
Dependent Object Types - A foundation for Scala's

type system

Draft of January 14, 2010 � Do Not Distrubute

Martin Odersky, Geo�rey Alan Washburn

EPFL

Abstract.

1 Introduction

This paper presents a proposal for a new type-theoretic foundation of Scala and languages
like it. The properties we are interested in modelling are Scala's path-dependent types
and abstract type members, as well as its mixture of nominal and structural typing
through the use of re�nement types. Compared to previous approaches (nuObj, FS), we
make no attempt to model inheritance or mixin composition. Indeed we will argue that
such concepts are better modelled in a di�erent setting.

The calculus does not precisely describe what's currently in Scala. It is more normative
than descriptive. The main point of deviation concerns the di�erence between Scala's
compound type formation using with and classical type intersection, as it is modelled
in the calculus. Scala, and the previous calculi attempting to model it con�ates the
concepts of compound types (which inherit the members of several parent types) and
mixin composition (which build classes from other classes and traits). At �rst glance, this
o�ers an economy of concepts. However, it is problematic because mixin composition and
intersection types have quite di�erent properties. In the case of several inherited members
with the same name, mixin composition has to pick one which overrides the others. It uses
for that the concept of linearization of a trait hierarchy. Typically, given two independent
traits T1 and T2 with a common method m, the mixin composition T1 with T2 would
pick the m in T2, whereas the member in T1 would be available via a super-call. All this
makes sense from an implementation standpoint. From a typing standpoint it is more
awkward, because it breaks commutativity and with it several monotonicity properties.

In the present calculus, we replace Scala's compound types by classical intersection

types, which are commutative. We also complement this by classical union types. Inter-

sections and unions form a lattice wrt subtyping. This addresses another problematic

feature of Scala: In Scala's current type system, least upper bounds and greatest lower

bounds do not always exist. Here is an example: Given two traits

trait A { type T <: A }

trait B { type T <: B }

The greatest lower bound of A and B is approximated by the in�nite sequence

A with B { type T <: A with B { type T <: A with B { type T < ... }}}

The limit of this sequence does not exist as a type in Scala.
This is problematic because glbs and lubs play a central role in Scala's type inference.

The absence of universal glbs and lubs makes type inference more brittle and more
unpredictable.

Why No Inheritance?

In the calculus we made the deliberate choice not to model any form of inheritance. This
is, �rst and foremost, to keep the calculus simple. Secondly, there are many di�erent
approaches to inheritance and mixin composition, so that it looks advantageous not
to tie the basic calculus to a speci�c one. Finally, it seems that the modelization of
inheritance lends itself to a di�erent approach than the basic calculus. For the latter, we
need to prove the standard theorems of preservation and progress to establish soundness
of the type system. One might try to do this also for a calculus with inheritance, but
our experience suggests that this complicates the proofs considerably. An alternative
approach to inheritance that might work better is to model it as a form of code-reuse.
Starting with an enriched type system with inheritance, and a translation to the basic
calculus, one needs to show type preservation wrt the translation. This might be easier
than to prove type preservation wrt reduction.

2 The DOT Calculus

The DOT calculus is a simple system of dependent object-types. Figure ?? gives its
syntax, reduction rules, and type assignment rules.

Notation

We use standard notational conventions for sets. The notationX denotes a set of elements
X. Given a such a set X in a typing rule, Xi denotes an arbitrary element of X. The
] operator extends a set of bindings. It is required that the added binding does not
introduce a variable which is already bound in the base-set. We use an abbreviation for
preconditions in typing judgements. Given an environment Γ and some predicates P and
Q, the condition Γ ` P , Q is a shorthand for the two conditions Γ ` P and Γ ` Q.

Syntax

There are three alphabets: Variable names x, y, z are freely alpha-renamable. They occur
as parameters of lambda abstractions, as binders for objects created by new-expressions,
and as self references in re�nements. Value labels l denote �elds in objects, which are
bound to values at run-time. Type labels L denote type members of objects. Type labels
are further separated into labels for abstract types La and labels for classes Lc. It is
assumed that in each program every class label Lc is declared at most once.

