
1. Type Safety via Logical Relations
We sketch a proof of type-safety of the DOT calculus via step-
indexed logical relations [1–3].

1.1 Type Safety
Type-safety states that a well-typed program doesn’t get stuck.
More formally: If ∅ ` t : T and t | ∅ →∗ t′ | s′ then either
t′ is a value or ∃t′′, s′′.t′ | s′ → t′′ | s′′.

Our strategy is to define a logical relation Γ � t : T , such that
Γ ` t : T implies Γ � t : T implies type-safety.

1.2 Step-Indexed Logical Relations
In order to ensure that our logical relation is well-founded, we use
a step index. For each step index k, we define the set of values and
the set of terms that appear to belong to a given type, when taking at
most k steps. Γ � t : T is then defined in terms of the step-indexed
logical relation by requiring it to hold ∀k.

1.2.1 Set of Values
Vk;Γ;sJT K defines the set of values that appear to have type T when
taking at most k steps. Γ and s must agree: dom(Γ) = dom(s)
(ordered) and ∀(x : T) ∈ Γ, x ∈ Vk;Γ;sJT K. A variable y belongs
to V0;Γ;sJT K simply by being in the store. In addition, it belongs to
Vk;Γ;sJT K for k > 0, if it defines all type, method and value labels
in the expansion of T appropriately for j < k steps.

Vk;Γ;sJT K = {y |y ∈ dom(s) ∧ (

(Γ ` T wfe ∧
∀j < k,

y 7→ Tc

{
l = v m(x) = t

}
∈ s,

Γ ` T ≺y D,

(∀Li : S → U ∈ D,

Γ ` y 3 Li : S′..U ′) ∧
(∀mi : S → U ∈ D,

ti ∈ Ej;Γ,xi:S;sJUK) ∧
(∀li : V ∈ D,

vi ∈ Vj;Γ;sJV K))∨
(T = T1 ∧ T2 ∧ y ∈ Vk;Γ;sJT1K ∧ y ∈ Vk;Γ;sJT2K)∨
(T = T1 ∨ T2 ∧ (y ∈ Vk;Γ;sJT1K ∨ y ∈ Vk;Γ;sJT2K))
)}

This relation captures the observation that the only ways for a
term to get stuck is to have a field selection on an uninitialized
field or a method invocation on an uninitialized method. However,
a potential pitfall is that the value itself might occur in the types
S, U , V , because we substitute it for the “self” occurrences in the
expansion, so the relation makes sure that the required type labels
exist.

1.2.2 Set of Terms
Ek;Γ;sJT K defines the set of terms that appear to have type T when
taking at most k steps. s must agree with a prefix of Γ, so Γ can
additionally contain variables not in s. This is needed for checking
methods in V above, and for relating open terms. If k > 0, E
extends Γ and s so that they agree. It then states that if it can reduce
t in the extended store to an irreducible term in j < k steps, then
this term must be in a corresponding V set with Γ now extended to
agree with the store resulting from the reduction steps.

irred (t, s) is a shorthand for ¬∃t′, s′.t | s → t′ | s′. ⊇ is used
initially for the possibly shorter store to agree with the environment,

and can extend both in many different ways. ⊇! is used finally
for the possibly shorter environment to agree with the store, and
just extends the environment in one straightforward way: hence, it
defines singleton sets.

Ek;Γ;sJT K = {t |
k = 0 ∨ (∀j < k,

∀(Γ′; s′) ∈ ⊇kJΓ; sK,

t | s′ →j t′ | s′′ ∧
irred (t′, s′′)→
∀Γ′′ ∈ ⊇!

k;s′′JΓ
′K,

t′ ∈ Vk−j−1;Γ′′;s′′JT K)
}

1.2.3 Extending the environment and the store
⊇kJΓ; sK for k > 0 defines the set of completed environment and
stores that agree on k − 1 steps, and that extend Γ and s. s must
agree with a prefix of Γ. Both Γ and s are ordered maps. For s, s′

extends s if s is a prefix of s′. For Γ, Γ′ extends Γ if we get back Γ
by keeping only the elements of Γ′ that belong to Γ. Furthermore,
a prefix of Γ′ agrees with s.

