
Draft Under Submission – Do Not Circulate

Lightweight Functional Logic Meta-Programming

NADA AMIN, University of Cambridge, UK

WILLIAM E. BYRD, University of Alabama at Birmingham, USA

TIARK ROMPF, Purdue University, USA

Meta-interpreters in Prolog are a powerful and elegant way to implement language extensions and non-

standard semantics. But how can we bring the benefits of Prolog-style meta-interpreters to systems that

combine functional and logic programming? In Prolog, a program can access its own structure via reflection,

and meta-interpreters are simple to implement because the “pure” core language is small—not so, in larger

systems that combine different paradigms.

In this paper, we present a particular kind of functional logic meta-programming, based on embedding

a small first-order logic system in an expressive host language. Embedded logic engines are not new, as

exemplified by various systems including miniKanren in Scheme and LogicT in Haskell. However, previous

embedded systems generally lack meta-programming capabilities in the sense of meta-interpretation.

Instead of relying on reflection for meta-programming, we show how to adapt popular multi-stage program-

ming techniques to a logic programming setting and use the embedded logic to generate reified first-order

structures, which are again simple to interpret. Our system has an appealing power-to-weight ratio, based on

the simple and general notion of dynamically scoped mutable variables.

We also show how, in many cases, non-standard semantics can be realized without explicit reification and

interpretation, but instead by customizing program execution through the host language. As a key example,

we extend our system with a tabling/memoization facility. The need to interact with mutable variables renders

this is a highly nontrivial challenge, and the crucial insight is to extract symbolic representations of their

side effects from memoized rules. We demonstrate that multiple independent semantic modifications can be

combined successfully in our system, for example tabling and tracing.

1 INTRODUCTION
An appealing aspect of pure logic programming is its declarative nature. For example, it is easy to

take a formal system, expressed as inference rules on paper, and turn it into a logic program. If

the formal system describes typing rules, the same logic program might be able to perform type

checking, type reconstruction, and type inhabitation (see Figure 1). Yet, we want more.

First, we would like to leverage abstractions known from functional programming to structure

our logic programs. Where logic programming sports search, nondeterminism, and backwards

computation, functional programming excels at parameterization, modularity and abstraction.

These strengths are complementary, and there is great value in combining them, as evidenced by

a large body of ongoing research. Languages such as Curry [Hanus 2013] focus on integrating

functional and logic programming into one coherent declarative paradigm.

Second, we would like to customize the execution of logic programs. For example, we want to be

able to reason about both failures and successes. In case of success, we may want a proof, i.e., a

derivation tree, for why the relation holds. In case of failure, feedback is even more important, and

yet, by default, a logic program that fails is one that returns no answers. In Prolog, these tasks can

be solved through meta-programming, which, in the context of this paper, means to implement

a meta-interpreter for Prolog clauses. A meta-interpreter for “pure” Prolog clauses, written in

Prolog, can customize the search strategy, inspect proof trees or investigate failures [Sterling and

Shapiro 1994; Sterling and Yalcinalp 1989]. However, for non-trivial applications such as abstract

Authors’ addresses: Nada Amin, Computer Laboratory, University of Cambridge, William Gates Building, 15 JJ Thomson

Avenue, Cambridge, CB3 0FD, UK, first.last@cl.cam.ac.uk; William E. Byrd, Department of Computer Science, University of

Alabama at Birmingham, USA, webyrd@uab.edu; Tiark Rompf, Department of Computer Science, Purdue University, 305 N.

University Street, West Lafayette, IN, 47907, USA, first@purdue.edu.

1:2 Nada Amin, William E. Byrd, and Tiark Rompf

interpretation [Codish and Søndergaard 2002], these meta-interpreters do not usually stick to the

“pure” Prolog subset themselves. In many cases, for example if we want to extend the execution

logic with tabling or memoization, it is necessary to exploit decidedly un-declarative and imperative

features of Prolog—in some sense the “dirty little secret” of logic programming.

In this paper, we present a pragmatic solution to combining functional and logic programming

on one hand, and declarative logic programming with restricted notions of state on the other

hand. We make the case for a particular style of functional logic meta-programming: embedding a

simple, first-order logic programming system in an expressive, impure, higher-order functional

host language, optionally supported by best-of-breed external constraint solver engines such as

Z3 [de Moura and Bjørner 2008] or CVC4 [Barrett et al. 2011], and providing explicit support for

dynamically scoped, i.e., “thread-local” state. In the tradition of miniKanren [Byrd 2009a; Byrd et al.

2017, 2012; Friedman et al. 2005, 2018], which embeds logic programming in Scheme, we present

Scalogno, a logic programming system embedded in Scala, but designed from the ground up with

modularity and customization in mind and with explicit support for dynamically scoped mutable

variables.

We further extend logic programming to more general constraints by delegating solving to SMT

(Satisfiability Modulo Theory) engines such as Z3 [de Moura and Bjørner 2008] or CVC4 [Barrett

et al. 2011]. We explore multiple ways to combine the power of each style (functional, high-level

search, constraint solving).

This paper makes the following contributions:

• We introduce our system, Scalogno, and highlight the benefit of deep linguistic reuse in logic

programming based on examples, e.g., how higher-order functions of the host language

can model higher-order relations (e.g., map, flatMap, fold). The logic engine can remain first

order, keeping theory and implementation simple. Scalogno can reuse Scala’s type classes

(e.g., Ord), while the logic engine need not be aware of this feature at all. This flexibility goes

beyond dedicated functional logic languages like Curry, which do not support type classes

for complexity reasons [Martin-Martin 2011] (Section 2).

• We motivate the use of meta-programming in logic programming: it is often desirable to

write high-level declarative programs, and customize their execution in certain ways without

changing the code. Examples are adding tracing, computing proof trees, or reasoning about

failures. We would also like to chose between different execution models like depth-first

search, interleaving, or tabling. In Prolog, this is usually achieved through meta-interpreters,

a concept which we review and apply to Scalogno using term reification instead of reflective

inspection (Section 3).

• Tracing, proof trees, etc. are examples of a whole class of use cases where a meta-interpreter

augments execution with some state. We introduce dynamically scoped mutable variables to

capture this design pattern, enabling modular extensions through the host language as an

alternative to explicit interpretation. We discuss the implementation of Scalogno in more

detail, and also show how dynamic variables support a generic term reification facility,

directly adapting popular multi-stage programming approaches to a logic setting (Section 4).

• We show how we can customize the execution order while maintaining the behavior of other

extensions that rely on dynamic mutable state. To this end, we extend our logic engine to

implement tabling, i.e., memoization. Unlike most existing Prolog implementations (there are

exceptions [Desouter et al. 2015]), the implementation directly corresponds to a high-level

description of the tabling process, understood in terms of continuations. A key challenge is

to interact with mutable variables, which we solve by extracting symbolic representations of

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:3

their side effects from memoized rules. To the best of our knowledge, ours is the first logic

engine that integrates tabling with mutable state in a predictable way (Section 5).

• We extend constraint solving by delegating queries to an external SMT solver. We show that

we can use the DFS search strategy to interactively submit assertions to a solver, and push

and pop solver state when backtracking naturally. We discuss issues of committed choice: it

is essential to let the solver check satisfiability without committing to a model, as the model

might get invalidated further along. We discuss how abstraction layers at the meta-level can

be blurred away in the solver, and how deferring committed choice enforces abstraction. We

show several simple examples of program synthesis that use the solver (Section 6).

Section 7 discusses related work and Section 8 offers concluding thoughts.

2 EMBEDDED LOGIC PROGRAMMING FOR DEEP LINGUISTIC REUSE
When embedding a language into an expressive host, we benefit from deep linguistic reuse: we can
keep the embedded language simple by directly exploiting features of the host language. In this

section, we illustrate deep linguistic reuse with Scalogno in Scala—the embedded logic system is

first-order, and re-use the host language for key features such as naming and structuring logic

fragments.

2.1 Relations as Functions
As a running example, we model a graph connecting three nodes a, b, c in a cycle.

a

bc

In Prolog (on the left), we can model this graph with a relation, edge, listing all the possible edges.

In Scalogno (on the right), we can define the same relation as a regular Scala function:

edge(a,b).

edge(b,c).

edge(c,a).

def edge(x: Exp[String], y:

Exp[String]): Rel =

(x === "a") && (y === "b") ||

(x === "b") && (y === "c") ||

(x === "c") && (y === "a")

In Scalogno, infix methods are used for unification (===), conjunction (&&) disjunction (||). The

type Rel represents a relation, the type Exp[T] a term (possibly including unbound logic variables)

of type T.

We can now run a query on the just defined relation.

| ?- edge(X,Y).

↪→ X=a,Y=b; X=b,Y=c; X=c,Y=a.

run[(String,String)] { case

Pair(x,y) =>

edge(x,y) }

↪→ pair(a,b); pair(b,c); pair(c,a).

In Scalogno, we apply the edge relation like any ordinary function. The run form serves as an

interface between the host and the embedded language, returning an answer list of reified values

of the variable it scopes. Here, we directly use pattern matching to introduce the variables x and y

as a pair. We can also use the exists form to explicitly introduce new logical variables in scope, as

in the next example.

