
1. Type Safety via Logical Relations
We sketch a proof of type-safety of the DOT calculus via step-
indexed logical relations [1–3].

1.1 Type Safety
Type-safety states that a well-typed program doesn’t get stuck.
More formally: If ∅ ` t : T and t | ∅ →∗ t′ | s′ then either
t′ is a value or ∃t′′, s′′.t′ | s′ → t′′ | s′′.

Our strategy is to define a logical relation Γ � t : T , such that
Γ ` t : T implies Γ � t : T implies type-safety.

1.2 Step-Indexed Logical Relations
In order to ensure that our logical relation is well-founded, we use
a step index. For each step index k, we define the set of values and
the set of terms that appear to belong to a given type, when taking at
most k steps. Γ � t : T is then defined in terms of the step-indexed
logical relation by requiring it to hold ∀k.

1.2.1 Set of Values
Vk;Γ;sJT K defines the set of values that appear to have type T when
taking at most k steps. Γ and s must agree: dom(Γ) = dom(s)
(ordered) and ∀(x : T ) ∈ Γ, x ∈ Vk;Γ;sJT K. A variable y belongs
to V0;Γ;sJT K simply by being in the store. In addition, it belongs to
Vk;Γ;sJT K for k > 0, if it defines all type, method and value labels
in the expansion of T appropriately for j < k steps.

Vk;Γ;sJT K = {y |y ∈ dom(s) ∧ (

(Γ ` T wfe ∧
∀j < k,

y 7→ Tc

{
l = v m(x) = t

}
∈ s,

Γ ` T ≺y D,

(∀Li : S → U ∈ D,

Γ ` y 3 Li : S′..U ′) ∧
(∀mi : S → U ∈ D,

ti ∈ Ej;Γ,xi:S;sJUK) ∧
(∀li : V ∈ D,

vi ∈ Vj;Γ;sJV K))∨
(T = T1 ∧ T2 ∧ y ∈ Vk;Γ;sJT1K ∧ y ∈ Vk;Γ;sJT2K)∨
(T = T1 ∨ T2 ∧ (y ∈ Vk;Γ;sJT1K ∨ y ∈ Vk;Γ;sJT2K))
)}

This relation captures the observation that the only ways for a
term to get stuck is to have a field selection on an uninitialized
field or a method invocation on an uninitialized method. However,
a potential pitfall is that the value itself might occur in the types
S, U , V , because we substitute it for the “self” occurrences in the
expansion, so the relation makes sure that the required type labels
exist.

1.2.2 Set of Terms
Ek;Γ;sJT K defines the set of terms that appear to have type T when
taking at most k steps. s must agree with a prefix of Γ, so Γ can
additionally contain variables not in s. This is needed for checking
methods in V above, and for relating open terms. If k > 0, E
extends Γ and s so that they agree. It then states that if it can reduce
t in the extended store to an irreducible term in j < k steps, then
this term must be in a corresponding V set with Γ now extended to
agree with the store resulting from the reduction steps.

irred (t, s) is a shorthand for ¬∃t′, s′.t | s → t′ | s′. ⊇ is used
initially for the possibly shorter store to agree with the environment,

and can extend both in many different ways. ⊇! is used finally
for the possibly shorter environment to agree with the store, and
just extends the environment in one straightforward way: hence, it
defines singleton sets.

Ek;Γ;sJT K = {t |
k = 0 ∨ (∀j < k,

∀(Γ′; s′) ∈ ⊇kJΓ; sK,

t | s′ →j t′ | s′′ ∧
irred (t′, s′′)→
∀Γ′′ ∈ ⊇!

k;s′′JΓ
′K,

t′ ∈ Vk−j−1;Γ′′;s′′JT K)
}

1.2.3 Extending the environment and the store
⊇kJΓ; sK for k > 0 defines the set of completed environment and
stores that agree on k − 1 steps, and that extend Γ and s. s must
agree with a prefix of Γ. Both Γ and s are ordered maps. For s, s′

extends s if s is a prefix of s′. For Γ, Γ′ extends Γ if we get back Γ
by keeping only the elements of Γ′ that belong to Γ. Furthermore,
a prefix of Γ′ agrees with s.