2

Syntax

x, y, z Variable
l Value label

v ::= Value
x variable
λx :T.t function

t ::= Term
v value
t t application
val x = new c; t new instance
t.l selection

p ::= Path
x variable
p.l selection

c ::= Tc

˘
l = v

¯
Constructor

Γ ::= x : T Environment
s ::= x 7→ c Store

L ::= Type label
Lc class label
La abstract type label

S, T, U, V ::= Type
p.L type selection

T
˘
z ⇒ D

¯
re�nement

T → T function type
T ∧ T intersection type
T ∨ T union type
> top type
⊥ bottom type

Sc, Tc ::= Concrete type

p.Lc | Tc

˘
z ⇒ D

¯
| Tc ∧ Tc | >

D ::= Declaration
L : S..U type declaration
l : T value declaration

Reduction t | s → t′ | s′

(λx :T.t)v | s → [v/x]t | s (βv)

x 7→ Tc

˘
l = v

¯
∈ s

x.li | s → vi | s
(sel)

val x = new c; t | s → t | s, x 7→ c (new)

t | s → t′ | s′

e[t] | s → e[t′] | s′ (context)

where evaluation context e ::= [] | e t | v e | e.l | val x = new c; e

Type Assignment Γ ` t : T

x : T ∈ Γ
Γ ` x : T

(var)

Γ ` t : T ′ → T , t′ : T ′

Γ ` t t′ : T
(app)

x /∈ fn(T) Γ ` S wf
Γ, x : S ` t : T

Γ ` λx :S.t : S → T
(abs)

Γ ` t : T , T <: T ′ , T ′ wf

Γ ` t : T ′ (sub)

Γ ` t 3 l : T ′

Γ ` t.l : T ′ (sel)

x /∈ fn(T ′) Γ ` Tc wf

Tc ≺x L : S..U, l : V

Γ, x : Tc ` S <: U , v : V , t : T ′

Γ ` val x = new Tc

˘
l = v

¯
; t : T ′ (new)

Fig. 1. The DOT Calculus : Syntax, Reduction, Type Assignment

3

The terms t in DOT consist of variables x, y, z, lambda abstractions λx :T.t, function
applications t t′, �eld selections t.l, and object creation expressions val x = new c; t
where c is a constructor Tc

{
l = v

}
. The latter binds a variable x to a new instance of

type Tc with �elds l initialized to values v. The scope of x extends through the term t.

Two subclasses of terms are values v, which consist of just variables and lambda
abstractions, and paths v which consist of just variables and selections.

The types in DOT are denoted by letters S, T , U , or V . They consist of the following:

- Type selections p.L, which denote the type member L of path p.

- Re�nement types T
{
z ⇒ D

}
, which re�ne a type T by a set of declarations D. The

variable z refers to the �self�-reference of the type. Declarations can refer to other
declarations in the same type by selecting from z.

- Function types T → T ′.

- Type intersections T ∧ T ′, which carry the declarations of members present in either
T or T ′.

- Type unions T ∨ T ′, which carry only the declarations of members present in both
T and T ′.

- A top type >, which corresponds to an empty object.

- A bottom type ⊥, which represents a non-terminating computation.

A subset of types Tc are called concrete types. These are type selections p.Lc of class
labels, the top type >, intersections of concrete types, and re�nements Tc

{
z ⇒ D

}
of

concrete types. Only concrete types are allowed in constructors c.

There are only two forms of declarations in DOT, which are both part of re�nement
types. A value declaration l : T introduces a �eld with type T . A type declaration L : S..U
introduces a type member L with a lower bound type S and an upper bound type U .
There are no type aliases, but a type alias can be simulated by a type declaration L : T..T
where the lower bound and the upper bound are the same type T .

