
Dependent Object Types
Spring 2012 Semester Project

Nada Amin
EPFL

nada.amin@epfl.ch

Abstract
In my semester project, I have studied a new proposed type-
theoretic foundation of Scala and languages like it: the Dependent
Object Types calculus (DOT). DOT models Scala’s path-dependent
types and abstract type members, as well as its mixture of nominal
and structural typing through the use of refinement types. My ul-
timate goal was to prove DOT sound, but instead, I found lots of
counterexamples to soundness, and have explored patches to the
calculus.

1. Introduction
We briefly summarize the salient features of the original DOT
calculus. The reader is encouraged to consult the appendices for
the full description. We will often refer to the rules of the calculus
in the remainder of this report.

DOT models Scala’s path-dependent types and abstract type
members, as well as its mixture of nominal and structural typing
through the use of refinement types. It makes no attempt to model
inheritance or mixing composition. The calculus does not model
what’s currently in Scala: it is more normative than descriptive.

The terms in DOT consists of variables x, y, z, lambda abstrac-
tions λx : T. t, function applications t t′, field selections t.l and
object creation expressions val x = new c; t, where c is a con-
structor Tc

{
l = v

}
.

The types in DOT consists of type selections p.L, refinement
types T

{
z ⇒ D

}
, function types T → T ′, type intersections

T ∧ T ′, type unions T ∨ T ′, a top type >, and a bottom type ⊥.
The DOT calculus is expressed using a small-step operational

semantics. The typing judgment directly or indirectly uses the fol-
lowing other judgments: membership, expansion, well-formedness
and subtyping. Expansion “flattens” all the declarations of a type,
and membership selects a particular flattened declaration by label.
Expansion is precise. The NEW typing judgment relies on the pre-
ciseness of expansion to check that all bounds of types declared
within the type of the constructor are consistent (i.e. that the lower
bound is a subtype of the upper bound), and that all values declared
within the type of the constructor are initialized.

In the rest of this introduction, we present some program exam-
ples. We summarize our findings of counterexamples to soundness

[Copyright notice will appear here once ’preprint’ option is removed.]

in section 2. We explore some patches to the calculus in section 3.
We discuss opportunities for future work and conclude in section 4.

1.1 Program Examples
1.1.1 Basics: Booleans, Error, . . .
This program defines a root object with basic types (Unit , Boolean ,
Nat) and values (true , false , error , zero). For brevity, I’ve omit-
ted the code related to natural numbers. During the object creation,
the value labels such as false are all initialized.

val root = new >{r ⇒
Unit : ⊥..>
unit : > → r.Unit

Boolean : ⊥..>{z ⇒
ifNat : (r.Unit → r.Nat)→ (r.Unit → r.Nat)→ r.Nat

}
false : r.Unit → r.Boolean

true : r.Unit → r.Boolean

. . .

error : r.Unit → ⊥
}{
unit = λx :>. val u = new root .Unit ; u

false = λu :root .Unit .

val ff = new root .Boolean{
ifNat = λt :root .Unit → root .Nat .

λe :root .Unit → root .Nat .

e root .unit

};
ff

true = . . .

error = λu :root .Unit . root .error u

. . .

};
. . .

1.1.2 Polymorphic Lists
Polymorphic lists can be expressed using an abstract type member
for the element type (Elem). We can instantiate a refinement of the
list package to manipulate lists with a particular element type. We
can choose to make the lists invariant or covariant in the element

Spring 2012 Semester Project – Nada Amin 1 2012/7/6



type by fixing the lower bound of the Elem re-declaration to the
upper bound or to ⊥, respectively.

val genLists = new >{g ⇒ ListPackage : ⊥..>{p⇒
Elem : ⊥..>
ListOfElement : g.List {z ⇒ Elem : p.Elem..p.Elem} ..

g.List {z ⇒ Elem : p.Elem..p.Elem}
List : ⊥..>{z ⇒

isEmpty : root .Unit → root .Boolean

head : root .Unit → g.Elem

tail : root .Unit → g.ListOfElem

}
nil : root .Unit → g.ListOfElem

cons : g.Elem → g.ListOfElem

}};
val natLists = new genLists.ListPackage{p⇒ Elem : Nat ..Nat}{
nil = . . .

cons = . . .

