
Dependent Object Types
Towards a foundation for Scala’s type system

Nada Amin Adriaan Moors Martin Odersky
EPFL

first.last@epfl.ch

Abstract
We propose a new type-theoretic foundation of Scala and languages
like it: the Dependent Object Types calculus (DOT). DOT models
Scala’s path-dependent types and abstract type members, as well
as its mixture of nominal and structural typing through the use
of refinement types. It makes no attempt to model inheritance or
mixin composition. The calculus does not model what’s currently
in Scala: it is more normative than descriptive.

We show that DOT and its patched-up variants are not syntac-
tically sound, by exhibiting counterexamples to preservation. Nev-
ertheless, we sketch a proof of type-safety of the calculus via step-
indexed logical relations.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Abstract data types, Classes and objects, polymor-
phism; D.3.1 [Formal Definitions and Theory]: Syntax, Seman-
tics; F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams]; F.3.3 [Studies of Program Constructs]: Object-oriented
constructs, type structure; F.3.2 [Semantics or Programming Lan-
guages]: Operational semantics

General Terms Languages, Theory, Verification

Keywords calculus, objects, dependent types, step-indexed logi-
cal relations

1. Introduction
This paper presents a proposal for a new type-theoretic founda-
tion of Scala and languages like it. The properties we are inter-
ested in modeling are Scala’s path-dependent types and abstract
type members, as well as its mixture of nominal and structural typ-
ing through the use of refinement types. Compared to previous ap-
proaches [5, 12], we make no attempt to model inheritance or mixin
composition. Indeed we will argue that such concepts are better
modeled in a different setting.

The calculus does not precisely describe what’s currently in
Scala. It is more normative than descriptive. The main point of
deviation concerns the difference between Scala’s compound type
formation using with and classical type intersection, as it is mod-
eled in the calculus. Scala, and the previous calculi attempting
to model it, conflates the concepts of compound types (which in-
herit the members of several parent types) and mixin composition

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOOL ’12 October 22, 2012, Tucson, AZ, USA.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

(which build classes from other classes and traits). At first glance,
this offers an economy of concepts. However, it is problematic be-
cause mixin composition and intersection types have quite different
properties. In the case of several inherited members with the same
name, mixin composition has to pick one which overrides the oth-
ers. It uses for that the concept of linearization of a trait hierarchy.
Typically, given two independent traits T1 and T2 with a common
methodm, the mixin composition T1 with T2 would pick them in
T2, whereas the member in T1 would be available via a super-call.
All this makes sense from an implementation standpoint. From a
typing standpoint it is more awkward, because it breaks commuta-
tivity and with it several monotonicity properties.

In the present calculus, we replace Scala’s compound types
by classical intersection types, which are commutative. We also
complement this by classical union types. Intersections and unions
form a lattice wrt subtyping. This addresses another problematic
feature of Scala: In Scala’s current type system, least upper bounds
and greatest lower bounds do not always exist. Here is an example:
given two traits

trait A { type T<: A }
trait B { type T<: B }

The greatest lower bound of A and B is approximated by the infinite
sequence

A with B { type T<: A with B { type T<: A with B {
type T < ...

}}}

The limit of this sequence does not exist as a type in Scala.
This is problematic because glbs and lubs play a central role

in Scala’s type inference. The absence of universal glbs and lubs
makes type inference more brittle and more unpredictable.

We propose DOT as a core calculus for path-dependent types.
We present the calculus formally in section 2 and through examples
in section 3. Though we show that the calculus does not satisfy
the standard theorem of preservation in section 4, we contribute a
proof sketch of type safety using logical relations in section 5. In
section 6, we discuss choices and variants of the calculus, as well
as related work, and conclude in section 7.

2. The DOT Calculus
The DOT calculus is a small system of dependent object-types.
Figure 1 gives its syntax, reduction rules, and type assignment
rules.

2.1 Notation
We use standard notational conventions for sets. The notation X
denotes a set of elements X . Given such a set X in a typing rule,
Xi denotes an arbitrary element of X . We use an abbreviation for
preconditions in typing judgements. Given an environment Γ and

Syntax

x, y, z Variable
l Value label
m Method label
v ::= Value

x variable
t ::= Term

v value
val x = new c; t new instance
t.l field selection
t.m(t) method invocation

p ::= Path
x variable
p.l selection

c ::= Tc

{
d
}

Constructor
d ::= Initialization

l = v field initialization
m(x) = t method initialization

s ::= x 7→ c Store

L ::= Type label
Lc class label
La abstract type label

S, T, U, V,W ::= Type
p.L type selection
T
{
z ⇒ D

}
refinement

T ∧ T intersection type
T ∨ T union type
> top type
⊥ bottom type

Sc, Tc ::= Concrete type
p.Lc | Tc

{
z ⇒ D

}
| Tc ∧ Tc | >

D ::= Declaration
L : S..U type declaration
l : T value declaration
m : S → U method declaration

Γ ::= x : T Environment

Reduction t | s → t′ | s′

y 7→ Tc

{
l = v′ m(x) = t

}
∈ s

y.mi(v) | s → [v/xi]ti | s
(MSEL)

y 7→ Tc

{
l = v m(x) = t

}
∈ s

y.li | s → vi | s
(SEL)

val x = new c; t | s → t | s, x 7→ c (NEW)

t | s → t′ | s′

e[t] | s → e[t′] | s′
(CONTEXT)

where evaluation context e ::= [] | e.m(t) | v.m(e) | e.l

Type Assignment Γ ` t : T

x : T ∈ Γ

Γ ` x : T
(VAR)

Γ ` t 3 m : S → T
Γ ` t′ : T ′ , T ′ <: S

Γ ` t.m(t′) : T
(MSEL)

Γ ` t 3 l : T ′

Γ ` t.l : T ′
(SEL)

y /∈ fn(T ′)
Γ ` Tc wfe , Tc ≺y L : S..U,D

Γ, y : Tc ` S <: U , d : D , t′ : T ′

Γ ` val y = new Tc

{
d
}

; t′ : T ′
(NEW)

Declaration Assignment Γ ` d : D

Γ ` v : V ′ , V ′ <: V

Γ ` (l = v) : (l : V)
(VDECL)

Γ ` S wfe
Γ, x : S ` t : T ′ , T ′ <: T

Γ ` (m(x) = t) : (m : S → T)
(MDECL)

Figure 1. The DOT Calculus : Syntax, Reduction, Type / Declaration Assignment

some predicates P and Q, the condition Γ ` P , Q is a shorthand
for the two conditions Γ ` P and Γ ` Q.

