lus .

Module MyProgram .

(∗∗ Class Label ∗∗)
Induct ive MyCLabel : Set :=
| id_1_A : MyCLabel
| id_2_B : MyCLabel

.

(∗∗ Fie ld Label ∗∗)
Induct ive MyFLabel : Set :=
| id_4_t : MyFLabel

52 An example of Well-Formedness Proof

.

D e f i n i t i o n CLabel : Set := MyCLabel .
D e f i n i t i o n FLabel : Set := MyFLabel .

D e f i n i t i o n CLabelDec : f o r a l l (L M: CLabel) , {L = M} + {L <>
M}.

Proof . dec ide equa l i t y . Qed .
De f i n i t i o n FLabelDec : f o r a l l (l m: FLabel) , { l = m} + { l <>

m} .
Proof . dec ide equa l i t y . Qed .

(∗∗ Class owner l a b e l s − O P Q ∗∗)
Induct ive OLabel : Set :=
| root : OLabel
| c l a s s : CLabel −> OLabel .

(∗∗ Terms − p q t u v w x y z ∗∗)
Induct ive Term : Set :=

| t h i s : Term
| new : Term −> CLabel −> Term
| get : Term −> FLabel −> Term
| out : Term −> CLabel −> Term .

(∗∗ Fie ld d e f i n i t i o n s ∗∗)
Induct ive F i e ld : Set :=

| mkField : CLabel (∗∗ Fie ld owner ∗∗)
−> Term (∗∗ Fie ld bound ∗∗)
−> Fie ld .

(∗∗ Class d e f i n i t i o n s ∗∗)
Induct ive Class : Set :=
| mkClass : OLabel (∗∗ Class owner ∗∗)

−> opt ion Term (∗∗ Class super ∗∗)
−> Class .

De f i n i t i o n ge tC la s s (L : CLabel) : Class :=
match L with
| id_2_B => (mkClass root (Some (new th i s id_1_A)))
| id_1_A => (mkClass root None)

end .

De f i n i t i o n ge tF i e l d (l : FLabel) : F i e ld :=
match l with

| id_4_t => (mkField id_1_A (new (out t h i s id_1_A)
id_1_A))

end .

53

De f i n i t i o n getF ie ldValue (L : CLabel) (m: FLabel) : opt ion Term
:=

match L ,m with
| id_2_B , id_4_t => (Some (new (out t h i s id_2_B)

id_2_B))
| _ , _ => None

end .

De f i n i t i o n getMain : Term :=
(new th i s id_2_B)
.

End MyProgram .

(∗∗ Proof lambda term ∗∗)

Require Typing .
Module MyTyping := Typing . SetProgram (MyProgram) .
Import MyProgram .
Import MyTyping .
Lemma value : MyTyping .WF_Program.

(∗∗∗ LEMMAS ∗∗∗)
(∗∗∗ proveGetFie ldValue ∗∗∗)
Induct ive GetFieldValue : CLabel −> FLabel −> Term −> Prop :=
| GFV0: (GetFieldValue id_2_B id_4_t (new (out t h i s id_2_B)

id_2_B))
.

Hint Resolve GFV0: s c a l e t t a .

Lemma impl i e sGetFie ldValue : f o r a l l (L : CLabel) (l : FLabel) (t
: Term) ,

(getF ie ldValue L l) = (Some t) −> (GetFieldValue L l t) .

Proof .
induct i on L ; induct i on l ; s impl ; i n t r o s t H;

(d i s c r im ina t e H) | |
(i n j e c t i o n H; i n t r o H0 ; r ewr i t e <− H0 ; auto with s c a l e t t a

) .
Qed .

Lemma proveGetFie ldValue :
f o r a l l (P : CLabel −> FLabel −> Term −> Prop) ,
(P id_2_B id_4_t (new (out t h i s id_2_B) id_2_B)) −>

(f o r a l l (L : CLabel) (l : FLabel) (t : Term) ,
(getF ie ldValue L l) = (Some t) −>
(P L l t)) .

54 An example of Well-Formedness Proof

Proof .
i n t r o s .
apply GetFieldValue_ind ; t r i v i a l .
apply impl i e sGetFie ldValue ; t r i v i a l .

Qed .

(∗∗∗ proveGetFie ld ∗∗∗)
Induct ive GetFie ld : CLabel −> Term −> Prop :=
| GF0 : (GetFie ld id_1_A (new (out t h i s id_1_A) id_1_A))

.