Every �eld or type label can be declared only once in a set of declarations D. A set of
declarations can hence be seen as a map from labels to their declarations. Meets ∧ and
joins ∨ on sets of declarations are de�ned as follows.

dom(D ∧D′) = dom(D) ∪ dom(D′)
dom(D ∨D′) = dom(D) ∩ dom(D′)

(D ∧D′)(L) = L : (S ∨ S′)..(U ∧ U ′) if (L : S..U) ∈ D and (L : S′..U ′) ∈ D′

= D(L) if L /∈ dom(D′)
= D′(L) if L /∈ dom(D)

(D ∧D′)(l) = l : T ∧ T ′ if (l : T) ∈ D and (l : T ′) ∈ D′

= D(l) if l /∈ dom(D′)
= D′(l) if l /∈ dom(D)

(D ∨D′)(L) = L : (S ∧ S′)..(U ∨ U ′) if (L : S..U) ∈ D and (L : S′..U ′) ∈ D′

(D ∨D′)(l) = l : T ∨ T ′ if (l : T) ∈ D and (l : T ′) ∈ D′

4

Reduction rules

Reduction rules t | s → t′ | s′ in DOT rewrite pairs of terms t and stores s, where stores
map variables to constructors. There are three main reduction rules: (βV) is the standard
beta reduction of call-by-value lambda calculus. Rule (new) rewrites an object creation
val x = new c; t by placing the binding of variable x to constructor c in the store
and continuing with term t. Rule (sel) rewrites a �eld selection x.l by retrieving the
corresponding value from the store. These reduction rules can be applied anywhere in a
term where the hole [] of an evaluation context e can be situated.

Type assignment rules

The last part of Figure ?? presents rules for type assignment. The three rules (var),
(abs), and (app) on the left correspond to simply typed lambda calculus with a subtyping
discipline (I believe it is straightforward to extend this to full F<:). Rule (abs) has
an additional precondition stating that the bound variable x may not appear in the
function's result type T ′. It would be an interesting extension of the calculus to drop this
precondition, thereby allowing dependent function types. Instead of adding a separate
subsumption rule, subtyping is expressed by preconditions in rules (app) and (new).
Rule rule (sub) is the standard subsumption rule for subtyping.

Rule (sel) types a �eld selection by means of an auxiliary membership relation 3,
which determines whether a given term contains a given declaration as one of its members.
The membership relation is de�ned in Figure ?? and is further explained below.

The last rule, (new), assigns types to object creation expressions. It is the most com-
plex of DOT's typing rules. To type-check an object creation val x = new Tc

{
l = v

}
; t,

one veri�es �rst that the type Tc is well-formed (see Figure ?? for a de�nition of well-
formedness). One then determines the set of all declarations that this type carries, using
the expansion relation ≺ de�ned in Figure ??. Every type declaration L : S..U in this set
must be realizable, i.e. its lower bound S must be a subtype of its upper bound U . Every
�eld declaration l : V in this set must have a corresponding initializing value of v of type
V . These checks are made in an environment which is extended by the binding x : Tc. In
particular this allows �eld values that recurse on �self� by referring to the bound variable
x. As in the (abs) rule, it is required that the bound variable does not appear in the
expression's result type T ′.

Membership

Figure ?? presents typing rules for membership and expansion. The membership judge-
ment Γ ` t 3 D states that in environment Γ a term t has a declaration D as a member.
There are di�erent rules for paths and general terms. Rule (path-3) applies to paths p
that have a re�nement type T

{
z ⇒ D

}
as their type. Members of p are then all de�ni-

tions D in the re�nement, where any use of the self reference z is replaced by the path
p itself. Rule (and-3) allows to merge two member de�nitions (of the same label) by
conjoining them with ∧. Rule (term-3) establishes the members of general terms t of
type T by introducing a dummy variable z of type T and then using the rules for path
membership on z. It must hold that z itself does not form part of the resulting member
D.