In Prolog, we can naturally define relations recursively, and so too in Scalogno. For example, the

relation path finds all the paths in the graph.

Draft, 2018

1:4 Nada Amin, William E. Byrd, and Tiark Rompf

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z),

path(Z,Y).

def path(x: Exp[T], y: Exp[T]): Rel =

edge(x,y) ||

exists[T] { z => edge(x,z) &&

path(z,y) }

| ?- path(a,Q).

↪→ Q=b; Q=c; ...

runN[String](10) { q =>

path("a",q) }

↪→ b; c; a; b; c; a; b; c; a; b.

Here, asking for all answers (with run instead of runN) would diverge as there are infinitely many

paths through the cycle. In Sections 3 and 4, we show how to cope with this divergence by changing

the evaluation semantics through meta-programming.

2.2 Higher-Order Relations as Higher-Order Functions
In Scalogno, we can exploit higher-order functions (and hence, relations too), for example parametriz-

ing the relation path by the relation edge so that it works for any graph:

def generic_path(edge: (Exp[T],Exp[T]) => Rel)(x: Exp[T], y: Exp[T]): Rel =

edge(x,y) ||

exists[T] { z => edge(x,z) && generic_path(edge)(z,y) }

We could also recognize that the path relation is really just the reflexive transitive closure of

the edge relation, and since generic_path is already parameterized over an arbitrary binary relation,

rename it accordingly as refl_trans_closure. This enables defining path as:

val path = refl_trans_closure(edge)

The usual higher-order combinators, such as map, flatMap, fold also have natural higher-order

relational counterparts.

2.3 Object-Oriented Encapsulation
To enable additional abstractions that are not present in typical logic programming settings, we

can exploit the object-oriented features of the host language:

trait Graph[T] {

def edge(x: Exp[T], y: Exp[T]): Rel // left abstract

def path(x: Exp[T], y: Exp[T]): Rel = // defined as before

edge(x,y) ||

exists[T] { z => edge(x,z) && path(z,y) }

}

val g = new Graph[String] {

def edge(x:Exp[String],y:Exp[String]) = // defined as before

(x === "a") && (y === "b") ||

(x === "b") && (y === "c") ||

(x === "c") && (y === "a")

}

The object g inherits the definition of path from Graph.

2.4 Type Classes
As another example of deep linguistic reuse, we show how Scalogno benefits from Scala’s type

classes as objects and implicits [Oliveira et al. 2010].

If we want to capture the property of a datatype to be ordered, we can define a type class interface

Ord[T], an infix operation < on ordered types, and a type class instance Ord[Int] for natural numbers:

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:5

trait Ord[T] {

def lt(x:Exp[T],y:Exp[T]): Rel

}

implicit class OrdOps[T:Ord](x:Exp[T]) {

def <(y:Exp[T]): Rel = implicitly[Ord[T]].lt(x,y)

}

implicit val ordNat = new Ord[Int] {

def lt(x:Exp[Int],y:Exp[Int]): Rel = ... /*elided*/

}

Given our type class instance for natural numbers we can run queries like the following:

run[Int] { q => q < 4 } ↪→ 0,1,2,3

Internally, this will invoke the ltmethod on ordNat.

We now define a lexicographic ordering on polymorphic lists

implicit def ordList[T:Ord] = new Ord[List[T]] {

def lt(as:Exp[List[T]],bs:Exp[List[T]]): Rel =

exists[T,List[T]] { (b,bs1) =>

(bs === cons(b,bs1)) && { (as === nil) || exists[T,List[T]] { (a,as1) =>

(as === cons(a,as1)) && { (a < b) || (a === b) && (as1 < bs1) }}}}

The occurrence of a < b uses the type class instance Ord[T] on list elements, whereas as1 < bs1 is a

recursive call to the relation on Ord[List[T]].

A simple query returns all the lists lexicographically smaller than List(0,1,2). Some lists may

have arbitrary length, denoted by a logic var x0 in the output:

run[List[Int]] { q => q < List(0,1,2) }

↪→ nil; cons(z,nil); cons(z,cons(z,x0)); cons(z,cons(s(z),nil));

cons(z,cons(s(z),cons(z,x0))); cons(z,cons(s(z),cons(s(z),x0))).

Without going into the details, we can add other data types, like binary trees that implement a

dictionary. The only requirement for keys is to be ordered. For example, we can use lists of numbers

as keys, and run queries forwards and backwards:

run[String] { q => val t = tree(

List(1,1,1) -> "a", List(1,2,2) -> "b", List(2,1,1) -> "c")

lookup(t,List(1,2,2),q) } ↪→ b.

run[Int] { q => val t = tree(

List(1,1,1) -> "a", cons(q,List(2,2)) -> "b", List(2,2,2) -> "c")

lookup(t,List(1,2,2),"b") } ↪→ 1.

3 THE ESSENCE OF PROLOG-STYLE META-INTERPRETERS
Logic programming enables us to concisely describe relations. For example, Figure 1 presents the

typing relation of the simply-typed λ-calculus on paper and in Prolog. The Prolog rules closely

follow the paper rules, deviating only by adding a cut (!) and unify_with_occurs_check to make some

informal conventions explicit. In particular, unify_with_occurs_check ensures that the result type is

finitely expressible, for example preventing self-application. The Prolog relation can be queried

with logic variables placed anywhere, and so this one logic program can serve many purposes: type

checking (provide term and type), type reconstruction (provide term but not type), type inhabitation

(provide type, but not term), and others.

Meta-programming enables us to further extend the uses of a logic program, without modifying

its concise description. For example, we can turn our Prolog typing relation into a type debugger,

Draft, 2018

1:6 Nada Amin, William E. Byrd, and Tiark Rompf

(x : TA) ∈ Γ

Γ ⊢ x : TA
(var)

Γ, (x : TA) ⊢ eM : TB

Γ ⊢ λx .eM : TA → TB
(abs)

Γ ⊢ eM : TA → TB
Γ ⊢ eN : TA

Γ ⊢ (eM eN) : TB
(app)

in((X,A),G) :- member((X,A),G), !.

ty(G,v(X),A) :- in((X,A),G).

ty(G,l(X,M),to(A,B)) :-

ty([(X,A)|G],M,B).

ty(G,a(M,N),B) :-

ty(G,M,C), ty(G,N,A),

unify_with_occurs_check(C,to(A,B)).

Fig. 1. Simply-typed λ-calculus: in formal notation and in Prolog.

that generates derivation trees showing exactly where failures lie. Figure 2 shows such an auto-

generated diagnostic.

Var

[x 7→ (A ⇒ B)] ⊢ x : (A ⇒ B)
Var

[x 7→ (A ⇒ B)] ⊢ x : (A ⇒ B) (A ⇒ B) , A
App

[x 7→ (A ⇒ B)] ⊢ (x x) : B
Abs

[] ⊢ (λx .(x x)) : ((A ⇒ B) ⇒ B)

Fig. 2. Failure of self-application in STLC due to “occurs-check”.

We now review Prolog meta-interpreters [O’Keefe 1990; Sterling and Shapiro 1994], which is

what enables applications like the type debugger. After learning from the Prolog tradition, we

expose meta-programming patterns that are particularly well-suited to an embedded setting, with

examples in Scalogno, in Section 4.

A clause in Prolog consists of a “head” (the left-hand side), and a “tail” or “body” (the right-hand

side, possibly empty). One interpretation of a clause reads: to show the “head”, it suffices to show

the “body”. In order to interpret a clause, we need to reify it, i.e., represent it as a data structure.

Prolog provides some built-ins for this, but we can also do it manually, and partially select what we

reify.

For example, we can choose to reify the path relation, turning the recursive calls into data, while

eagerly evaluating the edge goals within:

path_clause(path(X,Y), []) :- edge(X,Y).

path_clause(path(X,Y), [path(Z,Y)]) :- edge(X,Z).

Here is the Scalogno version of the same manual conversion of the path program into a program

generator, path_clause, that produces the original program as data:

def path_clause[T](g: Graph[T])(head: Exp[Goal], body: Exp[List[Goal]]) = {

exists[T,T] { (a,b) =>

(head === path_term(a,b)) && {

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:7

(g.edge(a,b) && (body === nil)) ||

exists[T] { z =>

g.edge(a,z) && (body === cons(path_term(z,b),nil)) }}}}

Here, the type Goal is a phantom type and the function path_term serves as constructor for Exp[Goal]

terms, implemented using Scalogno’s primitive term constructor term (see Figure 3):

trait Goal

def path_term[T](a: Exp[T], b: Exp[T]) = term[Goal]("path",List(a,b))

We can observe the behavior of path_clause by running a query as follows:

run[List[Any]] { q =>

exists[Goal,List[Goal]] { (head,body) =>

q === cons("to prove", cons(head, cons("prove", cons(body, nil)))) &&

path_clause(g)(head,body)

}

}

↪→

(to prove path(a,b) prove ());

(to prove path(b,c) prove ());

(to prove path(a,x0) prove (path(b,x0)));

(to prove path(c,a) prove ());

(to prove path(b,x0) prove (path(c,x0)));

(to prove path(c,x0) prove (path(a,x0))).