2.2 Syntax
There are four alphabets: Variable names x, y, z are freely alpha-
renamable. They occur as parameters of methods, as binders for
objects created by new-expressions, and as self references in refine-
ments. Value labels l denote fields in objects, which are bound to
values at run-time. Similarly, method labels m denote methods in
objects. Type labels L denote type members of objects. Type labels
are further separated into labels for abstract types La and labels for
classes Lc. It is assumed that in each program every class label Lc

is declared at most once.
We assume that the label alphabets l, m and L are finite. This

is not a restriction in practice, because one can include in these
alphabets every label occurring in a given program.

The terms t in DOT consist of variables x, y, z, field selections
t.l, method invocations t.m(t) and object creation expressions
val y = new c; t′ where c is a constructor Tc

{
l = v m(x) = t

}
.

The latter binds a variable y to a new instance of type Tc with fields
l initialized to values v and methodsm initialized to methods of one
parameter x and body t. The scope of y extends through the term
t′.

Two sub-sorts of terms are values and paths. Values v consist of
just variables. Paths p consist of just variables and field selections.

The types in DOT are denoted by letters S, T , U , V , or W .
They consist of the following:

- Type selections p.L, which denote the type member L of path
p.

- Refinement types T
{
z ⇒ D

}
, which refine a type T by a set

of declarations D. The variable z refers to the “self”-reference
of the type. Declarations can refer to other declarations in the
same type by selecting from z.

- Type intersections T ∧ T ′, which carry the declarations of
members present in either T or T ′.

- Type unions T ∨ T ′, which carry only the declarations of
members present in both T and T ′.

- A top type >, which corresponds to an empty object.

- A bottom type ⊥, which represents a non-terminating compu-
tation.

A subset of types Tc are called concrete types. These are type
selections p.Lc of class labels, the top type >, intersections of
concrete types, and refinements Tc

{
z ⇒ D

}
of concrete types.

Only concrete types are allowed in constructors c.
There are only three forms of declarations in DOT, which are

all part of refinement types. A value declaration l : T introduces a
field with type T . A method declaration m : S → U introduces
a method with parameter of type S and result of type U . A type
declaration L : S..U introduces a type member L with a lower
bound type S and an upper bound typeU . There are no type aliases,
but a type alias can be simulated by a type declaration L : T..T
where the lower bound and the upper bound are the same type T .

Every field or type label can be declared only once in a set of
declarations D. A set of declarations can hence be seen as a map
from labels to their declarations. Meets ∧ and joins ∨ on sets of
declarations are defined in Figure 2.

2.3 Reduction rules
Reduction rules t | s → t′ | s′ in DOT rewrite pairs of terms t and
stores s, where stores map variables to constructors. There are three
main reduction rules: Rule (MSEL) rewrites a method invocation

y.mi(v) by retrieving the corresponding method definition from
the store, and performing a substitution of the argument for the
parameter in the body. Rule (SEL) rewrites a field selection x.l
by retrieving the corresponding value from the store. Rule (NEW)
rewrites an object creation val x = new c; t by placing the binding
of variable x to constructor c in the store and continuing with term
t. These reduction rules can be applied anywhere in a term where
the hole [] of an evaluation context e can be situated.

2.4 Type assignment rules
The last part of Figure 1 presents rules for type assignment.

Rules (SEL) and (MSEL) type field selections and method in-
vocations by means of an auxiliary membership relation 3, which
determines whether a given term contains a given declaration as
one of its members. The membership relation is defined in Figure 3
and is further explained in section 2.5.

The last rule, (NEW), assigns types to object creation expres-
sions. It is the most complex of DOT’s typing rules. To type-check
an object creation val y = new Tc

{
l = v m(x) = t

}
; t′, one

verifies first that the type Tc is well-formed (see Figure 5 for a
definition of well-formedness). One then determines the set of all
declarations that this type carries, using the expansion relation ≺
defined in Figure 3. Every type declaration L : S..U in this set
must be realizable, i.e. its lower bound S must be a subtype of its
upper bound U . Every field declaration l : V in this set must have
a corresponding initializing value of v of type V . These checks are
made in an environment which is extended by the binding y : Tc.
In particular this allows field values that recurse on “self” by refer-
ring to the bound variable x. Similarly, every method declaration
m : T → W must have a corresponding initializing method defi-
nition m(x) = t. The parameter type T must be wfe (well-formed
and expanding; see Figure 5), and the body tmust type check toW
in an environment extended by the bindings y : Tc and x : T .

Instead of adding a separate subsumption rule, subtyping is
expressed by preconditions in rules (MSEL) and (NEW).

2.5 Membership
Figure 3 presents typing rules for membership and expansion. The
membership judgement Γ ` t 3 D states that in environment Γ a
term t has a declaration D as a member. The membership rules
rely on expansion. There are two rules, one for paths (PATH-3)
and one for general terms (TERM-3). For general terms, the “self”-
reference of the type must not occur in the resulting declaration D,
since, to guarantee syntactic validity, we can only substitute a path
for the “self”-reference.

2.6 Expansion
The expansion relation ≺ is needed to typecheck the complete set
of declarations carried by a concrete type that is used in a new-
expression. Expansion is also used by the membership rules and in
subtyping refinements on the right (see Figure 4).