5

Membership Γ ` t 3 D

Γ ` p : T
˘
z ⇒ D

¯
Γ ` p 3 [p/z]Di

(path-3)

Γ ` t 3 D1 , t 3 D2

Γ ` t 3 D1 ∧D2

(and-3)

z 6∈ fn(Di)

Γ ` t : T
˘
z ⇒ D

¯
Γ ` t 3 Di

(term-3)

Expansion Γ ` Tc ≺z D

Γ ` Tc ≺z D
′

Γ ` Tc

˘
z ⇒ D

¯
≺z D′ ∧D

(rfn-≺)

Γ ` > ≺z {} (>-≺)

Γ ` p 3 Lc : ⊥..Uc , Uc ≺z D

Γ ` p.Lc ≺z D
(tsel-≺)

Γ ` Tc ≺z D , T ′
c ≺z D′

Γ ` Tc ∧ T ′
c ≺z D ∧D′

(∧-≺)

Fig. 2. The DOT Calculus : Membership and Expansion

Expansion

The expansion relation ≺ is needed to typecheck the complete set of declarations carried
by a concrete type that is used in a new-expression. Since this is the only place where
expansion is needed, it is su�cient to de�ne it on concrete types only. The bottom part
of Figure ?? gives the typing rules for expansion.

Rule (rfn-≺) states that a re�nement type Tc ≺z D expands to the conjunction of
the expansion D′ of Tc and the newly added declarations D. Rule (tsel-≺) states that
a type selection p.L carries the same declarations as the upper bound U of L in T . Rule
(∧-≺) states that expansion distributes through meets. Rule (>-≺) states that the top
type > expands to the empty set.

Subtyping

Figure ?? de�nes the subtyping judgement Γ ` S <: T which states that in environment
Γ type S is a subtype of type T . Any term of type S can then be regarded via the
subsumption rule (sub) as a term of type T .

As usual, subtyping is re�exive (refl) but a corresponding rule for transitivity is
missing. However, most of the rules for speci�c types in Figure ?? have transitivity built
in. The issue of transitivity is further discussed below.

To prove that a type S is a subtype of a re�nement type T
{
z ⇒ D

}
, it must hold

that S is a subtype of T and that S contains declarations that subsume the declarations
D (<:-rfn). The re�nement type itself is a subtype of its parent type T and all its
supertypes (rfn-<:).

A type selection p.L is a subtype of (all supertypes of) the upper bound U of L in p
(tsel-<:). It is a supertype of (all subtypes of) its lower bound S (<:-tsel). Function

6

Subtyping Γ ` S <: T

Γ ` T <: T (refl)

Γ ` S <: T

Γ, z : S ` z 3 D′ , D′ <: D

Γ ` S <: T
˘
z ⇒ D

¯ (<:-rfn)

Γ ` p 3 L : S..U , S′ <: S

Γ ` S′ <: p.L
(<:-tsel)

Γ ` T <: T1 , T <: T2

Γ ` T <: T1 ∧ T2

(<:-∧)

Γ ` T <: Ti

Γ ` T <: T1 ∨ T2

(<:-∨)

Γ ` T <: > (<:->)

Γ ` T <: S , S′ <: T ′

Γ ` S → S′ <: T → T ′ (<:-→)

Γ ` T <: T ′

Γ ` T
˘
z ⇒ D

¯
<: T ′ (rfn-<:)

Γ ` p 3 L : S..U , U <: U ′

Γ ` p.L <: U ′ (tsel-<:)

Γ ` Ti <: T

Γ ` T1 ∧ T2 <: T
(∧-<:)

Γ ` T1 <: T , T2 <: T

Γ ` T1 ∨ T2 <: T
(∨-<:)

Γ ` ⊥ <: T (⊥-<:)

Declaration subsumption Γ ` D <: D′

Γ ` S′ <: S , T <: T ′

Γ ` (L : S..T) <: (L : S′..T ′)
(tdecl-<:)

Γ ` T <: T ′

Γ ` (l : T) <: (l : T ′)
(vdecl-<:)

Fig. 3. The DOT Calculus : Subtyping and Declaration Subsumption

7

types are subject to the standard co-/contravariant subtyping rule (<:-→). The �nal six
rules in Figure ?? turn the subtyping relation into a lattice with meets ∧, joins ∨, bottom
element ⊥ and top element >.