⊇kJΓ; sK = {

(x : T
m
, xij : Tij

m≤i<n;0≤j<in
; s, xij 7→ cij

m≤i<n;0≤j<in)|
s = x 7→ cm ∧ Γ = x : T

n ∧
m ≤ n ∧ ∀i,m ≤ i < n,∀in, j, 0 ≤ j < in,

∀Tij , cij , Ti(in−1) = Ti, ∀n′ ≤ n, in′ ≤ in,

cij ∈ V
k−1;x:T

m
,xij :Tij

m≤i<n′;0≤j<i
n′ ;s,xij 7→cij

m≤i<n′;0≤j<i
n′

JTijK

}

1.2.4 Completing the environment to agree with the store
⊇!

k;sJΓK defines a singleton set of a completed environment that
agrees with a store s by simply copying the constructor type from
the store for each missing variable.

⊇!
k;sJΓK = {Γ, xi : Tci

m≤i<n |
Γ = x : T

m ∧ s = x 7→ cn

}

1.2.5 Terms in the Logical Relation
Γ � t : T is simply defined as t ∈ Ek;Γ;∅JT K,∀k.

1.3 Statements and Proofs
1.3.1 Fundamental Theorem
The fundamental theorem is the implication from Γ ` t : T
to Γ � t : T . Type safety is a straightforward corollary of this
theorem.

Proof: The proof is on induction on the derivation of Γ ` t : T .
For each case, we need to show t ∈ Ek;Γ;∅JT K,∀k. The non-
trivial case is when k > 0 and for (Γ′; s′) ∈ ⊇kJΓ; sK and some
j < k, t | s →j t′ | s′ ∧ irred (t′, s′). Then, we need to show
t′ ∈ Vk−j−1;Γ′′;s′JT K for Γ′′ ∈ ⊇!

Γ;kJs′KΓ′.

Case VAR: Γ ` x : T knowing (x : T) ∈ Γ. x ∈ Vk−1;Γ′;sJT K
follows from the definition of ⊇kJΓ; ∅K.

1

Case SEL: Γ ` t1.li : T knowing Γ ` t1 : T1, Γ ` T1 ≺z D,
li : Vi ∈ D and knowing either that t1 = p1 ∧ T = [p/z]Vi or
that z 6∈ fn(Vi) ∧ T = Vi.

By operational semantics and induction hypothesis, t1 | s →j−1

t′1 | s′ and irred (t′1, s
′) and t′1 ∈ Vk−j+1−1;Γ′;s′JT1K.

By operational semantics and the above, t′1.li | s′ →1 t′ | s′,
and we can conclude t′ ∈ Vk−j−1;Γ′′;s′JT K from the clause for
value labels of t′1 ∈ Vk−j;Γ′′;s′JT1K.

Case MSEL: Γ ` t1.mi(t2) : T knowing Γ ` t1 : T1,
Γ ` t2 : T2, Γ ` T1 ≺z D, mi : Si → Ui ∈ D and knowing
either that t1 = p1 ∧ S = [p/z]Si ∧ T = [p/z]Ui or that
z 6∈ fn(Si) ∧ z 6∈ fn(Ui) ∧ S = Si ∧ T = Ui, and knowing
that Γ ` T2 <: S.

By operational semantics and induction hypotheses, t1 | s →j1

t′1 | s1 and irred (t′1, s1) and t2 | s →j2 t′2 | s2 and irred (t′2, s2)
and t′1 ∈ Vk−j1−1;Γ1;s1JT1K and t′2 ∈ Vk−j2−1;Γ2;s2JT2K.

Because t2 reduces to a value t′2 starting in store s, it should
also reduce to a value v2 in the same number of steps starting in
store s1, since s1 extends s. So let t2 | s1 →j2 v2 | s12 with
v2 ∈ Vk−j2−1;Γ12;s12JT2K.

By the above and operational semantics, t′1.mi(v2) | s12 →1

[v2/xi]ti | s12.
By the substitution lemma, [v2/xi]ti ∈ Ek−max(j1,j2)−1;Γ12;s12JT K.

