
Dependent Object Types
Towards a foundation for Scala’s type system

Nada Amin Adriaan Moors Martin Odersky
EPFL

first.last@epfl.ch

Abstract
We propose a new type-theoretic foundation of Scala and languages
like it: the Dependent Object Types (DOT) calculus. DOT models
Scala’s path-dependent types, abstract type members and its mix-
ture of nominal and structural typing through the use of refinement
types. The core formalism makes no attempt to model inheritance
and mixin composition. DOT normalizes Scala’s type system by
unifying the constructs for type members and by providing clas-
sical intersection and union types which simplify greatest lower
bound and least upper bound computations.

In this paper, we present the DOT calculus, both formally and
informally. We also discuss our work-in-progress to prove type-
safety of the calculus.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Abstract data types, Classes and objects, polymor-
phism; D.3.1 [Formal Definitions and Theory]: Syntax, Seman-
tics; F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams]; F.3.3 [Studies of Program Constructs]: Object-oriented
constructs, type structure; F.3.2 [Semantics or Programming Lan-
guages]: Operational semantics

General Terms Languages, Theory, Verification

Keywords calculus, objects, dependent types

1. Introduction
A scalable programming language is one in which the same con-
cepts can describe small as well as large parts. Towards this goal,
Scala unifies concepts from object and module systems. An es-
sential ingredient of this unification is objects with type members.
Given a stable path to an object, its type members can be accessed
as types, called path-dependent types.

This paper presents Dependent Object Types (DOT), a small
object calculus with path-dependent types. In addition to path-
dependent types, types in DOT are built from refinements, inter-
sections and unions. A refinement extends a type by (re-)declaring
members, which can be types, values or methods.

We propose DOT as a new type-theoretic foundation of Scala
and languages like it. The properties we are interested in modeling
are Scala’s path-dependent types and abstract type members, as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOOL ’12 October 22, 2012, Tucson, AZ, USA.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

well as its mixture of nominal and structural typing through the
use of refinement types. Compared to previous approaches [5, 14],
we make no attempt to model inheritance or mixin composition.
Indeed we will argue that such concepts are better modeled in a
different setting.

The DOT calculus does not precisely describe what’s currently
in Scala. It is more normative than descriptive. The main point
of deviation concerns the difference between Scala’s compound
type formation using with and classical type intersection, as it is
modeled in the calculus. Scala, and the previous calculi attempting
to model it, conflates the concepts of compound types (which in-
herit the members of several parent types) and mixin composition
(which build classes from other classes and traits). At first glance,
this offers an economy of concepts. However, it is problematic be-
cause mixin composition and intersection types have quite different
properties. In the case of several inherited members with the same
name, mixin composition has to pick one which overrides the oth-
ers. It uses for that the concept of linearization of a trait hierarchy.
Typically, given two independent traits T1 and T2 with a common
methodm, the mixin composition T1 with T2 would pick them in
T2, whereas the member in T1 would be available via a super-call.
All this makes sense from an implementation standpoint. From a
typing standpoint it is more awkward, because it breaks commuta-
tivity and with it several monotonicity properties.

In the present calculus, we replace Scala’s compound types
by classical intersection types, which are commutative. We also
complement this by classical union types. Intersections and unions
form a lattice wrt subtyping. This addresses another problematic
feature of Scala: In Scala’s current type system, least upper bounds
and greatest lower bounds do not always exist. Here is an example:
given two traits A and B, where each declares an abstract upper-
bounded type member T,

trait A { type T<: A }
trait B { type T<: B }

the greatest lower bound of A and B is approximated by the infinite
sequence

A with B { type T<: A with B { type T<: A with B {
type T < ...

}}}

The limit of this sequence does not exist as a type in Scala.
This is problematic because greatest lower bounds and least

upper bounds play a central role in Scala’s type inference. For
example, in order to infer the type of an if expression such as

if (cond) ((a: A) ⇒ c: C) else ((b: B) ⇒ d: D)

type inference tries to compute the greatest lower bound of A and
B and the least upper bound of C and D. The absence of universal
greatest lower bounds and least upper bounds makes type inference
more brittle and more unpredictable.

Compared to Scala, DOT also simplifies type members. In DOT,
a type member is declared by its lower and upper bounds. Here is
an example inspired by [11]:

trait Food
trait Animal {
type Meal<: Food
def eat(meal: Meal) {}

}

Meal is a type member with a lower bound of ⊥ and an upper
bound of Food. It is possible to instantiate an Animal without further
specifying Meal, though it would not be possible to feed it. Now, we
define Cow by refining Animal.

trait Grass extends Food
trait Cow extends Animal {
type Meal = Grass

}

In Scala, the type alias type Meal = Grass defines a concrete bind-
ing for Meal. In DOT, such a type alias is declared by giving it iden-
tical lower and upper bounds. Now, we can instantiate Cows and feed
them Grass.

DOT has a notion of concrete vs abstract type members, which
is used to distinguish which types members are instantiable. In the
example above, all types introduced by trait would be concrete
type members in DOT with lower bounds of ⊥ and upper bounds
describing the extends clause: > for Food, a refinement of > with
type member Meal and method member eat for Animal, Food for
Grass and a refinement of Animal with type member Meal for Cow.
Concrete type members typically have a lower bound of ⊥ so that
they are purely nominal: e.g. one needs to directly or indirectly
instantiate a Cow to have an object of type Cow.

We propose DOT as a core calculus for path-dependent types.
We present the calculus formally in section 2 and through examples
in section 3. In section 4, we show that the calculus does not
satisfy the standard theorem of preservation, also known as subject
reduction. However, we still believe that the calculus is type-safe, as
explained in section 5. In section 6, we discuss choices and variants
of the calculus, as well as related work, and conclude in section 7.

2. The DOT Calculus
The DOT calculus is a small system of dependent object-types.
Figure 1 gives its syntax, reduction rules, and type assignment
rules.

2.1 Notation
We use standard notational conventions for sets. The notation X
denotes a set of elements X . Given such a set X in a typing rule,
Xi denotes an arbitrary element of X . We use an abbreviation for
preconditions in typing judgements. Given an environment Γ and
some predicates P and Q, the condition Γ ` P , Q is a shorthand
for the two conditions Γ ` P and Γ ` Q.

2.2 Syntax
There are four alphabets: Variable names x, y, z are freely alpha-
renamable. They occur as parameters of methods, as binders for
objects created by new-expressions, and as self references in refine-
ments. Value labels l denote fields in objects, which are bound to
values at run-time. Similarly, method labels m denote methods in
objects. Type labels L denote type members of objects. Type labels
are further separated into labels for abstract types La and labels for
classes Lc. It is assumed that in each program every class label Lc

is declared at most once.
We assume that the label alphabets l, m and L are finite. This

is not a restriction in practice, because one can include in these
alphabets every label occurring in a given program.