Rule (RFN-≺) states that a refinement type T ≺z D expands
to the conjunction of the expansion D′ of T and the newly added
declarations D. Rule (TSEL-≺) states that a type selection p.L
carries the same declarations as the upper bound U of L in T .
Rules (∧-≺) and (∨-≺) states that expansion distributes through
meets and joins. Rule (>-≺) states that the top type > expands to
the empty set. Rule (⊥-≺) states that the bottom type⊥ expands to
the bottom element D⊥ of the lattice of sets of declarations (recall
Figure 2).

2.7 Subtyping
Figure 4 defines the subtyping judgement Γ ` S <: T which
states that in environment Γ type S is a subtype of type T . Sub-

dom(D ∧D′) = dom(D) ∪ dom(D′)
dom(D ∨D′) = dom(D) ∩ dom(D′)

(D ∧D′)(L) = L : (S ∨ S′)..(U ∧ U ′) if (L : S..U) ∈ D and (L : S′..U ′) ∈ D′
= D(L) if L /∈ dom(D′)
= D′(L) if L /∈ dom(D)

(D ∧D′)(m) = m : (S ∨ S′)→ (U ∧ U ′) if (m : S → U) ∈ D and (m : S′ → U ′) ∈ D′
= D(m) if m /∈ dom(D′)
= D′(m) if m /∈ dom(D)

(D ∧D′)(l) = l : T ∧ T ′ if (l : T) ∈ D and (l : T ′) ∈ D′
= D(l) if l /∈ dom(D′)
= D′(l) if l /∈ dom(D)

(D ∨D′)(L) = L : (S ∧ S′)..(U ∨ U ′) if (L : S..U) ∈ D and (L : S′..U ′) ∈ D′
(D ∨D′)(m) = m : (S ∧ S′)→ (U ∨ U ′) if (m : S → U) ∈ D and (m : S′ → U ′) ∈ D′
(D ∨D′)(l) = l : T ∨ T ′ if (l : T) ∈ D and (l : T ′) ∈ D′

Sets of declarations form a lattice with the given meet ∧ and join ∨, the empty set of declarations as the top element, and the bottom element
D⊥, Here D⊥ is the set of declarations that contains for every term label l the declaration l : ⊥, for every type label L the declaration
L : >..⊥ and for every method label m the declaration m : > → ⊥.

Figure 2. The DOT Calculus : Declaration Lattice

Membership Γ ` t 3 D

Γ ` p : T , T ≺z D

Γ ` p 3 [p/z]Di
(PATH-3)

z 6∈ fn(Di) Γ ` t : T , T ≺z D

Γ ` t 3 Di
(TERM-3)

Expansion Γ ` T ≺z D

Γ ` T ≺z D′

Γ ` T
{
z ⇒ D

}
≺z D′ ∧D

(RFN-≺)

Γ ` T1 ≺z D1 , T2 ≺z D2

Γ ` T1 ∧ T2 ≺z D1 ∧D2

(∧-≺)

Γ ` > ≺z {} (>-≺)

Γ ` p 3 L : S..U , U ≺z D

Γ ` p.L ≺z D
(TSEL-≺)

Γ ` T1 ≺z D1 , T2 ≺z D2

Γ ` T1 ∨ T2 ≺z D1 ∨D2

(∨-≺)

Γ ` ⊥ ≺z D⊥ (⊥-≺)

Figure 3. The DOT Calculus : Membership and Expansion

typing is regular wrt wfe: if type S is a subtype of type T , then S
and T are well-formed and expanding. Though this regularity lim-
its our calculus to wfe-types, this limitation allows us to show that
subtyping is transitive, as discussed in section 6.2.1.

2.8 Declaration Subsumption
The declaration subsumption judgement Γ ` D <: D′ in Figure 4
states that in environment Γ the declaration D subsumes the dec-
laration D′. There are three rules, one for each kind (type, value,
method) of declarations. Rule (TDECL-<:) states that a type decla-
ration L : S..U subsumes another type declaration L : S′..U ′ if S′

is a subtype of S and U is a subtype of U ′. In other words, the set
of types between S and U is contained in the set of types between
S′ and U ′. Rule (VDECL-<:) states that a value declaration l : T
subsumes another value declaration l : T ′ if T is a subtype of T ′.
Rule (MDECL-<:) is similar to (TDECL-<:), as the parameter type
varies contravariantly and the return type covariantly.

Declaration subsumption is extended to a binary relation be-
tween sequences of declarations:D <: D′ iff ∀D′i,∃Dj .Dj <: D′i.

2.9 Well-formedness
The well-formedness judgement Γ ` T wf in Figure 5 states that
in environment Γ the type T is well-formed.

A refinement type T
{
z ⇒ D

}
is well-formed if the parent type

T is well-formed and every declaration in D is well-formed in an
environment augmented by the binding of the self-reference z to
the refinement type itself (RFN-WF).

A type selection p.L is well-formed if L is a member of p, and
the lower bound of L is also well-formed (TSEL-WF1 and TSEL-
WF2). The latter condition has the effect that the lower bound of a
type p.L may not refer directly or indirectly to a type containing
p.L itself — if it would, the well-formedness judgement of p.L
would not have a finite proof. No such restriction exists for the
upper bound of L if the lower bound is ⊥ (TSEL-WF2). The upper

Subtyping Γ ` S <: T

Γ ` T wfe
Γ ` T <: T

(REFL)

Γ ` T
{
z ⇒ D

}
wfe , S <: T , S ≺z D′

Γ, z : S ` D′ <: D

Γ ` S <: T
{
z ⇒ D

} (<:-RFN)

Γ ` p 3 L : S..U , S <: U , S′ <: S

Γ ` S′ <: p.L
(<:-TSEL)

Γ ` T <: T1 , T <: T2

Γ ` T <: T1 ∧ T2
(<:-∧)

Γ ` T2 wfe , T <: T1

Γ ` T <: T1 ∨ T2
(<:-∨1)