};
. . .

2. Counterexamples
2.1 Subtyping Transitivity and Preservation
Some subtyping transitivity is essential for soundness. Indeed, we
show how to construct a counterexample to preservation from any
counterexample to subtyping transitivity where the three involved
types S, T, U are expressible within a realizable universe, though
the types themselves don’t need to be realizable:

val u = new . . . ;

((λx :>. x)

((λf :S → U. f)

((λf :S → T. f)

((λf :S → S. f)

λx :S. x))))

The idea is to start with a function from S → S and cast it
successively to S → T then S → U . To typecheck the expres-
sion initially, we need to check S <: T and T <: U . After some
reduction steps, the first few casts vanish, and the reduced expres-
sion casts directly from S → S to S → U , so we need to check
S <: U . Thus, we need subtyping transitivity: S <: T and T <: U
implies S <: U .

2.2 Non-Expanding Types and Subtyping Transitivity
The well-formedness rule TSEL-WF2 allow a type selection p.L to
refer back to itself in its upper bound. This is useful for expressing
recursive class types and F-bounded abstract types.

Consider the simplest possible type that refers to itself: p : T =
>{z ⇒ L : ⊥..z.L}. Now, p.L is well-formed but non-expanding.
Indeed, the only expansion rule that applies to p.L is TSEL-≺, but it
requires expanding the upper bound... p.L! Thus, there is no finite
derivation for the expansion of p.L.

Non-expanding types are problematic for subtyping transitivity.
Consider: p.L <: > by <:-> and > <: >{z ⇒} by <:-RFN. By
transitivity on >, we expect p.L <: >{z ⇒}, but we cannot infer

this from the rules. The only rules that apply are<:-RFN and TSEL-
<:. <:-RFN gets stuck expanding p.L. TSEL-<: gets stuck because
the conclusion is also a premise as p 3 L : ⊥..p.L.

For this counterexample, it seems enough to just add transitivity
on > as a built-in rule. But this doesn’t solve the general issue that
non-expanding types don’t play well with subtyping. The problem
is deep, as it’s possible to construct a realizable universe with three
non-trivial types that fail subtyping transitivity.

Consider an environment where u is bound to:

>{u⇒
Bad : ⊥..u.Bad

Good : >{z ⇒ L : ⊥..>} ..>{z ⇒ L : ⊥..>}
Lower : u.Bad ∧ u.Good ..u.Good

Upper : u.Good ..u.Bad ∨ u.Good

X : u.Lower ..u.Upper

}
Note that each lower bound is a subtype of its upper bound, so
u is realizable. Hence, if we find a counterexample to subtyping
transitivity with types expressible within u, we can apply the trick
from section 2.1 to create a counterexample to preservation.

Indeed, here is such a counterexample to subtyping transitivity:

S = u.Bad ∧ u.Good

T = u.Lower

U = u.X {z ⇒ L : ⊥..>}
We have S <: T and T <: U , but we cannot derive S <: U
because S doesn’t expand.

2.3 Narrowing
2.3.1 Functions as Objects
The original DOT calculus has both object and function types.
It doesn’t have built-in methods, but they can be expressed as
functional labels. On the other hand, Scala doesn’t have a built-in
function type. Instead, it has both methods and fields, and encodes
functions as objects with an apply method. Here, we show that the
DOT model as originally designed is problematic.

A concrete object can be a subtype of a function type without a
function ever being defined. Consider:

val u = new >{z ⇒ C : > → >..> → >}{} ;

val f = new u.C {} ;

. . .