We can see that, since edge has been left as-is, path_clause actually produces variants of the path

rules that are partially evaluated with respect to the edge relation. Indeed, for example, to show a

path from a, it suffices to show a path from b, since there is an edge from a to b. Of course, this
manual conversion process is rather tedious, and we show ways to automate it in Section 4.5.

Reifying both the edge and path relations gives us a direct data analog of the original Prolog

clauses for path:

def edge_term[T](a: Exp[T], b: Exp[T]) = term[Goal]("edge",List(a,b))

def path_full_clause[T](g: Graph[T])(head: Exp[Goal], body: Exp[List[Goal]]) = {

exists[T,T] { (a,b) =>

((head === path_term(a,b)) && (

(body === cons(edge_term(a,b),nil)) ||

exists[T] { z =>

body === cons(edge_term(a,z), cons(path_term(z,b),nil))

}

)) ||

((head === edge_term(a,b)) && g.edge(a,b))

}

}

run[List[Any]] { q =>

exists[Goal,List[Goal]] { (head,body) =>

exists[String,String] { (a,b) => pathTerm(a,b) === head } &&

q === cons("to prove", cons(head, cons("prove", cons(body, nil)))) &&

path_full_clause(g)(head,body)

}

}

↪→

(to prove path(x0,x1) prove (edge(x0,x1)));

(to prove path(x0,x1) prove (edge(x0,x2) path(x2,x1))).

Draft, 2018

1:8 Nada Amin, William E. Byrd, and Tiark Rompf

We consider a few interpreter implementations for reified clauses next.

3.1 Vanilla Interpreter
The vanilla interpreter takes a clause higher-order relation, such as path_clause, and returns a solver,

which takes a list of reified goals, constraining them to hold. Implementation-wise, the solver is

just another logic program: if the list of goals is empty, then we’re done; otherwise, we recursively

solve the first goal, then the remaining goals. In Prolog, we hard-code the clause relation to be

path_clause, though in usual Prolog meta-interpreters the clauses would come through reflecting

on the goal.

vanilla([]).

vanilla([G|GS]) :-

path_clause(G,BODY),

vanilla(BODY),

vanilla(GS).

type Clause = (Exp[Goal],

Exp[List[Goal]]) => Rel

def

vanilla(clause:Clause)(goals:Exp[List[Goal]]):Rel

=

goals === nil ||

exists[Goal,List[Goal],List[Goal]]

{ (g, gs, body) =>

(goals === cons(g,gs)) &&

clause(g,body) &&

vanilla(clause)(body) &&

vanilla(clause)(gs)

}

Running the vanilla interpreter on the same query as previously (all the paths from a) gives the
same result, cycling through all the nodes ad infinitum.

| ?- vanilla([path(a, Q)]).

↪→ Q=b; Q=c; ...

runN[String](10) { q =>

vanilla(path_clause(g))(cons(path_term("a",q),nil))

}

↪→ b; c; a; b; c; a; b; c; a;

b.

3.2 Tracing Interpreter
The vanilla interpreter often serves as a starting point to then augment the interpretation with a

feature. Here, we add tracing. The parameters in and out accumulate the current trace using a logic

difference list [Clocksin 1997].

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:9

tracer([], T, T).

tracer([G|GS], IN, OUT) :-

path_clause(G,BODY),

tracer(BODY, [G|IN],

OUT_BODY),

tracer(GS, OUT_BODY, OUT).

def tracer(clause: Clause)

(in: Exp[List[Goal]], out:

Exp[List[Goal]])

(goals: Exp[List[Goal]]): Rel =

((goals === nil) && (in === out))

||

exists[Goal,List[Goal],List[Goal],List[Goal]]

{

(g, gs, body, out_body) =>

(goals === cons(g,gs)) &&

clause(g,body) &&

tracer(clause)(cons(g,in),out_body)(body)

&&

tracer(clause)(out_body,out)(gs)

}

| ?- tracer([path(a, Q)], [],

T).

↪→

Q=b,T=[path(a,b)];

Q=c,T=[path(b,c),path(a,c)];

...

runN[(List[Any],List[Goal])](4) {

case Pair(q,t) =>

tracer(path_clause(g))(nil,t)(

cons(path_term("a",q),nil)) }

↪→

pair(b, (path(a,b)));

pair(c, (path(b,c) path(a,c)));

pair(a, (path(c,a) path(b,a)

path(a,a)));

pair(b, (path(a,b) path(c,b)

path(b,b) path(a,b))).

3.3 Cycle Detection and Other Extensions
Now, that we have a trace of the goals we step through as we find a path, we can also choose to fail

when we are stepping through the same goal again: in effect, detecting cycles. The only change to

the tracer interpreter is to enforce that the current goal does not occur in the current trace. While

there are ways to implement such a constraint purely relationally, for example the absento form

in miniKanren [Byrd et al. 2012], we postpone a solution in Scalogno to Section 5 because we do

not want to extend the purely logical core with extra-logical features. In Prolog, we rely on the not
provable operator \+ which implements negation as failure.

cycler([], T, T).

cycler([G|GS], T_IN, T_OUT) :-

path_clause(G,BODY),

\+ member(G, T_IN),

cycler(BODY, [G|T_IN], T_OUT_BODY),

cycler(GS, T_OUT_BODY, T_OUT).

| ?- cycler([path(a, Q)], [], T).

↪→

Q=b,T=[path(a,b)];

Q=c,T=[path(b,c),path(a,c)];

Q=a,T=[path(c,a),path(b,a),path(a,a)].

Draft, 2018

1:10 Nada Amin, William E. Byrd, and Tiark Rompf

In a similar way, we can extend the tracing interpreter to build up proof trees or make failures

explicit.

4 DYNAMIC SCOPE AS META-INTERPRETER (DESIGN PATTERN)
In Section 3, we explored Prolog-style meta-interpreters in Scala: a meta-interpreter (a Scalogno

relation itself) is configured with a Scalogno meta-relation (e.g. path_clause) to build a reified

representation of a Scalogno object-relation (e.g. path). In other words, we stayed completely in the

realm of logic programming.

In this section, we consider a different approach: use the host language to augment the execution

of logic programs by customizing the logic engine directly. For this approach to be viable, the

logic embedding has to be designed with certain kinds of extensions in mind. Within Scalogno,

for example, it is difficult to use mutable state because the execution order uses various flavors of

interleaving, as opposed to Prolog’s deterministic Selective Linear Definite (SLD) clause resolution.

But of course interleaving is desirable, so we would like a model that supports a notion of “thread

local” state that is attached to a particular execution path, similar to notions of state in Or-parallel

logic programming [Gupta and Costa 1996].

4.1 Designing Logic Engines for Meta-Programming
In designing the Scalogno implementation, we have put emphasis on modularity and enabling

independent extensions of different parts of the system. An overview of the core Scalogno system

is shown in Figure 3, and we discuss individual aspects step by step below.

Our starting point is an implementation of a Depth-First Search (DFS) engine, where we reuse

the host control flow (stack and exception) to manage the pending goals. Nevertheless, Scalogno is

modular and supports a range of search strategies, as well as external solvers.

The engine knows generically about goals and their state.

A goal is represented as a thunk of a relation.

type Goal = () => Rel

A relation knows how to execute itself, given an executor engine for solving subgoals and a

success continuation for returning satisfied.

trait Rel { def exec(call: Exec)(k: Cont): Unit }

type Exec = Goal => Cont => Unit

type Cont = () => Unit

Failure is achieved through throwing an exception, to backtrack.

val Backtrack = new Exception

Before showing the engine, it’s helpful to see a few primitives and means of combination for

relations.

Unconditional success immediately successfully continues.

val Yes = new Rel {

def exec(call: Exec)(k: Cont) = k() }

Unconditional failure immediately throws.

val No = new Rel {

def exec(call: Exec)(k: Cont) = throw Backtrack }

The conjunction of two goals executes the first, and successfully continues with the second.