Γ ` T1 wfe , T <: T2

Γ ` T <: T1 ∨ T2
(<:-∨2)

Γ ` T wfe
Γ ` T <: > (<:->)

Γ ` T wfe
Γ ` ⊥ <: T

(⊥-<:)

Γ ` T
{
z ⇒ D

}
wfe , T <: T ′

Γ ` T
{
z ⇒ D

}
<: T ′

(RFN-<:)

Γ ` p 3 L : S..U , S <: U , U <: U ′

Γ ` p.L <: U ′
(TSEL-<:)

Γ ` T1 <: T , T2 <: T

Γ ` T1 ∨ T2 <: T
(∨-<:)

Γ ` T2 wfe , T1 <: T

Γ ` T1 ∧ T2 <: T
(∧1-<:)

Γ ` T1 wfe , T2 <: T

Γ ` T1 ∧ T2 <: T
(∧2-<:)

Declaration subsumption Γ ` D <: D′

Γ ` S′ <: S , T <: T ′

Γ ` (L : S..T) <: (L : S′..T ′)
(TDECL-<:)

Γ ` T <: T ′

Γ ` (l : T) <: (l : T ′)
(VDECL-<:)

Γ ` S′ <: S , T <: T ′

Γ ` (m : S → T) <: (m : S′ → T ′)
(MDECL-<:)

Figure 4. The DOT Calculus : Subtyping and Declaration Subsumption

bound may in fact refer back to the type. Hence, recursive class
types and F-bounded abstract types are both expressible.

The other forms of types in DOT are all well-formed if their
constituent types are well-formed.

Well-formedness extends straightforwardly to declarations with
the judgement Γ ` D wf. All declarations are well-formed if their
constituent types are well-formed.

3. Examples
3.1 Sugar: Functions
Like in Scala, we can encode functions as objects with a special
method. We will freely use the following sugar in the remaining of
this paper. Note that the variable z must be fresh.

S →s T ⇐⇒ >{z ⇒ apply : S → T}
fun (x : S) T t ⇐⇒ val z = new S →s T {apply(x) = t} ; z

(app f x) ⇐⇒ f.apply(x)

(cast T t) ⇐⇒ (app (fun (x : T) T x) t)

In the remaining examples, for brevity, we will also use λx :S.t
for fun (x : S) _ t where the return type can be somewhat inferred
from the context.

3.2 Basics: Booleans, Error, . . .
This program defines a root object with basic types (Unit , Boolean ,
Nat) and methods (true , false , error , zero). For brevity, we’ve
omitted the code related to natural numbers. During the object cre-
ation, the method labels such as false are all initialized.

val root = new >{r ⇒
Unit : ⊥..>
unit : > → r.Unit

Boolean : ⊥..>{z ⇒
ifNat : (r.Unit →s r.Nat)→s (r.Unit →s r.Nat)→s r.Nat

}
false : r.Unit → r.Boolean

true : r.Unit → r.Boolean

error : r.Unit → ⊥
. . .

}{
unit(x) = val u = new root .Unit ; u

false(u) =

val ff = new root .Boolean{

Well-formed types Γ ` T wf

Γ ` T wf
Γ, z : T

{
z ⇒ D

}
` D wf

Γ ` T
{
z ⇒ D

}
wf

(RFN-WF)

Γ ` p 3 L : S..U , S wf , U wf
Γ ` p.L wf

(TSEL-WF1)

Γ ` T wf , T ′ wf
Γ ` T ∧ T ′ wf

(∧-WF)

Γ ` > wf (>-WF)

Γ ` ⊥ wf (⊥-WF)

Γ ` p 3 L : ⊥..U
Γ ` p.L wf

(TSEL-WF2)

Γ ` T wf , T ′ wf
Γ ` T ∨ T ′ wf

(∨-WF)

Well-formed declarations Γ ` D wf

Γ ` S wf , U wf
Γ ` L : S..U wf

(TDECL-WF)

Γ ` T wf
Γ ` l : T wf

(VDECL-WF)

Γ ` S wf , U wf
Γ ` m : S → U wf

(MDECL-WF)

Well-formed and expanding types Γ ` T wfe

Γ ` T wf , T ≺z D

Γ ` T wfe
(WFE)

Figure 5. The DOT Calculus : Well-Formedness

ifNat = λt :root .Unit →s root .Nat .

λe :root .Unit →s root .Nat .

(app e root .unit)

};
ff

true(u) = . . .

error(u) = (app root .error u)

. . .

};
. . .

3.3 Lists
Polymorphic lists can be expressed using an abstract type member
for the element type (Elem). We can instantiate a refinement of the
list package to manipulate lists with a particular element type.

val genLists = new >{g ⇒ ListPackage : ⊥..>{p⇒
Elem : ⊥..>
List : ⊥..>{z ⇒

isEmpty : root .Unit → root .Boolean

head : root .Unit → p.Elem

tail : root .Unit → p.List

}
nil : root .Unit → p.List

cons : p.Elem → p.List →s p.List

}};
val natLists = new genLists.ListPackage{p⇒

Elem : root .Nat ..root .Nat}{
nil(u) = . . .

cons(hd) = . . .

};
. . .

4. Counterexamples to Preservation
We sketch a proof that the DOT calculus is type-safe using logi-
cal relations in section 5. However, we first tried to prove the cal-
culus type-safe using the standard theorems of preservation and
progress [13, 14]. Unfortunately, for the calculus as presented, and
any of its variants that we devised, preservation doesn’t hold. In
this section, we review some of the most salient counterexamples
to preservation that we found. These counterexamples have been
checked with PLT Redex [11].

4.1 TERM-3 Restriction
There are two membership (t 3 D) rules: one for when the term
t is a path, and one for an arbitrary term t. For paths, we can
substitute the self-references in the declarations, but we cannot
do so for arbitrary terms as the resulting types wouldn’t be well-
formed syntactically. Hence, the TERM-3 has the restriction that
self-occurrences are not allowed. Here is a counterexample related
to this restriction.