The terms t in DOT consist of variables x, y, z, field selections
t.l, method invocations t.m(t) and object creation expressions
val y = new c; t′ where c is a constructor Tc

{
l = v m(x) = t

}
.

The latter binds a variable y to a new instance of type Tc with fields
l initialized to values v and methodsm initialized to methods of one
parameter x and body t. The scope of y extends through the term
t′.

Two sub-sorts of terms are values and paths. Values v consist of
just variables. Paths p consist of just variables and field selections.

The types in DOT are denoted by letters S, T , U , V , or W .
They consist of the following:

- Type selections p.L, which denote the type member L of path
p.

- Refinement types T
{
z ⇒ D

}
, which refine a type T by a set

of declarations D. The variable z refers to the “self”-reference
of the type. Declarations can refer to other declarations in the
same type by selecting from z.

- Type intersections T ∧ T ′, which carry the declarations of
members present in either T or T ′.

- Type unions T ∨ T ′, which carry only the declarations of
members present in both T and T ′.

- A top type >, which corresponds to an empty object.

- A bottom type ⊥, which represents a non-terminating compu-
tation.

A subset of types Tc are called concrete types. These are type
selections p.Lc of class labels, the top type >, intersections of
concrete types, and refinements Tc

{
z ⇒ D

}
of concrete types.

Only concrete types are allowed in constructors c.
There are only three forms of declarations in DOT, which are

all part of refinement types. A value declaration l : T introduces a
field with type T . A method declaration m : S → U introduces
a method with parameter of type S and result of type U . A type
declaration L : S..U introduces a type member L with a lower
bound type S and an upper bound typeU . There are no type aliases,
but a type alias can be simulated by a type declaration L : T..T
where the lower bound and the upper bound are the same type T .

Every value, method or type label can be declared only once in
a set of declarationsD. A set of declarations can hence be seen as a
map from labels to their declarations. Meets ∧ and joins ∨ on sets
of declarations are defined in Figure 2.

2.3 Reduction rules
Reduction rules t | s → t′ | s′ in DOT rewrite pairs of terms t and
stores s, where stores map variables to constructors. There are three
main reduction rules: Rule (MSEL) rewrites a method invocation
y.mi(v) by retrieving the corresponding method definition from
the store, and performing a substitution of the argument for the
parameter in the body. Rule (SEL) rewrites a field selection x.l
by retrieving the corresponding value from the store. Rule (NEW)
rewrites an object creation val x = new c; t by placing the binding
of variable x to constructor c in the store and continuing with term
t. These reduction rules can be applied anywhere in a term where
the hole [] of an evaluation context e can be situated.

2.4 Type assignment rules
The last part of Figure 1 presents rules for type assignment.

Rules (SEL) and (MSEL) type field selections and method in-
vocations by means of an auxiliary membership relation 3, which
determines whether a given term contains a given declaration as
one of its members. The membership relation is defined in Figure 3
and is further explained in section 2.5.

Syntax

x, y, z Variable
l Value label
m Method label
v ::= Value

x variable
t ::= Term

v value
val x = new c; t new instance
t.l field selection
t.m(t) method invocation

p ::= Path
x variable
p.l selection

c ::= Tc

{
d
}

Constructor
d ::= Initialization

l = v field initialization
m(x) = t method initialization

s ::= x 7→ c Store

L ::= Type label
Lc class label
La abstract type label

S, T, U, V,W ::= Type
p.L type selection
T
{
z ⇒ D

}
refinement

T ∧ T intersection type
T ∨ T union type
> top type
⊥ bottom type

Sc, Tc ::= Concrete type
p.Lc | Tc

{
z ⇒ D

}
| Tc ∧ Tc | >

D ::= Declaration
L : S..U type declaration
l : T value declaration
m : S → U method declaration

Γ ::= x : T Environment

Reduction t | s → t′ | s′

y 7→ Tc

{
l = v′ m(x) = t

}
∈ s

y.mi(v) | s → [v/xi]ti | s
(MSEL)

y 7→ Tc

{
l = v m(x) = t

}
∈ s

y.li | s → vi | s
(SEL)

val x = new c; t | s → t | s, x 7→ c (NEW)

t | s → t′ | s′

e[t] | s → e[t′] | s′
(CONTEXT)

where evaluation context e ::= [] | e.m(t) | v.m(e) | e.l

Type Assignment Γ ` t : T

x : T ∈ Γ

Γ ` x : T
(VAR)

Γ ` t 3 m : S → T
Γ ` t′ : T ′ , T ′ <: S

Γ ` t.m(t′) : T
(MSEL)

Γ ` t 3 l : T ′

Γ ` t.l : T ′
(SEL)

y /∈ fn(T ′)
Γ ` Tc wfe , Tc ≺y L : S..U,D

Γ, y : Tc ` S <: U , d : D , t′ : T ′

Γ ` val y = new Tc

{
d
}

; t′ : T ′
(NEW)

Declaration Assignment Γ ` d : D

Γ ` v : V ′ , V ′ <: V

Γ ` (l = v) : (l : V)
(VDECL)

Γ ` S wfe
Γ, x : S ` t : T ′ , T ′ <: T

Γ ` (m(x) = t) : (m : S → T)
(MDECL)

Figure 1. The DOT Calculus : Syntax, Reduction, Type / Declaration Assignment

dom(D ∧D′) = dom(D) ∪ dom(D′)
dom(D ∨D′) = dom(D) ∩ dom(D′)

(D ∧D′)(L) = L : (S ∨ S′)..(U ∧ U ′) if (L : S..U) ∈ D and (L : S′..U ′) ∈ D′
= D(L) if L /∈ dom(D′)
= D′(L) if L /∈ dom(D)

(D ∧D′)(m) = m : (S ∨ S′)→ (U ∧ U ′) if (m : S → U) ∈ D and (m : S′ → U ′) ∈ D′
= D(m) if m /∈ dom(D′)
= D′(m) if m /∈ dom(D)

(D ∧D′)(l) = l : T ∧ T ′ if (l : T) ∈ D and (l : T ′) ∈ D′
= D(l) if l /∈ dom(D′)
= D′(l) if l /∈ dom(D)

(D ∨D′)(L) = L : (S ∧ S′)..(U ∨ U ′) if (L : S..U) ∈ D and (L : S′..U ′) ∈ D′
(D ∨D′)(m) = m : (S ∧ S′)→ (U ∨ U ′) if (m : S → U) ∈ D and (m : S′ → U ′) ∈ D′
(D ∨D′)(l) = l : T ∨ T ′ if (l : T) ∈ D and (l : T ′) ∈ D′

Sets of declarations form a lattice with the given meet ∧ and join ∨, the empty set of declarations as the top element, and the bottom element
D⊥, Here D⊥ is the set of declarations that contains for every term label l the declaration l : ⊥, for every type label L the declaration
L : >..⊥ and for every method label m the declaration m : > → ⊥.