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:11

val Backtrack = new Exception

// dynamically scoped variables
var dvars: immutable.Map[Int, Any] = Map.empty
case class DVar[T](val id: Int, val default: T)

extends (() => T) {
dvars += id -> default
def apply() = dvars(id).asInstanceOf[T]
def :=(v: T) = dvars += id -> v

}
var dvarCount = 1
def DVar[T](v: T): DVar[T] = {
val id = dvarCount
dvarCount += 1
new DVar[T](id, v)

}

// goals and relations
trait Rel { def exec(call: Exec)(k: Cont): Unit }
type Exec = Goal => Cont => Unit
type Cont = () => Unit
type Goal = () => Rel

val Yes = new Rel {
def exec(call: Exec)(k: Cont) = k() }

val No = new Rel {
def exec(call: Exec)(k: Cont) = throw Backtrack }

def infix_&&(a: => Rel, b: => Rel): Rel = new Rel {
def exec(call: Exec)(k: Cont) =
call(() => a) { () => call(() => b)(k) } }

def infix_||(a: => Rel, b: => Rel): Rel = new Rel {
def exec(call: Exec)(k: Cont) = {
call(() => a)(k); call(() => b)(k) }}

// logic terms
case class Exp[T](id: Int)
var varCount: Int = 0
def freshId = { var id = varCount; varCount += 1; id

}
def fresh[T] = Exp(freshId)

def exists[T](f: Exp[T] => Rel): Rel = f(fresh)
def infix_===[T](a: => Exp[T], b: => Exp[T]): Rel = {
register(IsEqual(a,b)); Yes }

def term[T](key: String, args: List[Exp[Any]]):
Exp[T] = {

val e = fresh[T]; register(IsTerm(e.id, key,
args)); e }

// constraints
abstract class Constraint
case class IsTerm(id: Int, key: String, args:

List[Exp[Any]])
extends Constraint

case class IsEqual(x: Exp[Any], y: Exp[Any])
extends Constraint

var cstore: immutable.Set[Constraint] =
immutable.Set.empty

def conflict(cs: Set[Constraint], c: Constraint):
Boolean = ...

def register(c: Constraint): Unit = {
if (cstore.contains(c)) return
if (conflict(cstore,c)) throw Backtrack

}

// execution (depth-first)
def run[T](f: Exp[T] => Rel): Seq[String] = {
def call(e: => Rel)(k: Cont): Unit = {
val restore = solver.push()
try {
e.exec(call)(k)

} catch {
case Backtrack => // OK

} finally {
solver.pop(restore)

}
}
val q = fresh[T]
val res = new mutable.ListBuffer[solver.Model]()
call(() => f(q)) { () =>
res += solver.extractModel(q)

}
res.toList

}
def runN[T](max: Int)(f: Exp[T] => Rel):

Seq[solver.Model] = ...

// solver instance (see text below)
val solver: Solver

Fig. 3. Scalogno engine implementation

def infix_&&(a: => Rel, b: => Rel): Rel = new Rel {

def exec(call: Exec)(k: Cont) =

call(() => a) { () => call(() => b)(k) } }

The disjunction of two goals executes the first, and thereafter through backtracking as defined

by the delimited subcall, the second.

def infix_||(a: => Rel, b: => Rel): Rel = new Rel {

def exec(call: Exec)(k: Cont) = {

Draft, 2018

1:12 Nada Amin, William E. Byrd, and Tiark Rompf

call(() => a)(k); call(() => b)(k) }}

Finally, our DFS engine pushes the current state on to the stack, runs the goal delegating execution

to the underlying relation, catches failures and restore the state upon recursive exits.

def call(g: Goal)(k: Cont): Unit = {

val restore = solver.push()

try {

g().exec(call)(k)

} catch {

case Backtrack => // OK

} finally {

solver.pop(restore)

}

}

This engine cannot do much, because we do not have any constraints to solve yet. So let us

introduce a domain of terms, and equality constraints between terms.

A term constraint IsTerm(id, key, args) identifies a logic variable id as being bound to the term

key(args).

A term is uniquely identified. A term constraint IsTerm(id,key,args) identifies a term id as being

bound to the value key(args). An unbound term corresponds to a free logic variable. An equality

constraint is introduced by unification, enforcing that two terms have the same structure, that is

the same keys and, recursively, arguments.

case class Exp[+T](id: Int)

def fresh[T] = Exp(freshId)

abstract class Constraint

case class IsTerm(id: Int, key: String, args: List[Exp[Any]]) extends Constraint

case class IsEqual(x: Exp[Any], y: Exp[Any]) extends Constraint

We define new relations using our constraints.

The form exists takes a query – a goal with a hole, and fills the hole with a fresh variable.

def exists[T](f: Exp[T] => Rel): Rel = f(solver.fresh)

The form === unifies two terms by registering an equality constraint with the solver.

def infix_===[T](a: => Exp[T], b: => Exp[T]): Rel = {

solver.register(IsEqual(a,b)); Yes }

The form term introduces a new term also through constraint registration.

def term[T](key: String, args: List[Exp[Any]]): Exp[T] = {

val e = solver.fresh[T];

solver.register(IsTerm(e.id, key, args)); e }

This style of “sea of nodes” construction by side effects is reminiscent of multi-stage programming

framework like LMS [Rompf 2016], and we will have more to say about this in Section 4.5.

We package the core engine in a runnable interface, which takes a pseudo-goal, not a thunk, but

parametrized by a free logic variable – the query variable. The interfae runN caps the number of

returned answers to a given maximum, while run is intended to return all answers. (We could also

have used a streaming interface.)

def runN[T](max: Int)(f: Exp[T] => Rel): Seq[solver.Model] = {

val q = solver.fresh[T]

val res = mutable.ListBuffer[solver.Model]()

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:13

val Done = new Exception

try { call(() => f(q)) { () =>

res += solver.extractModel(q)

if (res.length >= max) throw Done

}} catch { case Done => }

res.toList

}

def run[T](f: Exp[T] => Rel): Seq[solver.Model] = runN(scala.Int.MaxValue)(f)

Now, we need to provide a solver. As used by the engine, the interface abstracts over state, fresh,

constraint registration and model extraction.

abstract class Solver {

type State

type Model

def push(): State

def pop(restore: State): Unit

def fresh[T]: Exp[T]

def register(c: Constraint): Unit

def extractModel(x: Exp[Any]): Model

}

Let us implement a vanilla solver, which keeps track of the transitive closure of the set of

constraints registered.

class VanillaSolver extends Solver {

override type State = immutable.Set[Constraint]

var cstore: immutable.Set[Constraint] = immutable.Set.empty

override def push(): State = cstore

override def pop(restore: State): Unit = { cstore = restore }

override def register(c: Constraint): Unit = {

if (cstore.contains(c)) return

if (conflict(cstore,c)) throw Backtrack

}

def conflict(cs: Set[Constraint], c: Constraint): Boolean = {

def prop(c1: Constraint, c2: Constraint)(fail: () => Nothing): List[Constraint] = (c1,c2)

match {

...

case _ => Nil

}

val fail = () => throw Backtrack

val cn = cs flatMap { c2 => prop(c, c2)(fail) }

cstore += c

cn foreach register

false

}

override type Model = String

def extractModel(x: Exp[Any]): Model = { ... }

}

For the model, we can simplistically reify answers into strings. Using polytypic typing as discussed

in Section 2, we could improve the model to reify depending on the type of the query variable.

The actual built-in Scalogno solver implements a number of performance improvements, including

Draft, 2018

1:14 Nada Amin, William E. Byrd, and Tiark Rompf

index structures that enable more efficient lookup and matching of constraints. Based on this solver

interface, it is easy to interface with external SMT solvers. We discuss an example in Section 6.

To complete the high-level interface, we use implicit classes to support infix method syntax in

Scala:

implicit class RelOps(a: => Rel) {

def &&(b: => Rel) = infix_&&(a,b)

def ||(b: => Rel) = infix_||(a,b)

}

implicit class ExpOps[T](a: Exp[T]) {

def ===[U](b: Exp[U]) = infix_===(a,b)

}

We are now ready to run some queries.

def e(x: Any) = term(x.toString, Nil)

run[Any]{q => q === e(1) || q === e(2)}

↪→ List(1,2)

As a summary, going back to the basics, what is the essence of a logic programming system?

The two main components are 1) search, i.e., nondeterministic execution, and 2) unification and

constraints. We implement nondeterministic execution using continuation-passing style (CPS).

The class Rel comes with implementations for disjunctions and conjuntions, but can be extended

for other execution patterns. Method run uses an auxiliary call to execute individual relations,

and the exec method of a Rel object can invoke its parameter call to invoke other relation. The

Depth-First Search (DFS) implementation of call passes itself to Rel.exec. A Breath-First Search

(BFS) implementation would pass a different method that would just collect the calls in a list.

This BFS engine just needs to override the runmethod but can share all other code with the DFS

implementation.

The handling of constraints and unification is only sketched in Figure 3. It is a conscious design

choice to keep constraints and execution separate as far as possible. The benefit is that both aspects

can be extended independently. We model the constraint store cstore as a dynamic variable (type

DVar), which keeps its value in a particular execution path (see Section 4.2 below). Invoking the

infix method === on a logic term registers and checks a new constraint on its arguments in the

constraint store of the current execution path.

4.2 An Alternative to Reification and Interpretation
Among the use cases for meta-interpreters we have considered were tracing, proof trees and similar

extensions. What they all have in common is that they augment a vanilla interpreter to thread a

piece of state through the execution.

Let us consider how we can implement such functionality without an explicit meta-interpreter,

taking tracing as example. Instead of threading state, we can just use mutable state directly. However

there is a catch: we cannot directly use a mutable variable in Scala, because we need to keep apart

the state from different nondeterministic branches.

In Scalogno, we provide an abstraction for this: mutable variables with dynamic extent (DVar).

In contrast to meta-interpreters, these variables can exist side by side, so we can have multiple

independent extensions at the same time. Intuitively, dynamic variables have the same extent as the

substitution map in miniKanren [Byrd et al. 2012] and the constraint store in cKanren [Alvis et al.

2011], and they correspond to certain realizations of mutable state in Or-parallel logic programming

[Gupta and Costa 1996].