Let X be a shorthand for the type:

>{z ⇒
La : >..>
l : z.La

}

Let Y be a shorthand for the type:

>{z ⇒
l : >
}

Now, consider the term

val u = new X {l = u} ;

(app (λy :> → Y.(app y u)) (λd :>.(cast X u))).l

The term type-checks because the term t = (app (λy : > →
Y.(app y u)) (λd :>.(cast X u))) has type Y , so we can apply
TERM-3 for l. However, the term t eventually steps to (cast X u)
which has typeX , so we cannot apply TERM-3 for l because of the
self-reference (z.La).

4.2 Expansion Lost
Expansion is not preserved by narrowing. Here, we create two
type selections that are mutually recursive in their upper bounds
after narrowing: z0.C2 initially expands, but after narrowing, z0.C2

expands to what z0.A2 expands to, which expands to what z0.A1

expands to, which expands to what z0.A2 expands to, and thus we
have an infinite expansion. Thus, the last new expression initially
type-checks, but after narrowing, it doesn’t because the precise
expansion needed by NEW cannot be inferred.

val x0 = new >{z ⇒ A1 : ⊥..>{z ⇒
A2 : ⊥..>
A3 : ⊥..>
C2 : ⊥..z.A2}} {} ;

val x1 = new >{z ⇒ C1 : ⊥..>{z ⇒ A1 : ⊥..x0.A1}} {} ;

val x2 = new x1.C1 {z ⇒ A1 : ⊥..x0.A1 {z ⇒ A2 : ⊥..z.A3}} {} ;

val x3 = new x1.C1 {z ⇒ A1 : ⊥..x0.A1 {z ⇒ A3 : ⊥..z.A2}} {} ;

(app λx :x1.C1.(λz0 :x.A1 ∧ x3.A1.

val z = new z0.C2; (app (λx :>.x) z))

x2)

4.3 Well-Formedness Lost
Even well-formedness is not preserved by narrowing. The trick
is that if the lower bound of a type selection is not ⊥, then the
bounds needs to be checked for well-formedness. Here, we create
two type selections that are mutually recursive in their bounds after
narrowing. y.A is initially well-formed, but after narrowing, it isn’t
because we run into an infinite derivation trying to prove the well-
formedness of its bounds.

val v = new >{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>, B : z.A..z.A}} {} ;

(app (λx :>{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>, B : ⊥..>}} .
val z = new >{z ⇒

l : x.L ∧ >{z ⇒ A : z.B..z.B,B : ⊥..>} → >}{
l(y) = fun (a : y.A) > a};

(cast > z))
v)

4.4 Path Equality
For preservation, we need to be able to relate path-dependent types
after reduction. Here is a motivating example:

val b = new >{z ⇒ X : >..>
l : z.X } {l = b} ;

val a = new >{z ⇒ i : >{z ⇒
X : ⊥..>
l : z.X} } {i = b} ;

(app (λx :>.x) (app (λx :a.i.X.x) a.i.l))

a.i.l reduces to b.l. b.l has type b.X , so we need b.X <: a.i.X .
This cannot be established with the current rules: it is not true in
general, but true here because a.i reduces to b. Hence, we need to
acknowledge path equality for preservation to hold.

In section 6.2.3, we discuss our failure to patch the calculus for
preservation to hold.

5. Type Safety via Logical Relations
We sketch a proof of type-safety of the DOT calculus via step-
indexed logical relations [1, 2, 10].

5.1 Type Safety
Type-safety states that a well-typed program doesn’t get stuck.
More formally: If ∅ ` t : T and t | ∅ →∗ t′ | s′ then either
t′ is a value or ∃t′′, s′′.t′ | s′ → t′′ | s′′.

Our strategy is to define a logical relation Γ � t : T , such that
Γ ` t : T implies Γ � t : T implies type-safety.

5.2 Step-Indexed Logical Relations
In order to ensure that our logical relation is well-founded, we use
a step index. For each step index k, we define the set of values and
the set of terms that appear to belong to a given type, when taking at
most k steps. Γ � t : T is then defined in terms of the step-indexed
logical relation by requiring it to hold ∀k.

5.2.1 Set of Values
Vk;Γ;sJT K defines the set of values that appear to have type T when
taking at most k steps. Γ and s must agree: dom(Γ) = dom(s)
(ordered) and ∀(x : T) ∈ Γ, x ∈ Vk;Γ;sJT K. A variable y belongs
to V0;Γ;sJT K simply by being in the store. In addition, it belongs to
Vk;Γ;sJT K for k > 0, if it defines all type, method and value labels

in the expansion of T appropriately for j < k steps.

Vk;Γ;sJT K = {y |y ∈ dom(s) ∧ (

(Γ ` T wfe ∧
∀j < k,

y 7→ Tc

{
l = v m(x) = t

}
∈ s,

Γ ` T ≺y D,

(∀Li : S → U ∈ D,
Γ ` y 3 Li : S′..U ′) ∧

(∀mi : S → U ∈ D,
ti ∈ Ej;Γ,xi:S;sJUK) ∧

(∀li : V ∈ D,
vi ∈ Vj;Γ;sJV K))∨

(T = T1 ∧ T2 ∧ y ∈ Vk;Γ;sJT1K ∧ y ∈ Vk;Γ;sJT2K)∨
(T = T1 ∨ T2 ∧ (y ∈ Vk;Γ;sJT1K ∨ y ∈ Vk;Γ;sJT2K))
)}

This relation captures the observation that the only ways for a
term to get stuck is to have a field selection on an uninitialized
field or a method invocation on an uninitialized method. However,
a potential pitfall is that the value itself might occur in the types
S, U , V , because we substitute it for the “self” occurrences in the
expansion, so the relation makes sure that the required type labels
exist.