Now, f is a subtype of> → >, but f (λx :>. x) is stuck (and,
rightfully, doesn’t typecheck). But we can use narrowing to create
a counterexample to preservation: (λg :> → >. g (λx :>. x)) f .

2.3.2 TERM-3 Restriction
There are two membership (t 3 D) rules: one for when the term
t is a path, and one for an arbitrary term t. For paths, we can
substitute the self-references in the declarations, but we cannot
do so for arbitrary terms as the resulting types wouldn’t be well-
formed syntactically. Hence, the TERM-3 has the restriction that
self-occurrences are not allowed. Here is a counterexample related
to this restriction.

Let X be a shorthand for the type:

>{z ⇒
La : >..>
l : z.La

}

Spring 2012 Semester Project – Nada Amin 2 2012/7/6



Let Y be a shorthand for the type:

>{z ⇒
l : >
}

Now, consider the term

val u = new X {l = u} ;

((λy :> → Y. y u) (λd :>. ((λx :X. x) u))).l

The term type-checks because the term t = ((λy : > →
Y. y u) (λd : >. ((λx : X. x) u))) has type Y , so we
can apply TERM-3 for l. However, the term t eventually steps to
((λx :X. x) u) which has type X , so we cannot apply TERM-3
for l because of the self-reference (z.La).

2.3.3 Expansion Lost
Expansion is not preserved by narrowing. Here, we create two
type selections that are mutually recursive in their upper bounds
after narrowing: z0.C2 initially expands, but after narrowing, z0.C2

expands to what z0.A2 expands to, which expands to what z0.A1

expands to, which expands to what z0.A2 expands to, and thus we
have an infinite expansion. Thus, the last new expression initially
type-checks, but after narrowing, it doesn’t because the precise
expansion needed by NEW cannot be inferred.

val x0 = new >{z ⇒ A1 : ⊥..>{z ⇒
A2 : ⊥..>
A3 : ⊥..>
C2 : ⊥..z.A2}} {} ;

val x1 = new >{z ⇒ C1 : ⊥..>{z ⇒ A1 : ⊥..x0.A1}} {} ;

val x2 = new x1.C1 {z ⇒ A1 : ⊥..x0.A1 {z ⇒ A2 : ⊥..z.A3}} {} ;

val x3 = new x1.C1 {z ⇒ A1 : ⊥..x0.A1 {z ⇒ A3 : ⊥..z.A2}} {} ;

((λx :x1.C1. (λz0 :x.A1 ∧ x3.A1.

val z = new z0.C2; (λx :>. x) z))

x2)

2.3.4 Well-Formedness Lost
Even well-formedness is not preserved by narrowing. The trick
is that if the lower bound of a type selection is not ⊥, then the
bounds needs to be checked for well-formedness. Here, we create
two type selections that are mutually recursive in their bounds after
narrowing. y.A is initially well-formed, but after narrowing, it isn’t
because we run into an infinite derivation trying to prove the well-
formedness of its bounds.

val v = new >{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>, B : z.A..z.A}} {} ;

((λx :>{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>, B : ⊥..>}} .
val z = new >{z ⇒ l : ⊥ → >}{

l = λy :x.L ∧ >{z ⇒ A : z.B..z.B,B : ⊥..>}.
λa :y.A. (λx :>. x) a};

(λx :>. x) z)

v)

2.4 Path Equality
We need to be able to relate path-dependent types after reduction.
The original DOT calculus doesn’t have any rules for dealing with
path-equality. Here is an example which motivates the need for
path-equality provisions.

val b = new >{z ⇒ X : >..>
l : z.X } {l = b} ;

val a = new >{z ⇒ i : >{z ⇒
X : ⊥..>
l : z.X} } {i = b} ;

(λx :>. x) ((λx :a.i.X. x) a.i.l)

a.i.l reduces to b.l. b.l has type b.X , so we need b.X <: a.i.X .
This cannot be established with the current rules: it is not true in
general, but true here because a.i reduces to b. Hence, the need for
acknowledging path equality.