⊇kJΓ; sK = {

(x : T
m
, xij : Tij

m≤i<n;0≤j<in
; s, xij 7→ cij

m≤i<n;0≤j<in)|
s = x 7→ cm ∧ Γ = x : T

n ∧
m ≤ n ∧ ∀i,m ≤ i < n,∀in, j, 0 ≤ j < in,

∀Tij , cij , Ti(in−1) = Ti, ∀n′ ≤ n, in′ ≤ in,

cij ∈ V
k−1;x:T

m
,xij :Tij

m≤i<n′;0≤j<i
n′ ;s,xij 7→cij

m≤i<n′;0≤j<i
n′

JTijK

}

1.2.4 Completing the environment to agree with the store
⊇!

k;sJΓK defines a singleton set of a completed environment that
agrees with a store s by simply copying the constructor type from
the store for each missing variable.

⊇!
k;sJΓK = {Γ, xi : Tci

m≤i<n |
Γ = x : T

m ∧ s = x 7→ cn

}

1.2.5 Terms in the Logical Relation
Γ � t : T is simply defined as t ∈ Ek;Γ;∅JT K,∀k.

1.3 Statements and Proofs
1.3.1 Fundamental Theorem
The fundamental theorem is the implication from Γ ` t : T
to Γ � t : T . Type safety is a straightforward corollary of this
theorem.

Proof: The proof is on induction on the derivation of Γ ` t : T .
For each case, we need to show t ∈ Ek;Γ;∅JT K,∀k. The non-
trivial case is when k > 0 and for (Γ′; s′) ∈ ⊇kJΓ; sK and some
j < k, t | s →j t′ | s′ ∧ irred (t′, s′). Then, we need to show
t′ ∈ Vk−j−1;Γ′′;s′JT K for Γ′′ ∈ ⊇!

Γ;kJs′KΓ′.

Case VAR: Γ ` x : T knowing (x : T ) ∈ Γ. x ∈ Vk−1;Γ′;sJT K
follows from the definition of ⊇kJΓ; ∅K.
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Case SEL: Γ ` t1.li : T knowing Γ ` t1 : T1, Γ ` T1 ≺z D,
li : Vi ∈ D and knowing either that t1 = p1 ∧ T = [p/z]Vi or
that z 6∈ fn(Vi) ∧ T = Vi.

By operational semantics and induction hypothesis, t1 | s →j−1

t′1 | s′ and irred (t′1, s
′) and t′1 ∈ Vk−j+1−1;Γ′;s′JT1K.

By operational semantics and the above, t′1.li | s′ →1 t′ | s′,
and we can conclude t′ ∈ Vk−j−1;Γ′′;s′JT K from the clause for
value labels of t′1 ∈ Vk−j;Γ′′;s′JT1K.

Case MSEL: Γ ` t1.mi(t2) : T knowing Γ ` t1 : T1,
Γ ` t2 : T2, Γ ` T1 ≺z D, mi : Si → Ui ∈ D and knowing
either that t1 = p1 ∧ S = [p/z]Si ∧ T = [p/z]Ui or that
z 6∈ fn(Si) ∧ z 6∈ fn(Ui) ∧ S = Si ∧ T = Ui, and knowing
that Γ ` T2 <: S.

By operational semantics and induction hypotheses, t1 | s →j1

t′1 | s1 and irred (t′1, s1) and t2 | s →j2 t′2 | s2 and irred (t′2, s2)
and t′1 ∈ Vk−j1−1;Γ1;s1JT1K and t′2 ∈ Vk−j2−1;Γ2;s2JT2K.