One interesting aspect of the subtyping relation of DOT is that it is re�exive (refl)
but not transitive. Instead of a separate rule that speci�es global transitivity, we �nd
transitivity encoded in most of the inference rules of Figure ??. There is only a single
situation where transitivity does not hold: Given a type declaration L : S..U which is a
member of some type T , and a variable x of type T , we have that S <: x.L by (<:-tsel)
and x.L <: U by (tsel-<:). However, this does not imply that S <: U . In fact, T might
be an unrealizable type, which admits no solution for its L member, precisely because
the lower bound of L is not a subtype of its upper bound.

The type assignment rule (new) in Figure ?? has as one of its preconditions that the
type of the created object must be realizable: each lower bounds must be a subtype of
its corresponding upper bound. Subtyping can be shown to be transitive in DOT if the
least type of a subtype chain is realizable.

Well-formed types Γ ` T wf

Γ ` T wf

Γ, z : T
˘
z ⇒ D

¯
` D wf

Γ ` T
˘
z ⇒ D

¯
wf

(rfn-wf)

Γ ` p 3 L : S..U , S wf , U wf

Γ ` p.L wf
(tsel-wf1)

Γ ` T wf , T ′ wf

Γ ` T ∧ T ′ wf
(∧-wf)

Γ ` ⊥ wf (⊥-wf)

Γ ` T wf , T ′ wf

Γ ` T → T ′ wf
(→-wf)

Γ ` p 3 L : ⊥..U
Γ ` p.L wf

(tsel-wf2)

Γ ` T wf , T ′ wf

Γ ` T ∨ T ′ wf
(∨-wf)

Γ ` > wf (>-wf)

Well-formed declarations Γ ` D wf

Γ ` S wf , U wf

Γ ` L : S..U wf
(tdecl-wf)

Γ ` T wf

Γ ` l : T wf
(vdecl-wf)

Fig. 4. The DOT Calculus : Well-Formedness

Declaration Subsumption

The declaration subsumption judgement Γ ` D <: D′ in Figure ?? states that in
environment Γ the declaration D subsumes the declaration D′. There are two rules, one

8

for type declarations and one for value declarations. Rule (tdecl-<:) states that a type
declaration L : S..U subsumes another type declaration L : S′..U ′ if S′ is a subtype of S
and U is a subtype of U ′. In other words, the set of types between S and U is contained
in the set of types between S′ and U ′. Rule (vdecl-<:) states that a value declaration
l : T subsumes another value declaration l : T ′ if T is a subtype of T ′.

Well-formedness

The well-formedness judgement Γ ` T wf in Figure ?? states that in environment Γ
the type T is well-formed.

A re�nement type T
{
z ⇒ D

}
is well-formed if the parent type T is well-formed and

every declaration in D is well-formed in an environment augmented by the binding of
the self-reference z to the re�nement type itself (rfn-wf).

A type selection p.L is well-formed if L is a member of p, and the lower bound of L is
also well-formed (tsel-wf). The latter condition has the e�ect that the lower bound of a
type p.L may not refer directly or indirectly to a type containing p.L itself � if it would,
the well-formedness judgement of p.L would not have a �nite proof. No such restriction
exists for the upper bound of L. The upper bound may in fact refer back to the type.
Hence, recursive class types and F-bounded abstract types are both expressible.

The other forms of types in DOT are all well-formed if their constituent types are
well-formed.