Hint Resolve GF0 : s c a l e t t a .

Lemma imp l i e sGetF i e ld : f o r a l l (l : FLabel) (L : CLabel) (t :
Term) ,

(g e tF i e l d l) = (mkField L t) −> (GetFie ld L t) .

Proof .
induct i on l ; s impl ; i n t r o s L t H;

(d i s c r im ina t e H) | |
(i n j e c t i o n H; i n t r o s H0 H1 ;

r ewr i t e <− H0 ; r ewr i t e <− H1 ;
auto with s c a l e t t a) .

Qed .

Lemma proveGetFie ld :
f o r a l l (P : CLabel −> Term −> Prop) ,
(P id_1_A (new (out t h i s id_1_A) id_1_A)) −>

(f o r a l l (l : FLabel) (L : CLabel) (t : Term) ,
(g e tF i e l d l) = (mkField L t) −>
(P L t)) .

Proof .
i n t r o s .
apply GetField_ind ; t r i v i a l .
apply imp l i e sGetF i e ld with (l := l) ; t r i v i a l .

Qed .

(∗∗∗ proveGetSuper ∗∗∗)
Induct ive GetSuper : OLabel −> Term −> Prop :=
| GS0 : (GetSuper root (new t h i s id_1_A))

.

Hint Resolve GS0 : s c a l e t t a .

Lemma impl iesGetSuper : f o r a l l (L : CLabel) (o : OLabel) (t :
Term) ,

(ge tC la s s L) = (mkClass o (Some t)) −> (GetSuper o t) .

55

Proof .
induct i on L ; s impl ; i n t r o s o t H;

(d i s c r im ina t e H) | |
(i n j e c t i o n H; i n t r o s H0 H1 ;

r ewr i t e <− H0 ; r ewr i t e <− H1 ;
auto with s c a l e t t a) .

Qed .

Lemma proveGetSuper :
f o r a l l (P : OLabel −> Term −> Prop) ,
(P root (new t h i s id_1_A)) −>

(f o r a l l (L : CLabel) (o : OLabel) (t : Term) ,
(ge tC la s s L) = (mkClass o (Some t)) −>
(P o t)) .

Proof .
i n t r o s .
apply GetSuper_ind ; t r i v i a l .
apply impl iesGetSuper with (L := L) ; t r i v i a l .

Qed .
(∗∗∗ END LEMMAS ∗∗∗)

(∗∗ Proof o f wel l−formedness ∗∗)
exact (WF_Prog (proveGetSuper (fun o t => WF_Term (append (

This o) t)) (WF_New (This root) id_1_A root None (WF_This
root) (r e f l_equa l (mkClass root None)) (Inst_Root (This
root) (Exp_Refl (This root)))))

(proveGetFie ld (fun L t => WF_Term (append (This (c l a s s L))
t)) (WF_New (Out (This (c l a s s id_1_A)) id_1_A) id_1_A
root None (WF_Out (This (c l a s s id_1_A)) id_1_A (WF_This (
c l a s s id_1_A)) (Inst_Class (This (c l a s s id_1_A)) (This
root) id_1_A (Exp_This id_1_A root None (r e f l_equa l (
mkClass root None))))) (r e f l_equa l (mkClass root None)) (
Inst_Root (Out (This (c l a s s id_1_A)) id_1_A) (Exp_Red (
Out (This (c l a s s id_1_A)) id_1_A) (This root) (Red_Out (
This (c l a s s id_1_A)) (This root) id_1_A (Exp_This id_1_A
root None (r e f l_equa l (mkClass root None))))))))

(proveGetFieldValue (fun L l t => WF_Valuation L l t) (
WF_Val id_2_B id_4_t (new (out t h i s id_2_B) id_2_B) (new
(out t h i s id_1_A) id_1_A) id_1_A (New (This root) id_1_A)
(r e f l_equa l (mkField id_1_A (new (out t h i s id_1_A)

id_1_A))) (WF_New (Out (This (c l a s s id_2_B)) id_2_B)
id_2_B root (Some (new th i s id_1_A)) (WF_Out (This (c l a s s
id_2_B)) id_2_B (WF_This (c l a s s id_2_B)) (Inst_Class (
This (c l a s s id_2_B)) (This root) id_2_B (Exp_This id_2_B
root (Some (new th i s id_1_A)) (r e f l_equa l (mkClass root (
Some (new th i s id_1_A))))))) (r e f l_equa l (mkClass root (