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:15

4.3 Tracing with Dynamic Variables
In the simplest case, we can directly modify the relation we are interested in monitoring:

val globalTrace = DVar(nil: Exp[List[List[String]]])

def path(x: Exp[T], y: Exp[T]): Rel = {

globalTrace := cons(term("path",List(x,y)), globalTrace())

edge(x,y) || exists[T] { z => edge(x,z) && path(y,b) }

}

But of course this approach is not very modular. Instead, we can introduce a generic abstract

operator for named rules:

def rule[T,U](s: String)(f: (Exp[T],Exp[U]) => Rel): (Exp[T],Exp[U]) => Rel

Now, we modify the path relation to explictly use this rule abstraction to indicate that we are

indeed defining a named relation, as opposed to just a meta-language abstraction:

def path: (Exp[T],Exp[T])=> Rel = rule("path") { (x,y) =>

edge(x,y) || exists[T] { z => edge(y,z) && path(z,y) }}

Instead of modifying the relation directly, we can also build a subclass of Graph:

trait TracingGraph[T] extends Graph[T] {

override def path(x:Exp[T],y:Exp[T]) = rule("path")(super.path)(x,y)

}

In order to implement the actual tracing logic, we define an implementation of the abstract

interface as a trait which defines the rulemethod as follows. In Scala, we can mix-in this behavior

with the otherwise default implementation of the logic engine. We keep the global trace in a variable

with dynamic extent.

val globalTrace = DVar(nil: Exp[List[List[String]]])

def rule[T,U](s: String)(f: (Exp[T],Exp[U]) => Rel): (Exp[T],Exp[U]) => Rel = { (a,b) =>

globalTrace := cons(term(s,List(a,b)), globalTrace())

f(a,b)

}

We get the same result we would expect:

runN[(String,List[String])](5) {

case Pair(q1,q2) => g.path("a",q1) && globalTrace() === q2 }

↪→ pair(b,cons(path(a,b),nil)); pair(c,cons(path(b,c),cons(path(a,c),nil))); ...

We have identified a general design pattern: many meta-interpreters just thread a piece of state.

By adding support for this pattern to our engine, we have achieved an alternative implementation

approach that removes the need for an entire class of explicit interpreters.

4.4 Probabilistic Logic Computation
To give another example, dynamic variables can neatly capture probabilistic logic computation: at

each random flip, each branch updates the overall probability.

val theprob = DVar(1.0)

def flip(p: Double)(a: => Rel)(b: => Rel): Rel =

{ theprob := theprob() * p; a } || { theprob := theprob() * (1.0 - p); b }

runN[(Boolean,Double)](3) { case Pair(c,p) => flip(0.2,c) && { p === theprob() } }

↪→ pair(true,0.2), pair(false,0.8)

Draft, 2018

1:16 Nada Amin, William E. Byrd, and Tiark Rompf

4.5 Clause Reification as Controlled Side Effect
While we have seen that we can often achieve the desired meta-programming effects without

explicit meta-interpreters, we may still want explicit interpreters in certain cases. With this goal

in mind, we demonstrate another use of dynamic scope: turning logic programs into program

generators.

Since we do not want to interpret the meta-language, we need to leverage regular program

execution. What can we do? We augment what the program does when run. In an impure language

we would use side effects, in a judicious and very controlled way [Rompf et al. 2013]: a reflect

operation would emit code as side-effect, and a reify operation would accumulate code that was

produced in its scope. This multi-stage evaluation mechanism is used in program generation

frameworks such as LMS [Rompf 2016]. A simple example would be the following:

def const(x: Int) = x.toString

def plus(x: String, y: String) = reflect(s"$x + $y")

def times(x: String, y: String) = reflect(s"$x * $y")

reify {

plus(times(const(2), const(3)), times(const(4), const(5)))

}

↪→

"val x1 = 2 * 3

val x2 = 4 * 5

val x3 = x1 + x2

x3"

Each individual reflected expression generates a val binding, captures by the nearest enclosing

reify. The underlying implementation of reify and reflect can be as simple as this:

var code: Code

def reify(f: => String) = {

val temp = code; code = ""

val res = f

try (code + res) finally code = temp

}

def reflect(rhs: String) = {

val id = fresh

code += s"val $id = $rhs\n"

id

}

Note how reify sets and resets code based on the dynamic scope.

How can we adapt this idea to our logic settings? In the place of strings we use a list of goals

to accumulate generated terms, based on a dynamic var to manage scope. The implementation to

reflect and reify goals is as follows:

val moregoals = DVar(fresh[List[Goal]])

def reifyGoals(goal: => Rel)(goals: Exp[List[Goal]]): Rel = {

moregoals := goals

goal && moregoals() === nil

}

def reflectGoal(goal: Exp[Goal]): Rel = {

val hole = moregoals()

moregoals := fresh

hole === cons(goal,moregoals())

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:17

}

reifyGoals(reflectGoal("path(a,b)") => "cons(path(a,b),nil)"

We maintain a global list of clauses, and we can reify clauses given a goal:

var allclauses = Map[String,Clause]()

def reifyClause(goal: => Rel)(head: Exp[Goal], body: Exp[List[Goal]]): Rel =

reifyGoals(goal)(cons(head,nil)) && allclauses(extractKey(head))(head,body)

run[List[Any]] { q =>

exists[Goal,List[Goal]] { (head,body) =>

q === cons("to prove", cons(head, cons("prove", cons(body, nil)))) &&

reifyClause(path(fresh,fresh))(head,body)

}

}

cons(to prove,cons(path(a,b),cons(prove,cons(nil,nil)))),

cons(to prove,cons(path(b,c),cons(prove,cons(nil,nil)))),

cons(to prove,cons(path(c,a),cons(prove,cons(nil,nil)))),

cons(to prove,cons(path(a,x0),cons(prove,cons(cons(path(b,x0),nil),nil)))),

cons(to prove,cons(path(b,x0),cons(prove,cons(cons(path(c,x0),nil),nil)))),

cons(to prove,cons(path(c,x0),cons(prove,cons(cons(path(a,x0),nil),nil))))

We use the same rule abstraction as in the previous section to denote named rules. It adds the

clause definition to the global table and reflects the goal as a side effect.

def rule[A,B](s: String)(f:(Exp[A], Exp[B]) => Rel) = {

def goalTerm(a: Exp[A], b: Exp[B]) = term[Goal](s,List(a,b))

allclauses += s ->

{ (head: Exp[Goal], body: Exp[List[Goal]]) =>

exists[A,B] { (a,b) =>

(head === goalTerm(a,b)) && reifyGoals(f(a,b))(body)

}

}

(a: Exp[A], b: Exp[B]) => reflectGoal(goalTerm(a,b))

}

Finally, we adapt the vanilla interpreter from Section 3.1 to this new model. This interpreter

matches the head of the goal against the global clause table, turned into a disjunction.

def allclausesRel: Clause = { (head: Exp[Goal], body: Exp[List[Goal]]) =>

allclauses.values.foldLeft(No:Rel)((r,c) => r || c(head,body))

}

def vanilla(goal: => Rel): Rel =

exists[List[Goal]] { goals =>

reifyGoals(goal)(goals) && vanilla(goals)

}

def vanilla(goals: Exp[List[Goal]]): Rel =

goals === nil || exists[Goal,List[Goal],List[Goal]] { (g, gs, body) =>

(goals === cons(g,gs)) && allclausesRel(g,body) && vanilla(body) && vanilla(gs)

}

In the same way, we can implement any other meta-interpreter, such as the tracing interpreter

from Section 3.2

Draft, 2018

1:18 Nada Amin, William E. Byrd, and Tiark Rompf

5 TABLING AS AN ALTERNATIVE EXECUTION STRATEGY
In this sectionwe show how to implement an alternative evaluation strategy. In functional languages,

memoization is a well-known way to speed up computations by reusing intermediate results. The

logic programming analogue is known as tabling.

We will implement a memo combinator below that can be used as follows to designate particular

relations to be tabled:

def fib: (Exp[Int], Exp[Int]) => Rel = memo("fib") { (x,y) =>

(x === 0) && (y === 1) || (x === 1) && (y === 1) || {

val x1,x2,y1,y2 = fresh[Int]

(x === succ(x1)) && (x === (succ(succ(x2)))) &&

fib(x1,y1) && fib(x2,y2) && add(y1,y2,y) } }

The tabled version of fib will only compute a linear number of recursive calls instead of an

exponential number.

5.1 Implementation: Meta-Programming via the Host Language
Tabling is one of the cases that can not be implemented by a purely declarative meta-interpreter.

Instead, imperative features have to be used. Common Prolog implementations are quite intricate,

although the concept is simple. The core is described nicely by Warren [1992], which we take as

blueprint for our implementation, shown in Figure 4. The evaluation of a logic program forms a

search tree for solutions. We can think of exploring this tree either as a nondeterministic process,

or as a set of concurrent deterministic processes. In this latter view, multiple processes are active at

the same time. When one process reaches a choice point it forks into two new ones, and when it

reaches a failure condition, it terminates.

To add tabling or memoization, the first step is to add a global table callTable that keeps track of

every call to a memoized rule and all the answers returned for it. In contrast to standard functional

memoization, though, there may be any number of answers for each call. An answer in this context

consists in additional constraints that will be applied to the goal as a side effect of executing the

rule (details elided in Figure 4). For example, the answer to the goal fib(5,x0) will be fib(5,8) or

equivalently the effect of applying constraint x0=8 to the goal.