3. Patches
We have explored several patches to the calculus to deal with the
counterexamples presented above.

3.1 Well-Formed and Expanding Types
We introduce a new judgment form for whether a type is well-
formed and expanding: Γ ` T wfe if and only if Γ ` T wf and
∃D such that Γ ` T ≺z D. Then, we replace all other uses of the
wf judgment, including those within the wf judgment inference
rules, with uses of the wfe judgment.

We limit subtyping to wfe types. In fact, we make subtyping
regular with respect to wfe: i.e., if Γ ` S <: T , then Γ ` S wfe
and Γ ` T wfe. Assuming a few lemmas, we are able to formally
prove that this modified subtyping judgment is transitive. The most
notable lemma we assume is the “Galois connection” between
subtyping and expansion: if Γ ` S <: T , S ≺z DS , T ≺z DT ,
then Γ, z : S ` Ds <: DT .

3.2 Functions as Sugar
We adopt Scala’s model of treating functions as syntactic sugar for
an object with a special method. In order to do so, we introduce a
new kind of label for methods with one parameter: m : S → U .

A difference in expressivity between this model and the original
one is that we now have to explicitly provide a return type of
the method, while the return type was inferred for functions. In
practice, this is cumbersome but not fundamentally limiting.

3.3 Explicit Widening
In the original DOT calculus, the APP and NEW typing rules have
implicit relaxations. For instance, in APP, the argument type may
be a subtype of the declared parameter type. In order to deal with
all the soundness problems due to narrowing, we make widening an
explicit operation and change those rules to be strict by replacing
those relaxed subtyping judgments with equality judgments. Two
types S and T are judged to be equal if S <: T and T <: S.

Syntactically, we add a widening term: t : T , and extend values
with a case for widening: v : T . The typing rule for widening, WID,
is the only one admitting a subtyping relaxation: Γ ` (t : T ) : T
if Γ ` t : T ′ and Γ ` T ′ <: T .

The reduction rules become more complicated because the type
information in the widening needs to be propagated correctly. We
will motivate this informally with examples.

val v = new >{z ⇒ La : ⊥..>, l : >{z ⇒ La : ⊥..>}}
{l = v : >{z ⇒ La : ⊥..>}} ;

(λx :>. x) (v : >{z ⇒ l : >}).l
The term (v : >{z ⇒ l : >}).l first widens v so that the label

has type > instead of >{z ⇒ La : ⊥..>}.

Spring 2012 Semester Project – Nada Amin 3 2012/7/6



How should reduction proceed? We cannot just strip the widen-
ing and then reduce, because then the strict function application
would not accept the reduced term. In short, we need to do some
type manipulations during reduction, by using the membership and
expansion judgments. This is a bit unfortunate, because it means
that reduction now needs to know about typing.

Next, we look at path equality provisions. These are even more
essential now in the presence of explicit widening. Consider this
example:

val b = new >{z ⇒ X : >..>, l : z.X} {l = b : b.X} ;

val a = new >{z ⇒ i : >{z ⇒ X : ⊥..>, l : z.X}}
{i = b : >{z ⇒ X : ⊥..>, l : z.X}} ;

a.i.l : >

a.i.l reduces to b : >{z ⇒ X : ⊥..>, l : z.X}. Now, how can
we continue? b.l reduces to b : b.X which has bounds >..>,
but (b : >{z ⇒ X : ⊥..T op, l : z.X}).l has bounds ⊥..>, so
without some provision for path equality, we cannot widen b.l to
(b : >{z ⇒ X : ⊥..>, l : z.X}).l.