5.2.2 Set of Terms
Ek;Γ;sJT K defines the set of terms that appear to have type T when
taking at most k steps. s must agree with a prefix of Γ, so Γ can
additionally contain variables not in s. This is needed for checking
methods in V above, and for relating open terms. If k > 0, E
extends Γ and s so that they agree. It then states that if it can reduce
t in the extended store to an irreducible term in j < k steps, then
this term must be in a corresponding V set with Γ now extended to
agree with the store resulting from the reduction steps.

irred (t, s) is a shorthand for ¬∃t′, s′.t | s → t′ | s′. ⊇ is used
initially for the possibly shorter store to agree with the environment,
and can extend both in many different ways. ⊇! is used finally
for the possibly shorter environment to agree with the store, and
just extends the environment in one straightforward way: hence, it
defines singleton sets.

Ek;Γ;sJT K = {t |
k = 0 ∨ (∀j < k,

∀(Γ′; s′) ∈ ⊇kJΓ; sK,

t | s′ →j t′ | s′′ ∧
irred (t′, s′′)→
∀Γ′′ ∈ ⊇!

k;s′′JΓ
′K,

t′ ∈ Vk−j−1;Γ′′;s′′JT K)
}

5.2.3 Extending the environment and the store
⊇kJΓ; sK for k > 0 defines the set of completed environment and
stores that agree on k − 1 steps, and that extend Γ and s. s must
agree with a prefix of Γ. Both Γ and s are ordered maps. For s, s′

extends s if s is a prefix of s′. For Γ, Γ′ extends Γ if we get back Γ
by keeping only the elements of Γ′ that belong to Γ. Furthermore,

a prefix of Γ′ agrees with s.

⊇kJΓ; sK = {

(x : T
m
, xij : Tij

m≤i<n;0≤j<in
; s, xij 7→ cij

m≤i<n;0≤j<in)|
s = x 7→ cm ∧ Γ = x : T

n ∧
m ≤ n ∧ ∀i,m ≤ i < n,∀in, j, 0 ≤ j < in,

∀Tij , cij , Ti(in−1) = Ti, ∀n′ ≤ n, i′n ≤ in,
cij ∈ V

k−1;x:T
m

,xij :Tij
m≤i′<n;0≤j<i′n ;s,xij 7→cij

m≤i<n′;0≤j<i′n
JTijK

}

5.2.4 Completing the environment to agree with the store
⊇!

k;sJΓK defines a singleton set of a completed environment that
agrees with a store s by simply copying the constructor type from
the store for each missing variable.

⊇!
k;sJΓK = {Γ, xi : Tci

m≤i<n |
Γ = x : T

m ∧ s = x 7→ cn

}

5.2.5 Terms in the Logical Relation
Γ � t : T is simply defined as t ∈ Ek;Γ;∅JT K,∀k.

5.3 Statements and Proofs
5.3.1 Fundamental Theorem
The fundamental theorem is the implication from Γ ` t : T
to Γ � t : T . Type safety is a straightforward corollary of this
theorem.

Proof: The proof is on induction on the derivation of Γ ` t : T .
For each case, we need to show t ∈ Ek;Γ;∅JT K,∀k. The non-
trivial case is when k > 0 and for (Γ′; s′) ∈ ⊇kJΓ; sK and some
j < k, t | s →j t′ | s′ ∧ irred (t′, s′). Then, we need to show
t′ ∈ Vk−j−1;Γ′′;s′JT K for Γ′′ ∈ ⊇!

Γ;kJs′KΓ′.

Case VAR: Γ ` x : T knowing (x : T) ∈ Γ. x ∈ Vk−1;Γ′;sJT K
follows from the definition of ⊇kJΓ; ∅K.

Case SEL: Γ ` t1.li : T knowing Γ ` t1 : T1, Γ ` T1 ≺z D,
li : Vi ∈ D and knowing either that t1 = p1 ∧ T = [p/z]Vi or
that z 6∈ fn(Vi) ∧ T = Vi.

By operational semantics and induction hypothesis, t1 | s →j−1

t′1 | s′ and irred (t′1, s
′) and t′1 ∈ Vk−j+1−1;Γ′;s′JT1K.

By operational semantics and the above, t′1.li | s′ →1 t′ | s′,
and we can conclude t′ ∈ Vk−j−1;Γ′′;s′JT K from the clause for
value labels of t′1 ∈ Vk−j;Γ′′;s′JT1K.

Case MSEL: Γ ` t1.mi(t2) : T knowing Γ ` t1 : T1,
Γ ` t2 : T2, Γ ` T1 ≺z D, mi : Si → Ui ∈ D and knowing
either that t1 = p1 ∧ S = [p/z]Si ∧ T = [p/z]Ui or that
z 6∈ fn(Si) ∧ z 6∈ fn(Ui) ∧ S = Si ∧ T = Ui, and knowing
that Γ ` T2 <: S.

By operational semantics and induction hypotheses, t1 | s →j1

t′1 | s1 and irred (t′1, s1) and t2 | s →j2 t′2 | s2 and irred (t′2, s2)
and t′1 ∈ Vk−j1−1;Γ1;s1JT1K and t′2 ∈ Vk−j2−1;Γ2;s2JT2K.

Because t2 reduces to a value t′2 starting in store s, it should
also reduce to a value v2 in the same number of steps starting in
store s1, since s1 extends s. So let t2 | s1 →j2 v2 | s12 with
v2 ∈ Vk−j2−1;Γ12;s12JT2K.

By the above and operational semantics, t′1.mi(v2) | s12 →1

[v2/xi]ti | s12.
By the substitution lemma, [v2/xi]ti ∈ Ek−max(j1,j2)−1;Γ12;s12JT K.

Supposing, [v2/xi]ti | s12 →j3 t′ | s′, with j1 + j2 + j3 + 1 = j,
this completes the case, by monotonicity of V .