When a process is about to call a memoized rule, it checks the global call table to see if the

call has already been made. If not, it adds its continuation to the table and continues evaluating

the rule body. When the process is about to return from the call–and this may happen multiple

times if the process is forked–then it records the answer it has just computed and resumes all

continuations registered for this call with this new answer. If the answer is already in the table,

then it is a duplicate, and the process terminates.

When a process calls a memoized rule and the call is already in the table, then the current

continuation is invoked once for each recorded answer. The continuation is also registered in the

table, since we cannot know if computation of answers has already finished. More answers may

become available in the future, and will trigger this continuation again.

5.2 Memoization with Symbolic State Transitions
A key question is how our tabling combinator interacts with state. As a first approximation, we

make the input and output state of each call explicit by collecting the values of all dynamic variables.

We thus represent a call such as path(a,b) as goal(path(a,b),state0(x0..),state1(x1..)), where x0..

are the dynamic variables before the call, and x1.. the dynamic variables after the call. In other

words, we make the state transformation explicit.

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:19

// call table data structures and management

case class Call(key: String) { ... }

case class Answer(key: String) { ... }

def makeCall(name: String, args: Exp[Any]*): Call = ...

def makeAnswer(name: String, args: Exp[Any]*): Answer = ...

val callTable = new mutable.HashMap[String, (mutable.HashSet[Call], mutable.HashSet[Answer])]

// tabling combinator

def memo[A,B](name: String)(f: (Exp[A], Exp[B]) => Rel)(a: Exp[A], b: Exp[B]): Rel = new Rel {

override def exec(call: Exec)(k: Cont): Unit = {

def resume(cont: Call, ans: Answer) = ...

val cont = makeCall(name, a, b)

callTable.get(cont.key) match {

case Some((conts, answers)) => // call key found:

conts += cont // save continuation for later

for (ans <- answers.toList) resume(cont, ans) // continue with stored answers

case None => // call key not found:

val answers = new mutable.HashSet[Answer] // add table entry

val conts = new mutable.HashSet[Call]

callTable(cont.key) = (conts,answers)

conts += cont // store continuation

call { () => f(a,b) } { () => // execute rule body

val ans = makeAnswer(name, a, b)

if (!answers.contains(ans)) {

answers += ans // record each new answer and

for (cont1 <- conts.toList) resume(cont1, ans) // resume stored continuations

} } } } }

Fig. 4. Tabling combinator implementation. Continuations and answers are memoized in a global call table.

However, straightforwardly memoizing these augmented goals would not lead to the desired

result. State is often used to accumulate extra contextual information, so it changes all the time. It

is rare that a rule is called twice in exactly the same state and we would like to be sure that adding

a piece of state to the program should not change the memoization behavior.

For this reason, we memoize not based on the augmented goals but on the call patterns only,

ignoring input and output state. But how can we describe a rule’s state modification independent

of a particular input state? To achieve this, we evaluate rule bodies with a fresh input state to

obtain a symbolic representation of the rule’s state modification. Implementation-wise, this is easy to

achieve because we already maintain a global table of dynamic variables (dvars in Figure 3). Before

evaluating the body of a memoized rule, we replace all dvars entries with fresh logic variables,

which enables us to observe the effects on them when an answer is produced. When resuming a

continuation, the symbolic effects need to be unified with the current valuations of the dynamic

variables.

With this mechanism in place, we can generate the following answer term for our example of

tracing a path relation in a graph:

goal(path(a,b),state0(x0),state1(cons(path(a,b),x0))),

This term makes explicit that the state after the call—that is, the augmented trace—is the state

before the call x0, with the current head consed in front. A larger example follows.

Draft, 2018

1:20 Nada Amin, William E. Byrd, and Tiark Rompf

5.3 Example: Tabled Graph Evaluation
We first note that, as expected, tabling enables left as well as right recursive relations:

def pathL: (Exp[String], Exp[String]) => Rel = memo("path") { (a,b) =>

edge(a,b) || exists[String] { z => pathL(a,z) && edge(z,b) }

}

Furthermore, we can combine tabling with tracing:

val globalTrace = DVar(nil: Exp[List[List[String]]])

def pathLT: (Exp[String], Exp[String]) => Rel = memo("path") { (a,b) =>

globalTrace := cons(term("path",List(a,b)), globalTrace())

edge(a,b) || exists[String] { z => pathLT(a,z) && edge(z,b) }

}

And we can verify that the combination works as we would expect. Here is an example query:

run[(String,List[String])] { case Pair(q1,q2) => pathLT("a",q1) && globalTrace() === q2 }

↪→

pair(b,cons(path(a,b),nil))

pair(c,cons(path(a,b),cons(path(a,c),nil)))

pair(a,cons(path(a,b),cons(path(a,c),cons(path(a,a),nil))))

As we can see, the mutable variable globalTrace behaves in the way we would expect, recording

paths ab, abc, and abca even though we have drastically changed the evaluation order. Here is the

execution trace:

goal(path(a,x0),state0(x1,nil),state1(x2,x3))

−−→ goal(path(a,b),state0(x0,x1),state1(x2,cons(path(a,b),x1)))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))

−−→ goal(path(a,b),state0(x0,x1),state1(x2,cons(path(a,b),x1)))

goal(path(a,x0),state0(x1,nil),state1(x2,x3))

−−→ goal(path(a,c),state0(x0,x1),state1(x2,cons(path(a,b),cons(path(a,c),x1))))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))

−−→ goal(path(a,c),state0(x0,x1),state1(x2,cons(path(a,b),cons(path(a,c),x1))))

goal(path(a,x0,state0(x1,nil),state1(x2,x3))

−−→ goal(path(a,a),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),cons(path(a,a),x1)))))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))

−−→ goal(path(a,a),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),cons(path(a,a),x1)))))

Note how state1 is expressed in terms of state0: the first component of state0/state1 is ignored

because dynamic var 0 is used internally—dynamic var 1 is the trace.

5.4 Application: Definite Clause Grammar (DFG)
A well-known application of tabling is to turn parsing in logic programming from naive recursive

descent strategies to more efficient strategies, variants of Earley’s and chart parsing algorithms.

As a case study, we consider an example of parsing an arithmetic expression from prior work on

tabling in Prolog [Carro and de Guzmàn 2011]:

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:21

expr(S0, S) :- expr(S0, S1), S1 = [+| S2], term(S2, S).

expr(S0, S) :- term(S0, S).

term(S0, S) :- term(S0, S1), S1 = [*| S2], fact(S2, S).

term(S0, S) :- fact(S0, S).

fact(S0, S) :- S0 = ['(' | S1], expr(S1, S2), S2 = [')' | S].

fact(S0, S) :- S0 = [N | S], integer(N).

Notably, the grammar is left-recursive, so we cannot use it as a parser in regular Prolog as the stan-

dard depth-first resolution strategy would go into an infinite loop. However, in an implementation

that supports tabling, the following works and produces expected results:

? - expr ([3 , + , 4 , *] , []).

↪→ no

? - expr ([3 , + , 4 , * , 7] , []).

↪→ yes

? - expr (['(' , 3 , + , 4 , ')' , * , 7] , []).

↪→ yes

? - E = [_ ,_ ,_ ,_ ,_ ,_ ,_ , _] , expr (E , []).

↪→ no

The Prolog grammar above translates to Scalogno with tabling as follows:

def expr: (Exp[List[String]], Exp[List[String]]) => Rel = memo("expr") { (s0, s) =>

{ val s1,s2 = fresh[List[String]]

expr(s0,s1) && (s1 === cons("+",s2)) && term(s2,s) } ||

term(s0, s) }

def term: (Exp[List[String]], Exp[List[String]]) => Rel = memo("term") { (s0, s) =>

{ val s1,s2 = fresh[List[String]]

term(s0,s1) && (s1 === cons("*",s2)) && fact(s2,s) } ||

fact(s0, s) } }

def fact: (Exp[List[String]], Exp[List[String]]) => Rel = memo("fact") { (s0, s) =>

{ val s1,s2 = fresh[List[String]]

s0 === cons("(", s1) && expr(s1, s2) && s2 === cons(")", s) } ||

{ val n = fresh[String]

s0 === cons(n, s) && digit(n) } }

def digit: Exp[String] => Rel = memo("digit") {

n === "0" || n === "1" || n === "2" || n === "3" || n === "4" ||

n === "5" || n === "6" || n === "7" || n === "8" || n === "9" }

We obtain the same behavior as in Prolog: without tabling, search diverges, but with the memo call

in place, we automatically obtain an Earley-style bottom-up parser from the given left-recursive

grammar. The embedded setting of Scalogno has the additional advantage that we can easily

combine the parser with normal deterministic Scala code that performs IO and/or tokenization:

run[List[String]] { q =>

expr(tokenize("(3+4)*7"), nil)

}

↪→ x0

The result is a single unbounded logic variable that indicates success, without constraining q.

6 SYNTHESIS WITH CLP(SMT)
Coming back to end of Section 4.1,we now implement another solver “backend” based on SMT

rather than (or in addition to) rolling our own.