3.4 Path Equality Provisions
We add the path equality provisions to the subtyping rules.

Let’s first ignore the extension of the calculus requiring explicit
widenings introduced in 3.3. Then, we need to add one intuitive rule
to the subtyping judgment: <:-PATH. If p (path-)reduces to q, and
T <: q.L, then T <: p.L. Path reduction is a simplified form of
reduction involving only paths. However, this means that the sub-
typing judgment, and indirectly, all the typing-related judgments,
now need to carry the store in addition to the context so that path
reductions can be calculated.

Now, let’s see how path equality provisions and explicit widen-
ing can fit together.

First, path reduction is not isomorphic to reduction anymore,
since we want to actually skip over widenings, as motivated by the
last example in 3.3.

In addition, we now also need a dual rule, PATH-<:: if p (path-
dually)-reduces to q, and q.L <: T then p.L <: T . This is because
when we have a widening on an object on which a method is called,
we have to upcast the argument to the parameter type expected by
the original method. Here is a motivating example.

Let Tc be a shorthand for the type:

>{z ⇒
A : >{z ⇒ m : ⊥ → >} ..>
B : >..>
m : z.A→ >
}

Let T be a shorthand for the type:

>{z ⇒
A : >{z ⇒ m : ⊥ → >} ..>
B : >..>
m : z.A {z ⇒ B : >..>} → >
}

Now, consider the term:

val v = new Tc {m(x) = x : >} ;

(v : T ).m(v : ((v : T ).A {z ⇒ B : >..>}))

When we evaluate the method invocation, we need to cast v :
((v : T ).A {z ⇒ B : >..>}) to v.A, and for this, we need the
newly introduced PATH-<: rule.

Note that the path dual reduction can be a bit stricter with casts
than the path reduction. In any case, introducing this PATH-<: rule
into the subtyping judgment is problematic: it is now possible to say
p.L <: T , even though T can do more than what p.L is defined to
do. Here is an example, where we construct an object, with T = ⊥.
(The convolution in the example is due to the requirement that
concrete types be only mentioned once.)

val a = new >{z ⇒ C : ⊥..>{z ⇒ D : ⊥..z.X,X : ⊥..>}} ;

val b = new a.C {z ⇒ X : ⊥..⊥} ;

val c = new a.C;

val d = new (b : a.C).D;

(λx :⊥. x.foo) d

Notice that d has type ⊥ if you ignore the cast on b. This
example doesn’t typecheck initially because PATH-<: only applies
when objects are in the store, so the application is not well-typed.
But if we start preservation in a store which has a, b, c and d
then the application type-checks, because, through PATH-<:, we
can find that the type of d is a subtype of ⊥. Now, of course, when
we get to d.foo, reduction fails.

So the preservation theorem as defined on a small-step seman-
tics (where we start with an arbitrary well-formed environment)
fails when we add the PATH-<: rule.

4. Conclusion and Future Work
This semester’s work was instructive in pointing out the problem-
atic aspects of the original DOT calculus, and exploring some pos-
sible fixes. However, I haven’t been able to reach a revised calculus
without soundness hole. Furthermore, I believe that the revised cal-
culus with all the patches is not as elegant as the original calculus.
Going forward, I want to take a broader view by by studying and in-
corporating ideas from other calculi which model dependent types,
and path-dependent types in particular.

Acknowledgments
I thank Adriaan Moors and Martin Odersky for sharing previous
work, fruitful discussions and guidance.

Spring 2012 Semester Project – Nada Amin 4 2012/7/6


	Introduction
	Program Examples
	Basics: Booleans, Error, …
	Polymorphic Lists


	Counterexamples
	Subtyping Transitivity and Preservation
	Non-Expanding Types and Subtyping Transitivity
	Narrowing
	Functions as Objects
	Term-Mem Restriction
	Expansion Lost
	Well-Formedness Lost

	Path Equality

	Patches
	Well-Formed and Expanding Types
	Functions as Sugar
	Explicit Widening
	Path Equality Provisions

	Conclusion and Future Work