Figure 2. The DOT Calculus : Declaration Lattice

The last rule, (NEW), assigns types to object creation expres-
sions. It is the most complex of DOT’s typing rules. To type-check
an object creation val y = new Tc

{
l = v m(x) = t

}
; t′, one

verifies first that the type Tc is well-formed (see Figure 5 for a
definition of well-formedness). One then determines the set of all
declarations that this type carries, using the expansion relation ≺
defined in Figure 3. Every type declaration L : S..U in this set
must be realizable, i.e. its lower bound S must be a subtype of its
upper bound U . Every field declaration l : V in this set must have
a corresponding initializing value of v of type V . These checks are
made in an environment which is extended by the binding y : Tc.
In particular this allows field values that recurse on “self” by refer-
ring to the bound variable x. Similarly, every method declaration
m : T → W must have a corresponding initializing method defi-
nition m(x) = t. The parameter type T must be wfe (well-formed
and expanding; see Figure 5), and the body tmust type check toW
in an environment extended by the bindings y : Tc and x : T .

Instead of adding a separate subsumption rule, subtyping is
expressed by preconditions in rules (MSEL) and (NEW).

2.5 Membership
Figure 3 presents typing rules for membership and expansion. The
membership judgement Γ ` t 3 D states that in environment Γ a
term t has a declaration D as a member. The membership rules
rely on expansion. There are two rules, one for paths (PATH-3)
and one for general terms (TERM-3). For general terms, the “self”-
reference of the type must not occur in the resulting declaration D,
since, to guarantee syntactic validity, we can only substitute a path
for the “self”-reference.

2.6 Expansion
The expansion judgement Γ ` T ≺z D “flattens” all the decla-
rations of a type: it relates a type T to a set of declarations that
describe the type structurally. Expansion is precise and unique,
though it doesn’t always exist. See section 3.2 for examples.

The expansion relation ≺ is needed to type-check the complete
set of declarations carried by a concrete type that is used in a new-
expression. Expansion is also used by the membership rules and in
subtyping refinements on the right (see Figure 4).

Rule (RFN-≺) states that a refinement type T ≺z D expands
to the conjunction of the expansion D′ of T and the newly added
declarations D. Rule (TSEL-≺) states that a type selection p.L
carries the same declarations as the upper bound U of L in T .
Rules (∧-≺) and (∨-≺) states that expansion distributes through
meets and joins. Rule (>-≺) states that the top type > expands to
the empty set. Rule (⊥-≺) states that the bottom type⊥ expands to
the bottom element D⊥ of the lattice of sets of declarations (recall
Figure 2).

2.7 Subtyping
Figure 4 defines the subtyping judgement Γ ` S <: T which
states that in environment Γ type S is a subtype of type T . Sub-
typing is regular wrt wfe: if type S is a subtype of type T , then S
and T are well-formed and expanding. Though this regularity lim-
its our calculus to wfe-types, this limitation allows us to show that
subtyping is transitive, as discussed in section 6.2.1.

2.8 Declaration Subsumption
The declaration subsumption judgement Γ ` D <: D′ in Figure 4
states that in environment Γ the declaration D subsumes the dec-
laration D′. There are three rules, one for each kind (type, value,
method) of declarations. Rule (TDECL-<:) states that a type decla-
ration L : S..U subsumes another type declaration L : S′..U ′ if S′

is a subtype of S and U is a subtype of U ′. In other words, the set
of types between S and U is contained in the set of types between
S′ and U ′. Rule (VDECL-<:) states that a value declaration l : T
subsumes another value declaration l : T ′ if T is a subtype of T ′.
Rule (MDECL-<:) is similar to (TDECL-<:), as the parameter type
varies contravariantly and the return type covariantly.

Declaration subsumption is extended to a binary relation be-
tween sequences of declarations:D <: D′ iff ∀D′i,∃Dj .Dj <: D′i.

2.9 Well-formedness
The well-formedness judgement Γ ` T wf in Figure 5 states that
in environment Γ the type T is well-formed.

A refinement type T
{
z ⇒ D

}
is well-formed if the parent type

T is well-formed and every declaration in D is well-formed in an
environment augmented by the binding of the self-reference z to
the refinement type itself (RFN-WF).

Membership Γ ` t 3 D

Γ ` p : T , T ≺z D

Γ ` p 3 [p/z]Di
(PATH-3)

z 6∈ fn(Di) Γ ` t : T , T ≺z D

Γ ` t 3 Di
(TERM-3)

Expansion Γ ` T ≺z D

Γ ` T ≺z D′

Γ ` T
{
z ⇒ D

}
≺z D′ ∧D

(RFN-≺)

Γ ` T1 ≺z D1 , T2 ≺z D2

Γ ` T1 ∧ T2 ≺z D1 ∧D2

(∧-≺)

Γ ` > ≺z {} (>-≺)

Γ ` p 3 L : S..U , U ≺z D

Γ ` p.L ≺z D
(TSEL-≺)

Γ ` T1 ≺z D1 , T2 ≺z D2

Γ ` T1 ∨ T2 ≺z D1 ∨D2

(∨-≺)

Γ ` ⊥ ≺z D⊥ (⊥-≺)

Figure 3. The DOT Calculus : Membership and Expansion

Subtyping Γ ` S <: T

Γ ` T wfe
Γ ` T <: T

(REFL)

Γ ` T
{
z ⇒ D

}
wfe , S <: T , S ≺z D′

Γ, z : S ` D′ <: D

Γ ` S <: T
{
z ⇒ D

} (<:-RFN)

Γ ` p 3 L : S..U , S <: U , S′ <: S

Γ ` S′ <: p.L
(<:-TSEL)

Γ ` T <: T1 , T <: T2

Γ ` T <: T1 ∧ T2
(<:-∧)

Γ ` T2 wfe , T <: T1

Γ ` T <: T1 ∨ T2
(<:-∨1)

Γ ` T1 wfe , T <: T2

Γ ` T <: T1 ∨ T2
(<:-∨2)

Γ ` T wfe
Γ ` T <: > (<:->)

Γ ` T wfe
Γ ` ⊥ <: T

(⊥-<:)