Draft, 2018

1:22 Nada Amin, William E. Byrd, and Tiark Rompf

SMT solvers such as Z3 and CVC4 implement a common interface SMTLIB based on Lisp S-

expression. We write a low-level Scala process which interactively interacts with such a tool. It has

the following interface, and a possible implementation is left as an exercise for the reader. Instead

of using an interactive mode, we also can use a batch mode; the advantage is that it is not tied into

our search strategy (Depth-First Strategy), but is slower.

An important question is when to commit the model back to the engine. A natural idea is to

commit the model every time we check satisfiability, but this solution commits us too early to a

solution.

A Depth-First Strategy naturally fits with the pushing and popping features available in an SMT

solver. So we illustrate the interactive fast mode here, while we’ve also experimented with other

strategies, requiring batch mode like interleaving.

When extracting the model, we make sure to extract a solution from the SMT solver, using the

underlying facility. We do this by adding equality constraints.

solver.extractModel({(x,v) =>

register(IsEqual(Exp(x),term(v.toString, Nil)))

})

In the engine search execution, pushing and popping also pushes and pops a frame in the SMT

engine.

We can now use our extended facility to add relations that target the SMT solver. This is what

the assertion relation looks like. The seenvars bookkeeping is to ensure we declare the variables in

the proper scope when generating SMT queries.

def zAssert(p: P[Boolean]): Rel = {

seenvars = seenvars0

val c = P("assert", List(p)).toString

seenvars.foreach{solver.decl}

solver.add(c)

if (!solver.checkSat()) throw Backtrack

Yes

}

The key idea is to check satisfiability, but commit to a model late so that we always pick a good

one.

Here is a possible domain for dealing with constraints on integers.

abstract class Z[+T]

case class A[+T](x: Exp[T]) extends Z[T]

case class P[+T](s: String, args: List[Z[Any]]) extends Z[T]

implicit object InjectInt extends Inject[Int] {

def toTerm(i: Int): Exp[Int] = term(i.toString,Nil)

}

implicit def int2ZInt(e: Int): Z[Int] = toZInt(InjectInt.toTerm(e))

implicit def toZInt(e: Exp[Int]): Z[Int] = A(e)

implicit def toZIntOps(e: Exp[Int]) = ZIntOps(A(e))

implicit class ZIntOps(a: Z[Int]) {

def ==?(b: Z[Int]): Rel = zAssert(P("=", List(a, b)))

def !=?(b: Z[Int]): Rel = zAssert(P("not", List(P("=", List(a, b)))))

def >(b: Z[Int]): Rel = zAssert(P(">", List(a, b)))

def >=(b: Z[Int]): Rel = zAssert(P(">=", List(a, b)))

def -(b: Z[Int]): Z[Int] = P("-", List(a, b))

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:23

def *(b: Z[Int]): Z[Int] = P("*", List(a, b))

def +(b: Z[Int]): Z[Int] = P("+", List(a, b))

}

6.1 A Few Simple Synthesis Examples
Let’s use Scalogno’s SMT extensions to solve several simple problems from a blog post by James

Bornholt [Bornholt 2018], describing how to use use the Rosette language for program synthe-

sis [Torlak and Bodik 2013]. Bornholt’s later examples use a simple arithmetic DSL; Bornholt begins

by defining an interpret function in Rosette (which is itself embedded in Racket).

(define (interpret p)

(match p

[(plus a b) (+ (interpret a) (interpret b))]

[(mul a b) (* (interpret a) (interpret b))]

[(square a) (expt (interpret a) 2)]

[_ p]))

A call to the interpret function uses Rosette as an interface to an underlying SMT solver, which

solves the constraints accumulated during interpretation of the arithmetic expression.

(interpret (plus (square 7) 3))

↪→

52

A more interesting use of interpret is to perform “angelic execution” [Bodik et al. 2010].For

example, we can ask Rosette can find an integer y such that (y + 2)2 evaluates to 25.

(solve

(assert

(= (interpret (square (plus y 2))) 25)))

We can write our own version of interpret in Scalogno, as the two-argument relation interpreto,

rather than as a one-argument function. The interpreto relation uses unification rather than pattern

matching, logic variables rather than pattern variables, and must unnest the recursive calls, using

the transformation from functional program to relational program described in [Byrd 2009b] and

[Friedman et al. 2018]. Arithmetic constraints are specified using the zAssert extension to Scalogno,

and are solved by the underlying SMT solver. A run query for the angelic execution example above

terminates after returning two values for y, 3 and -7, demonstrating that no other solutions exist.

The resulting interpreto relation is written in a low level and verbose style—it is several times

longer than the Rosette interpret function, and has to explicitly add SMT constraints using zAssert,

exposing the underlying constraint solving technology. One way to create a higher-level interface

to the SMT solver in Scalogno is by writing an interpreter for a Turing-complete programming

language as a relation, and recasting synthesis problems in terms of that programming language.

This is similar to the idea of the interpret function described by Bornholt, but can allow for additional

abstraction, such as functions, lists, and recursion. We have extended an interpreter for a Turing-

complete subset of Racket—similar in spirit to the relational interpreter described in [Byrd et al.

2017]—with arithmetic operators that are implemented using zAssert. The user of the interpreter,

however, need not be concerned with the details of how the interpreter implements arithmetic, and

can instead write programs in a subset of Racket, but which can contain holes represented by fresh

logic variables. Our experience is that this approach provides a very convenient interface to the

SMT solver.

Draft, 2018

1:24 Nada Amin, William E. Byrd, and Tiark Rompf

For example, the angelic execution problem above can be solved in Scalogno by specifying that

the Racket expression

(let ((plus (lambda (a b) (+ a b))))

(let ((mul (lambda (a b) (* a b))))

(let ((square (lambda (a) (* a a))))

(square (+ y 2))))),

where y is a logic variable representing an integer, evaluates to 25 under the evalo relation.

The evalo relation also allows us to easily solve Bornholt’s first example, which is to find all

integers y whose absolute value is 5. Here is Bornholt’s Rosette solution.

(define (absv x)

(if (< x 0) (- x) x))

(define-symbolic y integer?)

(solve (assert (= (absv y) 5)))

We can solve the same problem in Scalogno by specifying that the Racket expression

(let ((absv (lambda (x)

(if (< x 0) (- x) x))))

(absv y)),

where y is a logic variable representing an integer, evaluates to 5 under the evalo relation. As

expected, the query produces 5 and -5 as possible values of y. We can solve Bornholt’s second

problem (showing there is no integer y whose absolute value is less than zero) using a slight variant

of the above Racket expression.

We cannot handle Bornholt’s last two Rosette examples, our implementation of Scalogno does

not currently support universally quantified variables.

7 RELATEDWORK
There is a long tradition of meta-programming in Prolog, going back at least to the early 1980s.

Warren [1982], O’Keefe [1990], and Naish [1996] discuss how to express higher-order “meta-

predicates” inspired by functional programming, such as map and fold; O’Keefe uses Prolog’s

standard call operator, while Warren and Naish advocate using an apply operator closer in spirit to

Lisp. Warren claims that λ-terms are neither necessary nor desirable for higher-order programming

in Prolog, arguing that passing the names of top-level predicates to meta-predicates is the best

tradeoff between expressivity and keeping the Prolog language simple. Naish believes that apply is

a more natural construct for higher-order programming than Prolog’s traditional call operator, and

claims that reliance on call by the logic languages Mercury [Somogyi et al. 1995] and HiLog [Chen

et al. 1993] make higher-order programming in those languages awkward. Our host language Scala

supports λ-terms and apply—we therefore inherit both the expressivity and the complexity of these

language features.

According to Martens and Schreye [1995], interest in Prolog meta-interpreters was spurred

by two articles [Bowen and Kowalski 1982; Gallaire and Lasserre 1982] from a 1982 collection

edited by Clark and Tärnlund. Introductory books on Prolog [O’Keefe 1990; Sterling and Shapiro

1994] further popularized meta-interpreters, which are now considered a standard approach to

Prolog meta-programming. Hill and Lloyd claim that meta-interpreters in Prolog are fatally flawed,

since they often use non-declarative features, and since it can be difficult to assign a semantics

to untyped, unground logic programs; their strongly statically typed functional-logic-constraint

Draft, 2018

Lightweight Functional Logic Meta-Programming 1:25

language Gödel [Hill and Lloyd 1994] (and Lloyd’s followup language, Escher [1995]) is specifically

designed for declarative meta-programming. Martens and Schreye [1995] defend Prolog-style meta-

interpreters, arguing that all forms of untyped logic programming have the same issues that Hill and

Lloyd point out, but that reasonable semantics can be applied to meta-programming in untyped logic

languages. Our perspective is that untyped meta-interpreters are clearly useful, as demonstrated

by their long history in Prolog; however, when embedding a system similar to Scalogno in a host

language with an expressive static type system (such as Scala, with its type classes), the type system

can be put to good use for writing meta-interpreters or achieving similar effects through other

means, such as typed variables with dynamic scope. In the spirit of exploiting types but in an

orthogonal fashion, OCanren [Kosarev and Boulytchev 2016] implements an embedding similar to

miniKanren while exploiting the type system of OCaml to ensure a well-typed unification from the

perspective of the end user.