Case NEW: Γ ` val y = new c; tb : T knowing ...
By operational semantics, val y = new c; tb | s →1 tb | sb

where sb = s, y 7→ c. So tb | sb →j−1 t′ | s′.
By induction hypotheses, y ∈ Vk;Γb;sbJTcK and tb ∈ Ek;Γb;sbJT K.
Result follows by monotonicity of V .
2

5.3.2 Substitution Lemma
The substitution lemma states that if (1) v ∈ Vk2;Γ12;s12JT2K and
(2) t ∈ Ek1;Γ1,x:S;s1JT K and (3) Γ ` T2 <: S with (4) x 6∈ fn(T)
and Γ1 extends Γ and Γ12 extends Γ1 and s12 extends s1 and Γ1

agrees with s1 and Γ12 agrees with s12 and a prefix of Γ12 agrees
with s1, then [v/x]t ∈ Emin(k1,k2);Γ12;s12JT K.

Proof Sketch: By (1) and (3), it should hold that (5) v ∈
Vk2;Γ12;s12JSK by the subset semantics lemma. Since (2) holds,
it should also hold that t ∈ Emin(k1,k2);Γ12,x:S;s12JT K by the ex-
tended monotonicity lemma. Then, we can instantiate x in the
complete store to map to what v maps to. This should be fine by (5)
and monotonicity. Thus, t ∈ Emin(k1,k2);Γ12,x:S;s12,x 7→s12(v)JT K.
Thanks to (4), we don’t actually need x to be held abstract
in the environment, because it won’t occur in T or its expan-
sion (a potential pitfall is whether its occurrences in ti could
still cause a check to fail through narrowing issues), so we can
use the type of v in the environment instead of S for x: t ∈
Emin(k1,k2);Γ12,x:Γ12(v);s12,x 7→s12(v)JT K. This implies what needs
to be shown. 2

5.3.3 Subset Semantics Lemma
The subset semantics lemma states that if v ∈ Vk;Γ;sJSK and
Γ ` S <: U , then v ∈ Vk;Γ;sJUK.

Proof Sketch: Because S is a subtype of U , it should hold that
the expansion of S subsumes the expansion of U , when the “self”
occurrences are of type S. Therefore, for v ∈ Vk;Γ;sJUK, we have
fewer declarations to check than for v ∈ Vk;Γ;sJSK.

A potential pitfall is whether some types of the expansion of
U can become non-expanding when the “self” occurrences are
actually v instead of just abstractly of type S, causing a check to
fail. Another worry is that such a non-expanding type results from
narrowing of a parameter type. 2

5.3.4 Extended Monotonicity Lemma
The extended monotonicity lemma states that if t ∈ Ek;Γ,x:S;sJT K
then t ∈ Ej;Γ′,x:S;s′JT K for j ≤ k, Γ′ extends Γ, s′ extends s, and
Γ agrees with s and a prefix of Γ′ agrees with s.

Proof Sketch: For the monotonicity with regards to the step
index, this follows directly from the definitions of E and V . For
the environment and the store, this follows by design from the
definition of ⊇kJΓ, x : S; sK. To extend the environment and the
store for x : S, we can append as much as we want to Γ and s, to
get Γ′ and s′, and then ignore the last element which is for x : S.
2

6. Discussion
6.1 Why No Inheritance?
In the calculus we made the deliberate choice not to model any form
of inheritance. This is, first and foremost, to keep the calculus sim-
ple. Secondly, there are many different approaches to inheritance

and mixin composition, so that it looks advantageous not to tie the
basic calculus to a specific one. Finally, it seems that the modeliza-
tion of inheritance lends itself to a different approach than the basic
calculus. For the latter, we need to prove type safety of the calcu-
lus. One might try to do this also for a calculus with inheritance, but
our experience suggests that this complicates the proofs consider-
ably. An alternative approach that might work better is to model
inheritance as a form of code-reuse. Starting with an enriched type
system with inheritance, and a translation to the basic calculus, one
needs to show type safety wrt the translation. This might be easier
than to prove type safety wrt reduction.

6.2 Variants of the DOT Calculus
6.2.1 Why limit the calculus to wfe-types?
Currently, the proof of type-safety via logical relations fundamen-
tally relies on types having an expansion. However, this was not
our original motivation for limiting the calculus to wfe-types.

Originally, subtyping was not regular wrt wfe. Roughly, all
the wfe preconditions in subtyping were dropped. In this broader
calculus, subtyping transitivity doesn’t hold, because of the rule
(<:-RFN) which requires expansion of the left type.

The problem is deep, as attested by this elaborate counterexam-
ple that is not so easily patched, and directly leads to a counterex-
ample to preservation.

Consider an environment where u is bound to:

>{u⇒
Bad : ⊥..u.Bad

Good : >{z ⇒ L : ⊥..>} ..>{z ⇒ L : ⊥..>}
Lower : u.Bad ∧ u.Good ..u.Good

Upper : u.Good ..u.Bad ∨ u.Good

X : u.Lower ..u.Upper

}
Now, consider the types S, T , U defined in terms of u:

S = u.Bad ∧ u.Good

T = u.Lower

U = u.X {z ⇒ L : ⊥..>}
We have S <: T and T <: U , but we cannot derive S <: U
because S doesn’t expand.

Note that u is realizable, since each lower bound is a subtype of
its upper bound. So it is straightforward to turn this counterexample
to subtyping transitivity into a counterexample to preservation:

val u = new . . . ;

(app λx :>.x
(app λf :S → U.f

(app λf :S → T.f

(app λf :S → S.f

λx :S.x))))

The idea is to start with a function from S → S and cast it
successively to S → T then S → U . To typecheck the expres-
sion initially, we need to check S <: T and T <: U . After some
reduction steps, the first few casts vanish, and the reduced expres-
sion casts directly from S → S to S → U , so we need to check
S <: U .

6.2.2 Why not include the lambda-calculus instead of
methods?

Originally, the DOT calculus included the lambda-calculus, and
explicit methods were not needed since they could be represented

by a value label with a function type. However, the expansion of
the function type was defined to be the empty set of declarations
(like for >), which caused a real breach of type-safety.