Γ ` T
{
z ⇒ D

}
wfe , T <: T ′

Γ ` T
{
z ⇒ D

}
<: T ′

(RFN-<:)

Γ ` p 3 L : S..U , S <: U , U <: U ′

Γ ` p.L <: U ′
(TSEL-<:)

Γ ` T1 <: T , T2 <: T

Γ ` T1 ∨ T2 <: T
(∨-<:)

Γ ` T2 wfe , T1 <: T

Γ ` T1 ∧ T2 <: T
(∧1-<:)

Γ ` T1 wfe , T2 <: T

Γ ` T1 ∧ T2 <: T
(∧2-<:)

Declaration subsumption Γ ` D <: D′

Γ ` S′ <: S , T <: T ′

Γ ` (L : S..T) <: (L : S′..T ′)
(TDECL-<:)

Γ ` T <: T ′

Γ ` (l : T) <: (l : T ′)
(VDECL-<:)

Γ ` S′ <: S , T <: T ′

Γ ` (m : S → T) <: (m : S′ → T ′)
(MDECL-<:)

Figure 4. The DOT Calculus : Subtyping and Declaration Subsumption

Well-formed types Γ ` T wf

Γ ` T wf
Γ, z : T

{
z ⇒ D

}
` D wf

Γ ` T
{
z ⇒ D

}
wf

(RFN-WF)

Γ ` p 3 L : S..U , S wf , U wf
Γ ` p.L wf

(TSEL-WF1)

Γ ` T wf , T ′ wf
Γ ` T ∧ T ′ wf

(∧-WF)

Γ ` > wf (>-WF)

Γ ` ⊥ wf (⊥-WF)

Γ ` p 3 L : ⊥..U
Γ ` p.L wf

(TSEL-WF2)

Γ ` T wf , T ′ wf
Γ ` T ∨ T ′ wf

(∨-WF)

Well-formed declarations Γ ` D wf

Γ ` S wf , U wf
Γ ` L : S..U wf

(TDECL-WF)

Γ ` T wf
Γ ` l : T wf

(VDECL-WF)

Γ ` S wf , U wf
Γ ` m : S → U wf

(MDECL-WF)

Well-formed and expanding types Γ ` T wfe

Γ ` T wf , T ≺z D

Γ ` T wfe
(WFE)

Figure 5. The DOT Calculus : Well-Formedness

A type selection p.L is well-formed if L is a member of p, and
the lower bound of L is also well-formed (TSEL-WF1 and TSEL-
WF2). The latter condition has the effect that the lower bound of a
type p.L may not refer directly or indirectly to a type containing
p.L itself — if it would, the well-formedness judgement of p.L
would not have a finite proof. No such restriction exists for the
upper bound of L if the lower bound is ⊥ (TSEL-WF2). The upper
bound may in fact refer back to the type. Hence, recursive class
types and F-bounded abstract types are both expressible.

The other forms of types in DOT are all well-formed if their
constituent types are well-formed.

Well-formedness extends straightforwardly to declarations with
the judgement Γ ` D wf. All declarations are well-formed if their
constituent types are well-formed.

3. Examples
3.1 Greatest Lower Bounds and Least Upper Bounds
In DOT, the greatest lower bound of two types is their intersection
and their least upper bound, their union. Recall the introductory
example which was problematic in Scala:

trait A { type T<: A }
trait B { type T<: B }

We represent it as follows in DOT, wrapping the types in a
namespace p:

val p = new >{p⇒
Ac : ⊥..>{z ⇒ T : ⊥..p.Ac}
Bc : ⊥..>{z ⇒ T : ⊥..p.Bc}
} {} ;

The greatest lower bound of p.Ac and p.Bc is p.Ac ∧ p.Bc by
definition.

3.2 Expansion
The expansion of p.Ac ∧ p.Bc is the set {T : ⊥..p.Ac ∧ p.Bc} by
∧-≺ rule:

p.Ac ≺z {T : ⊥..p.Ac} p.Bc ≺z {T : ⊥..p.Bc}

∧-≺

p.Ac ∧ p.Bc ≺z {T : ⊥..p.Ac ∧ p.Bc}

In turn, p.Ac ≺z {T : ⊥..p.Ac} is derived as follows:

. . .

PATH-3

p 3 Ac : ⊥..>{z ⇒ T : ⊥..p.Ac}

>-≺

> ≺z {}

RFN-≺

>{z ⇒ T : ⊥..p.Ac} ≺z {T : ⊥..p.Ac}

TSEL-≺

p.Ac ≺z {T : ⊥..p.Ac}
Note that expansions do not always exist; see section 4.2 for

illustration.

3.3 Functions as Sugar
Like in Scala, we can encode functions as objects with a special
method. Note that the variable z must be fresh.

S →s T ⇐⇒ >{z ⇒ apply : S → T}
fun (x : S) T t ⇐⇒ val z = new S →s T {apply(x) = t} ; z

(app f x) ⇐⇒ f.apply(x)

(cast T t) ⇐⇒ (app (fun (x : T) T x) t)

We will freely use the following sugar in the remaining of this
paper. We will also sometimes use λx : S.t for fun (x : S) _ t,
omitting the return type for convenience and brevity.

3.4 Class Hierarchies
A class hierarchy such as

object pets {
trait Pet
trait Cat extends Pet
trait Dog extends Pet
trait Poodle extends Dog
trait Dalmatian extends Dog

}

can be easily represented by concrete type members, setting the
upper bounds appropriately:

val pets = new >{z ⇒
Petc : ⊥..>
Catc : ⊥..z.Petc
Dogc : ⊥..z.Petc
Poodlec : ⊥..z.Dogc

Dalmatianc : ⊥..z.Dogc

} {} ;

The lower of bounds of ⊥ ensures that these concrete types are
nominal as the <:-TSEL rule cannot be meaningfully applied.

3.5 Abstract Type Members
The choices.Alt trait takes three abstract type members: C, A, B.
A and B are upper bounded by C. The intention is that the choose
function takes an A and a B and returns one or the other.

object choices {
trait Alt {
type C
type A<: C
type B<: C
val choose : A ⇒ B ⇒ C

}
}

In DOT, we can state more precisely the return type of choose ,
thanks to union types:

val choices = new >{z ⇒
Altc : ⊥..>{a⇒

C : ⊥..>
A : ⊥..a.C
B : ⊥..a.C
choose : a.A→ a.B →s a.A ∨ a.B

}
} {} ;

Using lower bounds of ⊥ for the abstract type members means
they can vary covariantly. However, we wouldn’t want to pass in
any pets.Petc to a choose method that expects only a pets.Dogc .
Therefore,

choices.Altc {a⇒ C : ⊥..pets.Dogc}
<: choices.Altc {a⇒ C : ⊥..pets.Petc}

but

choices.Altc {a⇒ C : pets.Dogc ..pets.Dogc}
6<: choices.Altc {a⇒ C : pets.Petc ..pets.Petc}

As expected, we cannot invoke choose meaningfully, unless A
and B have realizable lower bounds. For example, assuming we
refine the types above so that A : C..C and B : C..C, we cannot
invoke choose when C has a lower bound of ⊥ but only when it
has a realizable lower bound such as pets.Dogc .