There is also a long history of trying to combine functional programming and logic programming,

once again going back to the early 1980s. There have been many attempts to embed a Prolog-like

language in Lisp [Felleisen 1985; Haynes 1987; Robinson and Sibert 1982], and more recently, in

Haskell [Claessen and Ljunglöf 2000; Spivey and Seres 1999]; to our knowledge, there is no work in

the literature on how to best write meta-interpeters for these embedded languages.

8 CONCLUSION
In this paper, we explored various techniques to meta-program logic programs embedded in a

functional host: deep linguistic re-use, reification (of program, and dually, of context), dynamically

scoped variables (capturing the common pattern of recording extra information about each run),

among others. Like in the Prolog tradition of meta-interpreters, these techniques enable trans-

forming the evaluation of a logic program without complicating its description. In the embedded

setting, we have the choice of meta-programming within the embedded language, or stepping out

to the host language. By embracing this flexibility, we gain simplicity: the embedded logic language

remains “pure” and first-order, tailored for relational programming.

REFERENCES
Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter, William E. Byrd, and Daniel P. Friedman. 2011. cKanren: miniKanren

with Constraints. InWorkshop on Scheme and Functional Programming.
Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and

Cesare Tinelli. 2011. CVC4. In CAV (Lecture Notes in Computer Science), Vol. 6806. Springer, 171–177.
Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung, Shaon Barman, and Casey Rodarmor. 2010.

Programming with Angelic Nondeterminism. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’10). ACM, New York, NY, USA, 339–352. https://doi.org/10.1145/1706299.

1706339

James Bornholt. 2018. Building a Program Synthesizer. https://homes.cs.washington.edu/ bornholt/post/building-

synthesizer.html. (2018).

K. A. Bowen and R. A. Kowalski. 1982. Amalgamating Logic and Metalanguage in Logic Programming. In Logic Programming,
K. L. Clark and S.-. Tärnlund (Eds.). Academic Press, 153–172.

William E. Byrd. 2009a. Relational Programming in miniKanren: Techniques, Applications, and Implementations. Ph.D.

Dissertation. Indiana University.

William E. Byrd. 2009b. Relational Programming in miniKanren: Techniques, Applications, and Implementations. Ph.D.

Dissertation. Indiana University.

William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A Unified Approach to Solving Seven

Programming Problems (Functional Pearl). Proc. ACM Program. Lang. 1, ICFP, Article 8 (Aug. 2017), 26 pages.
William E. Byrd, Eric Holk, and Daniel P. Friedman. 2012. miniKanren, Live and Untagged: Quine Generation via Relational

Interpreters (Programming Pearl). InWorkshop on Scheme and Functional Programming.
Manuel Carro and Pablo Chico de Guzmàn. 2011. Tabled Logic Programming and Its Applications. http://cliplab.org/

~mcarro/Slides/Misc/intro_to_tabling.pdf. (2011).

Draft, 2018

https://doi.org/10.1145/1706299.1706339
https://doi.org/10.1145/1706299.1706339
http://cliplab.org/~mcarro/Slides/Misc/intro_to_tabling.pdf
http://cliplab.org/~mcarro/Slides/Misc/intro_to_tabling.pdf

1:26 Nada Amin, William E. Byrd, and Tiark Rompf

Weidong Chen, Michael Kifer, and David Scott Warren. 1993. HiLog: A Foundation for Higher-Order Logic Programming. J.
Log. Program. 15, 3 (1993), 187–230.

Koen Claessen and Peter Ljunglöf. 2000. Typed Logical Variables in Haskell. Electr. Notes Theor. Comput. Sci. 41, 1 (2000), 37.
William F. Clocksin. 1997. Clause and Effect: Prolog Programming and the Working Programmer. Springer.
Michael Codish and Harald Søndergaard. 2002. Meta-circular Abstract Interpretation in Prolog. In The Essence of Computation.

109–134.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (Lecture Notes in Computer
Science), Vol. 4963. Springer, 337–340.

Benoit Desouter, Marko Van Dooren, and Tom Schrijvers. 2015. Tabling as a library with delimited control. Theory and
Practice of Logic Programming 15, 4-5 (2015), 419–433.

Matthias Felleisen. 1985. Transliterating Prolog into Scheme. Technical Report 182. Indiana University Computer Science

Department.

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. 2005. The Reasoned Schemer. MIT Press, Cambridge, MA.

Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. 2018. The Reasoned Schemer (second ed.). MIT

Press, Cambridge, MA.

H. Gallaire and C. Lasserre. 1982. Metalevel control of logic programs. In Logic Programming, K. L. Clark and S.-. Tärnlund

(Eds.). Academic Press, 173–185.

Gopal Gupta and Vitor Santos Costa. 1996. Cuts and side-effects in and-or parallel prolog. The Journal of logic programming
27, 1 (1996), 45–71.

M. Hanus. 2013. Functional Logic Programming: From Theory to Curry. In Programming Logics - Essays in Memory of
Harald Ganzinger. LNCS 7797, 123–168.

Christopher T. Haynes. 1987. Logic Continuations. J. Log. Program. 4, 2 (1987), 157–176.
Patricia M. Hill and John W. Lloyd. 1994. The Gödel programming language. MIT Press.

Dmitri Kosarev and Dmitri Boulytchev. 2016. Typed Embedding of Relational Language in OCaml. In 2016 ML Family
Workshop.

J. W. Lloyd. 1995. Declarative Programming in Escher. Technical Report CSTR-95-013. Department of Computer Science,

University of Bristol.

Bern Martens and Danny De Schreye. 1995. Why untyped nonground metaprogramming is not (much of) a problem.

Journal of Logic Programming 22, 1 (Jan. 1995), 47–99.

Enrique Martin-Martin. 2011. Type Classes in Functional Logic Programming (PEPM).
Lee Naish. 1996. Higher-order logic programming in Prolog. Technical Report 96/2. University of Melbourne.

Richard A. O’Keefe. 1990. The Craft of Prolog. MIT Press, Cambridge, MA, USA.

Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type Classes As Objects and Implicits. In OOPSLA.
J. A. Robinson and E. E. Sibert. 1982. LOGLISP: an alternative to PROLOG. In Machine Intelligence 10, J.E. Hayes, Donald

Michie, and Y-H. Pao (Eds.). Ellis Horwood Ltd., 399–419.

Tiark Rompf. 2016. The Essence of Multi-stage Evaluation in LMS. In A List of Successes That Can Change the World (Lecture
Notes in Computer Science), Vol. 9600. Springer, 318–335.

Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky. 2013. Scala-Virtualized: linguistic reuse for

deep embeddings. Higher-Order and Symbolic Computation (2013).

Z. Somogyi, F. J. Henderson, and T. C. Conway. 1995. Mercury, an Efficient Purely Declarative Logic Programming Language.

In Proceedings of the Australian Computer Science Conference. 499–512.
J. M. Spivey and S. Seres. 1999. Embedding Prolog in Haskell. In Proc. of the 1999 Haskell Workshop (Technical Report

UU-CS-1999-28, Department of Computer Science, University of Utrecht), E. Meijer (Ed.).

Leon Sterling and Ehud Shapiro. 1994. The Art of Prolog (2nd Ed.): Advanced Programming Techniques. MIT Press, Cambridge,

MA, USA.

Leon Sterling and L. Umit Yalcinalp. 1989. Explaining Prolog Based Expert Systems Using a Layered Meta-interpreter

(IJCAI’89). 66–71.
Emina Torlak and Rastislav Bodik. 2013. Growing Solver-aided Languages with Rosette. In Proceedings of the 2013 ACM

International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software (Onward! 2013). ACM,

New York, NY, USA, 135–152. https://doi.org/10.1145/2509578.2509586

David H. D. Warren. 1982. Higher-order extensions to Prolog: are they needed? In Machine Intelligence 10, J.E. Hayes,
Donald Michie, and Y-H. Pao (Eds.). Ellis Horwood Ltd., 441–454.

David S. Warren. 1992. Memoing for Logic Programs. Commun. ACM 35, 3 (March 1992), 93–111.

Draft, 2018

https://doi.org/10.1145/2509578.2509586

	Abstract
	1 Introduction
	2 Embedded Logic Programming for Deep Linguistic Reuse
	2.1 Relations as Functions
	2.2 Higher-Order Relations as Higher-Order Functions
	2.3 Object-Oriented Encapsulation
	2.4 Type Classes

	3 The Essence of Prolog-Style Meta-Interpreters
	3.1 Vanilla Interpreter
	3.2 Tracing Interpreter
	3.3 Cycle Detection and Other Extensions

	4 Dynamic Scope as Meta-Interpreter (Design Pattern)
	4.1 Designing Logic Engines for Meta-Programming
	4.2 An Alternative to Reification and Interpretation
	4.3 Tracing with Dynamic Variables
	4.4 Probabilistic Logic Computation
	4.5 Clause Reification as Controlled Side Effect

	5 Tabling As An Alternative Execution Strategy
	5.1 Implementation: Meta-Programming via the Host Language
	5.2 Memoization with Symbolic State Transitions
	5.3 Example: Tabled Graph Evaluation
	5.4 Application: Definite Clause Grammar (DFG)

	6 Synthesis with CLP(SMT)
	6.1 A Few Simple Synthesis Examples

	7 Related Work
	8 Conclusion
	References