A concrete object could be a subtype of a function type without
a function ever being defined. Consider:

val u = new >{z ⇒ C : > → >..> → >}{} ;

val f = new u.C {} ;

. . .

Now, f was a subtype of > → >, but (app f (λx : >.x))
was stuck (and, rightfully, didn’t typecheck). But we could use
narrowing to create a counterexample to type safety: (app (λg :
> → >.(app g ()λx :>.x)) f).

Because of this complication, we decided to drop the lambda-
calculus from DOT, and instead introduce methods with one param-
eter. Like in Scala, functions are then just sugar for objects with a
special method.

An alternative design would have been to change the expansion
of the function type to have a declaration for a special marker value
label.

6.2.3 Why not patch the DOT calculus for preservation to
hold?

We tried! However, the resulting calculi were not elegant, and
furthermore, we still found issues with preservation. Below, we
give a brief summary of one failed attempt to patch the calculus
for preservation to hold.

Because many of the counterexamples to preservation are re-
lated to narrowing, we tried to make widening an explicit operation
and change rules with implicit relaxations (MSEL and NEW) to be
strict. From a typing perspective, the change was straightforward,
but reduction became more complicated and dependent on typing
because the type information in widenings needed to be propagated
correctly.

We added path equality provisions in the subtyping rules, in the
same spirit as the Tribe calculus [4].

Unfortunately, these two patches interacted badly, and we were
left with a disturbing counterexample to type safety.

val a = new >{z ⇒ C : ⊥..>{z ⇒ D : ⊥..z.X,X : ⊥..>}} ;

val b = new a.C {z ⇒ X : ⊥..⊥} ;

val c = new a.C;

val d = new (cast a.C b).D;

(app (λx :⊥.x.foo) d)

Notice that d has type⊥ if the cast on b is ignored. This example
didn’t typecheck initially because the path-equality provisions only
applied when objects are in the store, so the application was not
well-typed. But if we started preservation in a store which had a,
b, c and d then the application type-checked, because, through one
of the path-equality provision, we could find that the type of d was
a subtype of ⊥. Now, of course, when we got to d.foo, reduction
failed.

6.3 Related Work
In addition to Scala’s previous models [5, 12], several calculi
present some form of path-dependent types.

The vc calculus [7] models virtual classes with path-dependent
types. vc restricts paths to start with “this”, though it provides a
way (“out”) to refer to the enclosing object.

The Tribe calculus [4] builds an ownership types system [3] on
top of a core calculus which models virtual classes. The soundness

proof for the core calculus seems to be tied to the ownership types
system.

Some ML-style module systems [8, 9] have a form of stratified
path-dependent types. Because of the stratification, recursion is not
allowed. In MixML [6] like in Scala, this restriction is lifted.

7. Conclusion
We have presented DOT, a calculus aimed as a new foundation of
Scala and languages like it. DOT features path-dependent types,
refinement types, and abstract type members.

Proving the DOT calculus type-safe has been an interesting ad-
venture. We have shown that DOT does not satisfy preservation
(also known as subject-reduction). However, the standard theorems
of preservation and progress are just one way to prove type safety.
We have sketched a plausible proof of type safety using the power-
ful method of logical relations.

Acknowledgments
We thank Amal Ahmed for many discussions and insights about
applying logical relations to DOT. We thank Donna Malayeri and
Geoffrey Washburn for preliminary work on DOT. We thank Tiark
Rompf for helpful comments.

References
[1] A. J. Ahmed. Semantics of types for mutable state. PhD thesis,

Princeton University, 2004.
[2] A. J. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, pages 69–83, 2006.
[3] N. R. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In

OOPSLA, pages 618–633, 2010.
[4] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: a simple

virtual class calculus. In AOSD, pages 121–134, 2007.
[5] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core calculus

for Scala type checking. In MFCS, pages 1–23, 2006.
[6] D. Dreyer and A. Rossberg. Mixin’ up the ML module system. In

ICFP, pages 307–320, 2008.
[7] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class calculus. In

POPL, pages 270–282, 2006.
[8] R. Harper and M. Lillibridge. A type-theoretic approach to higher-

order modules with sharing. In POPL, pages 123–137, 1994.
[9] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting.

In ESOP, pages 6–20, 2002.
[10] C. Hritcu and J. Schwinghammer. A step-indexed semantics of imper-

ative objects. Logical Methods in Computer Science, 5(4), 2009.
[11] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,

M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B.
Findler. Run your research: on the effectiveness of lightweight mech-
anization. In POPL, pages 285–296, 2012.

[12] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory
of objects with dependent types. In ECOOP, pages 201–224, 2003.

[13] B. C. Pierce. Types and programming languages. MIT Press, 2002.
ISBN 978-0-262-16209-8.

[14] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Inf. Comput., 115(1):38–94, 1994.

	Introduction
	The DOT Calculus
	Notation
	Syntax
	Reduction rules
	Type assignment rules
	Membership
	Expansion
	Subtyping
	Declaration Subsumption
	Well-formedness

	Examples
	Sugar: Functions
	Basics: Booleans, Error, …
	Lists

	Counterexamples to Preservation
	Term-Mem Restriction
	Expansion Lost
	Well-Formedness Lost
	Path Equality

	Type Safety via Logical Relations
	Type Safety
	Step-Indexed Logical Relations
	Set of Values
	Set of Terms
	Extending the environment and the store
	Completing the environment to agree with the store
	Terms in the Logical Relation

	Statements and Proofs
	Fundamental Theorem
	Substitution Lemma
	Subset Semantics Lemma
	Extended Monotonicity Lemma

	Discussion
	Why No Inheritance?
	Variants of the DOT Calculus
	Why limit the calculus to wfe-types?
	Why not include the lambda-calculus instead of methods?
	Why not patch the DOT calculus for preservation to hold?

	Related Work

	Conclusion