3.6 Polymorphic Operators as Sugar
In Scala, we can implement a polymorphic operator pickLast
which takes concrete types for C, A and B and implements a choices
.Alt instance where the choose function picks the B element – note
the precision of the choose function which has been refined to re-
turn an element of exactly type B.

def pickLast[Cp,Ap<: Cp,Bp<: Cp] = new Alt {
type C = Cp
type A = Ap
type B = Bp
val choose: A ⇒ B ⇒ B = a ⇒ b ⇒ b

}

val potty = new Poodle {}
val dotty = new Dalmatian {}
val picker = pickLast[Dog,Poodle,Dalmatian]
val p: picker.A = potty
val r: picker.B = picker.choose(potty)(dotty)

In DOT, we can implement such a polymorphic operator as
sugar. Here, it is not convenient to just return a complex term like
we did for functions as sugar because then invoking choose falls
under the TERM-3 restriction, which doesn’t allow the “self” type
to occur in the result of the method invocation. So the translation
involves explicitly binding an object to the result of the polymor-
phic operator. We translate

val xa = pickLast(TC , TA, TB); ea

to

val xa = new choices.Altc{xa ⇒
C : TC ..TC

A : TA..TA

B : TB ..TB

choose : xa.A→ xa.B →s x
a.B

} {choose(a) = fun (b : xa.B) xa.B b} ;

ea

Now, given

val p = new pets.Poodlec ;

val d = new pets.Dalmatianc ;

val a = pickLast(pets.Dogc , pets.Poodlec , pets.Dalmatianc);

The type of a is a subtype of choices.Altc :

(cast >
(cast choices.Altc
(cast choices.Altc {a⇒ C : ⊥..pets.Dogc}
a)))

The type of p is a subtype of a.A:

(cast > (cast a.A p))

a chooses a pets.Dalmatianc :

(cast > (cast pets.Dalmatianc (app a.choose(p) d)))

a enforces that its first argument be a pets.Poodlec and its
second a pets.Dalmatianc . The following does not type-check for
this reason:

(cast > (app a.choose(d) p))

3.7 F-bounded Quantification
F-bounded quantification describes an upper bound that itself con-
tains the type being constrained: for example, Int extends Ordered
[Int]. Here, we define MetaAlt to extend choices.Alt with C as an
alias for MetaAlt.

trait MetaAlt extends choices.Alt {
type C = MetaAlt
type A = C
type B = C

}

Now, we can define some MetaAlt instances:

val first = new MetaAlt {
val choose: C ⇒ C ⇒ C = a ⇒ b ⇒ a

}
val last = new MetaAlt {
val choose: C ⇒ C ⇒ C = a ⇒ b ⇒ b

}
val recfirst = new MetaAlt {
val choose: C ⇒ C ⇒ C = a ⇒ b ⇒ a.choose(a)(b)

}
val reclast = new MetaAlt {
val choose: C ⇒ C ⇒ C = a ⇒ b ⇒ b.choose(a)(b)

}

The equivalent in DOT is straightforward. We wrap MetaAlt in
a namespace, so that we can refer to it.

val m = new >{m⇒
MetaAltc : ⊥..choices.Altc{a⇒

C : m.MetaAltc ..m.MetaAltc

A : a.C ..a.C

B : a.C ..a.C

}
} {} ;

Now, we can create the equivalent of first (f), last (l),
recfirst (rf) and reclast (rl):

val f = new m.MetaAltc{
choose(a) = fun (b : m.MetaAltc) m.MetaAltc a};

val l = new m.MetaAltc{
choose(a) = fun (b : m.MetaAltc) m.MetaAltc b};

val rf = new m.MetaAltc{
choose(a) = fun (b : m.MetaAltc) m.MetaAltc

(app a.choose(a) b)};
val rf = new m.MetaAltc{

choose(a) = fun (b : m.MetaAltc) m.MetaAltc

(app b.choose(a) b)};

Given these definitions, here is a valid expression, which evalu-
ates to f : (cast > (app rf .choose(f) l)).

4. Counterexamples to Preservation
We first tried to prove the calculus type-safe using the standard
theorems of preservation and progress [15, 16]. Unfortunately, for
the calculus as presented, and any of its variants that we devised,
preservation doesn’t hold. In this section, we review some of the
most salient counterexamples to preservation that we found. These
counterexamples have been checked with PLT Redex [12].

Most of these counterexamples are related to narrowing, the
phenomenon that a type can become more precise after substitu-
tion: if a method takes a parameter x of type U , then when it is in-
voked, any argument v of type S <: U can be substituted – this is
the narrowing effect: it is as if the context was changed from x : U
to x : S. Sections 4.1, 4.2 and 4.3 each present a counterexample
related to narrowing.

The last counterexample, presented in section 4.4, illustrates the
need to relate path-dependent types after reduction. This need for
path-equality provisions in order for preservation to hold is well-
known from other calculi such as Tribe [4] with path-dependent
types and a small-step operational semantics.

More generally, these counterexamples illustrate that preserva-
tion doesn’t hold because a term that type-checks can step to a
term that does not type-check. However, these counterexamples to
preservation are not counterexamples to type-safety: i.e. these pro-
grams don’t get stuck – they eventually step to a value.

4.1 TERM-3 Restriction
There are two membership (t 3 D) rules: one for when the term
t is a path, and one for an arbitrary term t. For paths, we can
substitute the self-references in the declarations, but we cannot
do so for arbitrary terms as the resulting types wouldn’t be well-
formed syntactically. Hence, the TERM-3 has the restriction that
self-occurrences are not allowed. Here is a counterexample related
to this restriction.

Let X be a shorthand for the type:

>{z ⇒
La : >..>
l : z.La

}

Let Y be a shorthand for the type:

>{z ⇒
l : >
}

Now, consider the term

val u = new X {l = u} ;

(app (λy :> → Y.(app y u)) (λd :>.(cast X u))).l

The term type-checks because the term t = (app (λy : > →
Y.(app y u)) (λd :>.(cast X u))) has type Y , so we can apply
TERM-3 for l. However, the term t eventually steps to (cast X u)
which has typeX , so we cannot apply TERM-3 for l because of the
self-reference (z.La).