56 An example of Well-Formedness Proof

Some (new th i s id_1_A)))) (Inst_Root (Out (This (c l a s s
id_2_B)) id_2_B) (Exp_Red (Out (This (c l a s s id_2_B))
id_2_B) (This root) (Red_Out (This (c l a s s id_2_B)) (This
root) id_2_B (Exp_This id_2_B root (Some (new th i s id_1_A
)) (r e f l_equa l (mkClass root (Some (new th i s id_1_A))))))
))) (Inst_Class (This (c l a s s id_2_B)) (This root) id_1_A
(Exp_Trans (This (c l a s s id_2_B)) (New (This root) id_2_B)
(New (This root) id_1_A) (Exp_This id_2_B root (Some (

new th i s id_1_A)) (r e f l_equa l (mkClass root (Some (new
th i s id_1_A))))) (Exp_Ext (This root) (new t h i s id_1_A)
id_2_B root (r e f l_equa l (mkClass root (Some (new th i s
id_1_A))))))) (Red_CNew (Out (This (c l a s s id_2_B)) id_1_A
) (This root) id_1_A (Red_Out (This (c l a s s id_2_B)) (This
root) id_1_A (Exp_Trans (This (c l a s s id_2_B)) (New (This
root) id_2_B) (New (This root) id_1_A) (Exp_This id_2_B

root (Some (new th i s id_1_A)) (r e f l_equa l (mkClass root (
Some (new th i s id_1_A))))) (Exp_Ext (This root) (new th i s
id_1_A) id_2_B root (r e f l_equa l (mkClass root (Some (new
th i s id_1_A)))))))) (Exp_Trans (New (Out (This (c l a s s

id_2_B)) id_2_B) id_2_B) (New (This root) id_2_B) (New (
This root) id_1_A) (Exp_Red (New (Out (This (c l a s s id_2_B
)) id_2_B) id_2_B) (New (This root) id_2_B) (Red_CNew (
Out (This (c l a s s id_2_B)) id_2_B) (This root) id_2_B (
Red_Out (This (c l a s s id_2_B)) (This root) id_2_B (
Exp_This id_2_B root (Some (new th i s id_1_A)) (r e f l_equa l
(mkClass root (Some (new th i s id_1_A)))))))) (Exp_Ext (

This root) (new t h i s id_1_A) id_2_B root (r e f l_equa l (
mkClass root (Some (new th i s id_1_A))))))))

(WF_New (This root) id_2_B root (Some (new th i s id_1_A)) (
WF_This root) (r e f l_equa l (mkClass root (Some (new th i s
id_1_A)))) (Inst_Root (This root) (Exp_Refl (This root)))
)) .

Qed .

Listing D.1: Proof of Well-Formedness

Bibliography

[AC05] Philippe Altherr and Vincent Cremet. Inner Classes and Virtual
Types. EPFL Technical Report IC/2005/013, March 2005.

[coq] The coq proof assistant web page. http://coq.inria.fr.

[pic] An extensible compiler for the java programming language.
http://zenger.org/jaco/.

[scaa] Scala web page. http://scala.ep�.ch.

[scab] Scaletta web page. http://lamp.ep�.ch/∼paltherr/scaletta/.

	About the cover
	Introduction
	Goal of the project

	Background
	Inner Classes and Virtual Types
	Inner classes
	Virtual Types
	Summary

	Scaletta
	Syntax
	A Basic Example
	The Scaletta compiler
	The Coq Proof Assistant

	Translation
	The Scaletta compiler AST
	The proofer AST
	Translation

	Evaluation
	From Semantic Rules to Implementation
	Evaluating
	Strategic choices

	Proving an evaluation
	Data Structure for Proofs
	Proof Generation

	Well-Formedness
	From Typing Rules to Implementation
	Type Fields and Term Fields
	Proving WF_Valuation
	The Lemmas

	Main Differences with Semantics

	Conclusion
	Scaletta formalization
	Scaletta formalization in Coq
	Scaletta Calculus
	Semantics Rules
	Typing Rules

	Main sources
	Proof term data structure
	Semantics Proofer
	Well-Formedness Proofer

	An example of Well-Formedness Proof
	Bibliography