Because t2 reduces to a value t′2 starting in store s, it should
also reduce to a value v2 in the same number of steps starting in
store s1, since s1 extends s. So let t2 | s1 →j2 v2 | s12 with
v2 ∈ Vk−j2−1;Γ12;s12JT2K.

By the above and operational semantics, t′1.mi(v2) | s12 →1

[v2/xi]ti | s12.
By the substitution lemma, [v2/xi]ti ∈ Ek−max(j1,j2)−1;Γ12;s12JT K.

Supposing, [v2/xi]ti | s12 →j3 t′ | s′, with j1 + j2 + j3 + 1 = j,
this completes the case, by monotonicity of V .

Case NEW: Γ ` val y = new c; tb : T knowing ...
By operational semantics, val y = new c; tb | s →1 tb | sb

where sb = s, y 7→ c. So tb | sb →j−1 t′ | s′.
By induction hypotheses, y ∈ Vk;Γb;sbJTcK and tb ∈ Ek;Γb;sbJT K.
Result follows by monotonicity of V .
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1.3.2 Substitution Lemma
The substitution lemma states that if (1) v ∈ Vk2;Γ12;s12JT2K and
(2) t ∈ Ek1;Γ1,x:S;s1JT K and (3) Γ ` T2 <: S with (4) x 6∈ fn(T )
and Γ1 extends Γ and Γ12 extends Γ1 and s12 extends s1 and Γ1

agrees with s1 and Γ12 agrees with s12 and a prefix of Γ12 agrees
with s1, then [v/x]t ∈ Emin(k1,k2);Γ12;s12JT K.

Proof Sketch: By (1) and (3), it should hold that (5) v ∈
Vk2;Γ12;s12JSK by the subset semantics lemma. Since (2) holds,
it should also hold that t ∈ Emin(k1,k2);Γ12,x:S;s12JT K by the ex-
tended monotonicity lemma. Then, we can instantiate x in the
complete store to map to what v maps to. This should be fine by (5)
and monotonicity. Thus, t ∈ Emin(k1,k2);Γ12,x:S;s12,x 7→s12(v)JT K.
Thanks to (4), we don’t actually need x to be held abstract
in the environment, because it won’t occur in T or its expan-
sion (a potential pitfall is whether its occurrences in ti could
still cause a check to fail through narrowing issues), so we can
use the type of v in the environment instead of S for x: t ∈
Emin(k1,k2);Γ12,x:Γ12(v);s12,x 7→s12(v)JT K. This implies what needs
to be shown. 2

1.3.3 Subset Semantics Lemma
The subset semantics lemma states that if v ∈ Vk;Γ;sJSK and
Γ ` S <: U , then v ∈ Vk;Γ;sJUK.

Proof Sketch: Because S is a subtype of U , it should hold that
the expansion of S subsumes the expansion of U , when the “self”
occurrences are of type S. Therefore, for v ∈ Vk;Γ;sJUK, we have
fewer declarations to check than for v ∈ Vk;Γ;sJSK.

A potential pitfall is whether some types of the expansion of
U can become non-expanding when the “self” occurrences are

actually v instead of just abstractly of type S, causing a check to
fail. Another worry is that such a non-expanding type results from
narrowing of a parameter type. 2

1.3.4 Extended Monotonicity Lemma
The extended monotonicity lemma states that if t ∈ Ek;Γ,x:S;sJT K
then t ∈ Ej;Γ′,x:S;s′JT K for j ≤ k, Γ′ extends Γ, s′ extends s, and
Γ agrees with s and a prefix of Γ′ agrees with s.

Proof Sketch: For the monotonicity with regards to the step
index, this follows directly from the definitions of E and V . For
the environment and the store, this follows by design from the
definition of ⊇kJΓ, x : S; sK. To extend the environment and the
store for x : S, we can append as much as we want to Γ and s, to
get Γ′ and s′, and then ignore the last element which is for x : S.
2
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