4.2 Expansion Lost
First, let’s illustrate why expansion does not always exist.

Here is the simplest such example:

val z = new >{z ⇒
L : ⊥..z.L

} {} ;

The type z.L is wf but not wfe. Indeed, there is no finite derivation
of an expansion for z.L, because by the TSEL-≺ rule, in order to
expand z.L, we need to expand its upper bound, which is z.L!
However, not that the object creation expression for z would not
type-check because subtyping is regular wrt wfe, and so the type of
a constructor in an object creation expression must have wfe type
members, since we check that the lower bound is a subtype of the
upper bound for each type member.

The example above relies on the TSEL-WF2, in order for the
upper bound to refer to the type member being declared. Here is an
example that does not rely on this rule, and that we will use below
to create a counterexample to preservation. Let

T1 = >{z ⇒
A : ⊥..z.B
B : ⊥..> }

T2 = >{z ⇒
A : ⊥..>
B : ⊥..z.A }

Now, consider T1∧T2. The type is wf and wfe, but its members
A and B are not wfe, because the expansion of T1 ∧ T2 with self-
type z has the set of declarations {A : ⊥..z.B, B : ⊥..z.A} –
thus, to expand z.A, we need to expand z.B, and to expand z.B,
we need to expand z.A! There is no finite derivation of expansions
for the type members A and B.

Expansion is not preserved by narrowing. Here, we create two
type selections that are mutually recursive in their upper bounds
after narrowing: z0.C2 initially expands, but after narrowing, z0.C2

expands to what z0.A2 expands to, which expands to what z0.A1

expands to, which expands to what z0.A2 expands to, and thus we
have an infinite expansion. Thus, the last new expression initially
type-checks, but after narrowing, it doesn’t because the precise
expansion needed by NEW cannot be inferred.

val x0 = new >{z ⇒ A1 : ⊥..>{z ⇒
A2 : ⊥..>
A3 : ⊥..>
C2 : ⊥..z.A2}} {} ;

val x1 = new >{z ⇒ C1 : ⊥..>{z ⇒ A1 : ⊥..x0.A1}} {} ;

val x2 = new x1.C1 {z ⇒ A1 : ⊥..x0.A1 {z ⇒ A2 : ⊥..z.A3}} {} ;

val x3 = new x1.C1 {z ⇒ A1 : ⊥..x0.A1 {z ⇒ A3 : ⊥..z.A2}} {} ;

(app λx :x1.C1.(λz0 :x.A1 ∧ x3.A1.

val z = new z0.C2; (app (λx :>.x) z))

x2)

4.3 Well-Formedness Lost
Even well-formedness is not preserved by narrowing. The trick
is that if the lower bound of a type selection is not ⊥, then the
bounds needs to be checked for well-formedness. Here, we create
two type selections that are mutually recursive in their bounds after
narrowing. y.A is initially well-formed, but after narrowing, it isn’t
because we run into an infinite derivation trying to prove the well-
formedness of its bounds.

val v = new >{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>, B : z.A..z.A}} {} ;

(app (λx :>{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>, B : ⊥..>}} .
val z = new >{z ⇒

l : x.L ∧ >{z ⇒ A : z.B..z.B,B : ⊥..>} → >}{
l(y) = fun (a : y.A) > a};

(cast > z))
v)

4.4 Path Equality
For preservation, we need to be able to relate path-dependent types
after reduction. Here is a motivating example:

val b = new >{z ⇒ X : >..>
l : z.X } {l = b} ;

val a = new >{z ⇒ i : >{z ⇒
X : ⊥..>
l : z.X} } {i = b} ;

(app (λx :>.x) (app (λx :a.i.X.x) a.i.l))

a.i.l reduces to b.l. b.l has type b.X , so we need b.X <: a.i.X .
This cannot be established with the current rules: it is not true in
general, but true here because a.i reduces to b. Hence, we need to
acknowledge path equality for preservation to hold.

In section 6.2.3, we discuss our failure to patch the calculus for
preservation to hold.

5. Type-Safety via Logical Relations
We believe that the DOT calculus is type-safe, and are developing a
proof of type-safety using step-indexed logical relations [1, 2, 10].
In this section, we briefly summarize the main theorem of type-
safety, and the strategy based on step-indexed logical relations that
we are using to prove it. All our development, including models
in Coq [13] and PLT Redex [12], is available from http://dot.
namin.net.

http://dot.namin.net
http://dot.namin.net

5.1 Type-Safety
Type-safety states that a well-typed program doesn’t get stuck.
More formally: If ∅ ` t : T and t | ∅ →∗ t′ | s′ then either
t′ is a value or ∃t′′, s′′.t′ | s′ → t′′ | s′′. Note that this is stronger
than the standard theorem of progress, which states that a well-type
term can take a step or is a value.

5.2 Strategy based on Logical Relations
Our strategy follows the standard technique of proving type-safety
using logical relations. We define a logical relation Γ � t : T , such
that Γ ` t : T implies Γ � t : T implies type-safety.

The main logical relation Γ � t : T is based on a set of
mutually recursive logical relations that are step-indexed in order
to ensure their well-foundedness: Ek;Γ;sJT K defines the set of terms
that appear to have type T when taking at most k steps, and
Vk;Γ;sJT K defines the set of values that appear to have type T when
taking at most k steps. There are also two other logical relations,
one for completing the store to match the context, and one for
completing the context to match the store resulting from taking
some number of steps.

Γ � t : T is defined as t ∈ Ek;Γ;∅JT K, ∀k. t ∈ Ek;Γ;sJT K
roughly as follows: after reducing t a number of steps < k, if
the resulting term is irreducible, then it must be in Vj′;Γ′;s′JT K for
appropriate j′,Γ′, s′. By definition, Γ � t : T implies that t cannot
be stuck.

Then, to prove type-safety, all that needs to be proved is the
fundamental theorem – or completeness – of the logical relation:
Γ ` t : T to Γ � t : T . Type-safety is a straightforward corollary
of this theorem, since Γ � t : T implies by definition that t cannot
be stuck. The proof of the fundamental theorem is on induction on
the derivation of Γ ` t : T . The logical relation approach enables
us to have strong enough induction hypotheses to carry the proof
through, without requiring us to strictly relate intermediate terms
by types like preservation.