Well-formedness extends straightforwardly to declarations with the judgement Γ `
D wf . All declarations are well-formed if their constituent types are well-formed.

3 Program Examples

9

val root = new Any { rootThis =>
trait Unit extends Any {}
val unit: Any => rootThis.Unit
trait Boolean extends Any {

val ifNat: (rootThis.Unit => rootThis.Nat) => (rootThis.Unit => rootThis.Nat) => rootThis.Nat
}
val false: rootThis.Unit => rootThis.Boolean
val true: rootThis.Unit => rootThis.Boolean
trait Nat extends Any {

val isZero: rootThis.Unit => rootThis.Boolean
val pred: rootThis.Unit => rootThis.Nat
val succ: rootThis.Unit => rootThis.Nat
val add: rootThis.Nat => rootThis.Nat

}
val zero: rootThis.Unit => rootThis.Nat
val successor: rootThis.Nat => rootThis.Nat
val add2: rootThis.Nat => rootThis.Nat => rootThis.Nat
val error: rootThis.Unit => Bot

} {
val unit = (x: Any) => val u = new root.Unit; u
val false = (u: root.Unit) => {

val ff = new root.Boolean {
val ifNat = (t: root.Unit => root.Nat) => (e: root.Unit => root.Nat) => e(root.unit)

}
ff

}
val true = (u: root.Unit) => {

val tt = new root.Boolean {
val ifNat = (t: root.Unit => root.Nat) => (e: root.Unit => root.Nat) => t(root.unit)

}
tt

}
val zero = (u: root.Unit) => {

val zz = new root.Nat {
val isZero = (u: root.Unit) => root.false(root.unit)
val succ = (u: root.Unit) => root.successor(zz)
val pred = (u: root.Unit) => error(root.unit)
val add = (other: root.Nat) => add2(other, zz)

}
zz

}
val successor = (n: root.Nat) => {

val ss = new root.Nat {
val isZero = (u: root.Unit) => root.true(root.unit)
val succ = (u: root.Unit) => root.successor(ss)
val pred = (u: root.Unit) => n
val add = (other: root.Nat) => add2(other, ss)

}
ss

}
val add2 = (n1: root.Nat) => (n2: root.Nat) =>

n1.isZero(root.unit).ifNat
((u: root.Unit) => n2)
((u: root.Unit) => root.add2(n1.pred(root.unit))(n2.succ(root.unit)))

val error = (u: root.Unit) => error(x)
}

Fig. 5. Some root classes
10

val genLists = new Any {

trait ListPackage extends Any { thisListPackage =>

type Elem

type ListOfElem = List { type Elem = thisList.Elem }

trait List extends Any {

val isEmpty: root.Unit => root.Boolean

val head: root.Unit => root.Boolean

val tail: root.Unit => thisListPackage.ListOfElem

val prepend: Elem => ListOfElem

}

val nil: root.Unit => ListOfElem

val cons: Elem => ListOfElem => ListOfElem

}

}

val natLists = new ListPackage {

type Elem = Nat

} {

val nil = (u: root.Unit) => {

val nn = new natLists.List {

val isEmpty = (u: root.Unit) => root.true(root.unit)
val head = (u: root.Unit) => root.error(root.unit)

val tail = (u: root.Unit) => root.error(root.unit)

val prepend = (x: root.Nat) => natLists.cons(x, nn)

}

nn

}

val cons = (x: natLists.Elem) => (xs: natLists.ListOfElem) => {

val cc = new natLists.List {

val isEmpty = (u: root.Unit) => root.false(root.unit)
val head = (u: root.Unit) => x

val tail = (u: root.Unit) => xs

val prepend = (x: root.Nat) => natLists.cons(x, cc)

}

cc

}

}

Fig. 6. List classes

11

	Dependent Object Types - A foundation for Scala's type system Draft of January 14, 2010 -- Do Not Distrubute
	Martin Odersky, Geoffrey Alan Washburn