Supposing, [v2/xi]ti | s12 →j3 t′ | s′, with j1 + j2 + j3 + 1 = j,
this completes the case, by monotonicity of V .

Case NEW: Γ ` val y = new c; tb : T knowing ...
By operational semantics, val y = new c; tb | s →1 tb | sb

where sb = s, y 7→ c. So tb | sb →j−1 t′ | s′.
By induction hypotheses, y ∈ Vk;Γb;sbJTcK and tb ∈ Ek;Γb;sbJT K.
Result follows by monotonicity of V .
2

1.3.2 Substitution Lemma
The substitution lemma states that if (1) v ∈ Vk2;Γ12;s12JT2K and
(2) t ∈ Ek1;Γ1,x:S;s1JT K and (3) Γ ` T2 <: S with (4) x 6∈ fn(T)
and Γ1 extends Γ and Γ12 extends Γ1 and s12 extends s1 and Γ1

agrees with s1 and Γ12 agrees with s12 and a prefix of Γ12 agrees
with s1, then [v/x]t ∈ Emin(k1,k2);Γ12;s12JT K.

Proof Sketch: By (1) and (3), it should hold that (5) v ∈
Vk2;Γ12;s12JSK by the subset semantics lemma. Since (2) holds,
it should also hold that t ∈ Emin(k1,k2);Γ12,x:S;s12JT K by the ex-
tended monotonicity lemma. Then, we can instantiate x in the
complete store to map to what v maps to. This should be fine by (5)
and monotonicity. Thus, t ∈ Emin(k1,k2);Γ12,x:S;s12,x 7→s12(v)JT K.
Thanks to (4), we don’t actually need x to be held abstract
in the environment, because it won’t occur in T or its expan-
sion (a potential pitfall is whether its occurrences in ti could
still cause a check to fail through narrowing issues), so we can
use the type of v in the environment instead of S for x: t ∈
Emin(k1,k2);Γ12,x:Γ12(v);s12,x 7→s12(v)JT K. This implies what needs
to be shown. 2

1.3.3 Subset Semantics Lemma
The subset semantics lemma states that if v ∈ Vk;Γ;sJSK and
Γ ` S <: U , then v ∈ Vk;Γ;sJUK.

Proof Sketch: Because S is a subtype of U , it should hold that
the expansion of S subsumes the expansion of U , when the “self”
occurrences are of type S. Therefore, for v ∈ Vk;Γ;sJUK, we have
fewer declarations to check than for v ∈ Vk;Γ;sJSK.

A potential pitfall is whether some types of the expansion of
U can become non-expanding when the “self” occurrences are

actually v instead of just abstractly of type S, causing a check to
fail. Another worry is that such a non-expanding type results from
narrowing of a parameter type. 2

1.3.4 Extended Monotonicity Lemma
The extended monotonicity lemma states that if t ∈ Ek;Γ,x:S;sJT K
then t ∈ Ej;Γ′,x:S;s′JT K for j ≤ k, Γ′ extends Γ, s′ extends s, and
Γ agrees with s and a prefix of Γ′ agrees with s.

Proof Sketch: For the monotonicity with regards to the step
index, this follows directly from the definitions of E and V . For
the environment and the store, this follows by design from the
definition of ⊇kJΓ, x : S; sK. To extend the environment and the
store for x : S, we can append as much as we want to Γ and s, to
get Γ′ and s′, and then ignore the last element which is for x : S.
2

References
[1] A. J. Ahmed. Semantics of types for mutable state. PhD thesis,

Princeton University, 2004.
[2] A. J. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, pages 69–83, 2006.
[3] C. Hritcu and J. Schwinghammer. A step-indexed semantics of imper-

ative objects. Logical Methods in Computer Science, 5(4), 2009.

2

	Type Safety via Logical Relations
	Type Safety
	Step-Indexed Logical Relations
	Set of Values
	Set of Terms
	Extending the environment and the store
	Completing the environment to agree with the store
	Terms in the Logical Relation

	Statements and Proofs
	Fundamental Theorem
	Substitution Lemma
	Subset Semantics Lemma
	Extended Monotonicity Lemma