6. Discussion
6.1 Why No Inheritance?
In the calculus we made the deliberate choice not to model any form
of inheritance. This is, first and foremost, to keep the calculus sim-
ple. Secondly, there are many different approaches to inheritance
and mixin composition, so that it looks advantageous not to tie the
basic calculus to a specific one. Finally, it seems that the modeliza-
tion of inheritance lends itself to a different approach than the basic
calculus. For the latter, we need to prove type-safety of the calcu-
lus. One might try to do this also for a calculus with inheritance, but
our experience suggests that this complicates the proofs consider-
ably. An alternative approach that might work better is to model
inheritance as a form of code-reuse. Starting with an enriched type
system with inheritance, and a translation to the basic calculus, one
needs to show type-safety wrt the translation. This might be easier
than to prove type-safety wrt reduction.

6.2 Variants of the DOT Calculus
6.2.1 Why limit the calculus to wfe-types?
Currently, the proof of type-safety via logical relations fundamen-
tally relies on types having an expansion. However, this was not
our original motivation for limiting the calculus to wfe-types.

Originally, subtyping was not regular wrt wfe. Roughly, all
the wfe preconditions in subtyping were dropped. In this broader
calculus, subtyping transitivity doesn’t hold, because of the rule
(<:-RFN) which requires expansion of the left type.

The problem is deep, as attested by this elaborate counterexam-
ple that is not so easily patched, and directly leads to a counterex-
ample to preservation.

Consider an environment where u is bound to:

>{u⇒
Bad : ⊥..u.Bad
Good : >{z ⇒ L : ⊥..>} ..>{z ⇒ L : ⊥..>}
Lower : u.Bad ∧ u.Good ..u.Good

Upper : u.Good ..u.Bad ∨ u.Good

X : u.Lower ..u.Upper

}

Now, consider the types S, T , U defined in terms of u:

S = u.Bad ∧ u.Good

T = u.Lower

U = u.X {z ⇒ L : ⊥..>}

We have S <: T and T <: U , but we cannot derive S <: U
because S doesn’t expand.

Note that u is realizable, since each lower bound is a subtype of
its upper bound. So it is straightforward to turn this counterexample
to subtyping transitivity into a counterexample to preservation:

val u = new . . . ;

(app λx :>.x
(app λf :S → U.f

(app λf :S → T.f

(app λf :S → S.f

λx :S.x))))

The idea is to start with a function from S → S and cast
it successively to S → T then S → U . To type-check the
expression initially, we need to check S <: T and T <: U . After
some reduction steps, the first few casts vanish, and the reduced
expression casts directly from S → S to S → U , so we need to
check S <: U .

6.2.2 Why not include the lambda-calculus instead of
methods?

Originally, the DOT calculus included the lambda-calculus, and
explicit methods were not needed since they could be represented
by a value label with a function type. However, the expansion of
the function type was defined to be the empty set of declarations
(like for >), which caused a real breach of type-safety.

A concrete object could be a subtype of a function type without
a function ever being defined. Consider:

val u = new >{z ⇒ C : > → >..> → >}{} ;

val f = new u.C {} ;

. . .

Now, f was a subtype of > → >, but (app f (λx : >.x))
was stuck (and, rightfully, didn’t type-check). But we could use
narrowing to create a counterexample to type-safety: (app (λg :
> → >.(app g ()λx :>.x)) f).

Because of this complication, we decided to drop the lambda-
calculus from DOT, and instead introduce methods with one param-
eter. Like in Scala, functions are then just sugar for objects with a
special method.

An alternative design would have been to change the expansion
of the function type to have a declaration for a special label that

either prevents instantiation or requires an implementation for the
function.

6.2.3 Why not patch the DOT calculus for preservation to
hold?

We tried! However, the resulting calculi were not elegant, and
furthermore, we still found issues with preservation.

Here is a summary of one attempt, which is further detailed be-
low. Because many of the counterexamples to preservation are re-
lated to narrowing, we tried to make widening an explicit operation
and change rules with implicit relaxations (MSEL and NEW) to be
strict. From a typing perspective, the change was straightforward,
but reduction became more complicated and dependent on typing
because the type information in widenings needed to be propagated
correctly. We added path equality provisions in the subtyping rules,
in the same spirit as the Tribe calculus [4]. Unfortunately, these two
patches interacted badly, and we were left with a disturbing coun-
terexample to type-safety.

In any case, this attempt resulted in a patched calculus that was
not as elegant as the original one, in addition to being unsound.
We’re open to ideas!

In the DOT calculus as presented, the APP and NEW typing rules
have implicit relaxations. For instance, in APP, the argument type
may be a subtype of the declared parameter type. In order to deal
with all the preservation counterexamples due to narrowing, we
tried making widening an explicit operation and changing those
rules to be strict by replacing those relaxed subtyping judgments
with equality judgments. Two types S and T are judged to be equal
if S <: T and T <: S.

Syntactically, we add a widening term: t : T , and extend values
with a case for widening: v : T . The typing rule for widening, WID,
is then the only one admitting a subtyping relaxation: Γ ` (t : T) :
T if Γ ` t : T ′ and Γ ` T ′ <: T .

The reduction rules become more complicated because the type
information in the widening needed to be propagated correctly. We
will motivate this informally with examples.

val v = new >{z ⇒ La : ⊥..>, l : >{z ⇒ La : ⊥..>}}
{l = v : >{z ⇒ La : ⊥..>}} ;

(app (λx :>.x) (v : >{z ⇒ l : >}).l)
The term (v : >{z ⇒ l : >}).l first widens v so that the label

has type > instead of >{z ⇒ La : ⊥..>}.
How should reduction proceed? We cannot just strip the widen-

ing and then reduce, because then the strict function application
would not accept the reduced term. In short, we need to do some
type manipulations during reduction, by using the membership and
expansion judgments. This is a bit unfortunate, because it means
that reduction now needs to know about typing.

Next, we look at path equality provisions. These are even more
essential now in the presence of explicit widening. Consider this
example:

val b = new >{z ⇒ X : >..>, l : z.X} {l = b : b.X} ;

val a = new >{z ⇒ i : >{z ⇒ X : ⊥..>, l : z.X}}
{i = b : >{z ⇒ X : ⊥..>, l : z.X}} ;

a.i.l : >
a.i.l reduces to b : >{z ⇒ X : ⊥..>, l : z.X}. Now, how can

we continue? b.l reduces to b : b.X which has bounds >..>,
but (b : >{z ⇒ X : ⊥..T op, l : z.X}).l has bounds ⊥..>, so
without some provision for path equality, we cannot widen b.l to
(b : >{z ⇒ X : ⊥..>, l : z.X}).l.

We add the path equality provisions to the subtyping rules.

Let’s first ignore the extension of the calculus requiring explicit
widenings. Then, we need to add one intuitive rule to the subtyping
judgment: <:-PATH. If p (path-)reduces to q, and T <: q.L, then
T <: p.L. Path reduction is a simplified form of reduction involv-
ing only paths. However, this means that the subtyping judgment,
and indirectly, all the typing-related judgments, now need to carry
the store in addition to the context so that path reductions can be
calculated.

Now, let’s see how path equality provisions and explicit widen-
ing can fit together.

First, path reduction is not isomorphic to reduction anymore,
since we want to actually skip over widenings, as motivated by the
example above.

In addition, we now also need a dual rule, PATH-<:: if p (path-
dually)-reduces to q, and q.L <: T then p.L <: T . This is because
when we have a widening on an object on which a method is called,
we have to upcast the argument to the parameter type expected by
the original method. Here is a motivating example.

Let Tc be a shorthand for the type:

>{z ⇒
A : >{z ⇒ m : ⊥ → >} ..>
B : >..>
m : z.A→ >
}

Let T be a shorthand for the type:

>{z ⇒
A : >{z ⇒ m : ⊥ → >} ..>
B : >..>
m : z.A {z ⇒ B : >..>} → >
}

Now, consider the term:

val v = new Tc {m(x) = x : >} ;

(v : T).m(v : ((v : T).A {z ⇒ B : >..>}))

When we evaluate the method invocation, we need to cast v :
((v : T).A {z ⇒ B : >..>}) to v.A, and for this, we need the
newly introduced PATH-<: rule.

Note that the path dual reduction can be a bit stricter with casts
than the path reduction. In any case, introducing this PATH-<: rule
into the subtyping judgment is problematic: it is now possible to say
p.L <: T , even though T can do more than what p.L is defined to
do. Here is an example, where we construct an object, with T = ⊥.
(The convolution in the example is due to the requirement that
concrete types be only mentioned once.)

val a = new >{z ⇒ C : ⊥..>{z ⇒ D : ⊥..z.X,X : ⊥..>}} ;

val b = new a.C {z ⇒ X : ⊥..⊥} ;

val c = new a.C;

val d = new (b : a.C).D;

(app (λx :⊥.x.foo) d)

Notice that d has type ⊥ if you ignore the cast on b. This
example doesn’t type-check initially because PATH-<: only applies
when objects are in the store, so the application is not well-typed.
But if we start preservation in a store which has a, b, c and d
then the application type-checks, because, through PATH-<:, we
can find that the type of d is a subtype of ⊥. Now, of course, when
we get to d.foo, reduction fails.

So the preservation theorem as defined on a small-step seman-
tics (where we start with an arbitrary well-formed environment)
fails when we add the PATH-<: rule.

6.3 Related Work
In addition to Scala’s previous models [5, 14], several calculi
present some form of path-dependent types.

The vc calculus [7] models virtual classes with path-dependent
types. vc restricts paths to start with “this”, though it provides a
way (“out”) to refer to the enclosing object.

The Tribe calculus [4] builds an ownership types system [3] on
top of a core calculus which models virtual classes. The soundness
proof for the core calculus seems to be tied to the ownership types
system.

Some ML-style module systems [8, 9] have a form of stratified
path-dependent types. Because of the stratification, recursion is not
allowed. In MixML [6] like in Scala, this restriction is lifted.

7. Conclusion
We have presented DOT, a calculus aimed as a new foundation of
Scala and languages like it. DOT features path-dependent types,
refinement types, and abstract type members.

Proving the DOT calculus type-safe has been an interesting
adventure. We have shown that DOT does not satisfy preservation
(also known as subject-reduction), because a well-typed term can
step to an intermediate term that is not well-typed. In any case, the
standard theorems of preservation and progress are just one way
to prove type safety, which states that a well-typed term cannot
be stuck – a weaker statement that does not require type-checking
intermediate steps. We are developing a proof of type-safety using
logical relations.

Acknowledgments
We thank Amal Ahmed for many discussions and insights about
applying logical relations to DOT. We thank Donna Malayeri and
Geoffrey Washburn for preliminary work on DOT. We thank Tiark
Rompf and Viktor Kuncak for helpful comments.

References
[1] A. J. Ahmed. Semantics of types for mutable state. PhD thesis,

Princeton University, 2004.
[2] A. J. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, pages 69–83, 2006.
[3] N. R. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In

OOPSLA, pages 618–633, 2010.
[4] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: a simple

virtual class calculus. In AOSD, pages 121–134, 2007.
[5] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core calculus

for Scala type checking. In MFCS, pages 1–23, 2006.
[6] D. Dreyer and A. Rossberg. Mixin’ up the ML module system. In

ICFP, pages 307–320, 2008.
[7] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class calculus. In

POPL, pages 270–282, 2006.
[8] R. Harper and M. Lillibridge. A type-theoretic approach to higher-

order modules with sharing. In POPL, pages 123–137, 1994.
[9] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting.

In ESOP, pages 6–20, 2002.
[10] C. Hritcu and J. Schwinghammer. A step-indexed semantics of imper-

ative objects. Logical Methods in Computer Science, 5(4), 2009.
[11] A. Igarashi and B. C. Pierce. Foundations for virtual types. Inf.

Comput., 175(1):34–49, 2002.
[12] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,

M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B.

Findler. Run your research: on the effectiveness of lightweight mech-
anization. In POPL, pages 285–296, 2012.

[13] The Coq development team. The Coq proof assistant reference man-
ual. LogiCal Project, 2010. URL http://coq.inria.fr. Version
8.3.

[14] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory
of objects with dependent types. In ECOOP, pages 201–224, 2003.

[15] B. C. Pierce. Types and programming languages. MIT Press, 2002.
ISBN 978-0-262-16209-8.

[16] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Inf. Comput., 115(1):38–94, 1994.

http://coq.inria.fr

	Introduction
	The DOT Calculus
	Notation
	Syntax
	Reduction rules
	Type assignment rules
	Membership
	Expansion
	Subtyping
	Declaration Subsumption
	Well-formedness

	Examples
	Greatest Lower Bounds and Least Upper Bounds
	Expansion
	Functions as Sugar
	Class Hierarchies
	Abstract Type Members
	Polymorphic Operators as Sugar
	F-bounded Quantification

	Counterexamples to Preservation
	Term-Mem Restriction
	Expansion Lost
	Well-Formedness Lost
	Path Equality

	Type-Safety via Logical Relations
	Type-Safety
	Strategy based on Logical Relations

	Discussion
	Why No Inheritance?
	Variants of the DOT Calculus
	Why limit the calculus to wfe-types?
	Why not include the lambda-calculus instead of methods?
	Why not patch the DOT calculus for preservation to hold?

	Related Work

	Conclusion

