
Dependent Object Types
EDIC Candidacy Exam

Nada Amin

LAMP, I&C, EPFL

September 12, 2012

1



DOT: Dependent Object Types

The DOT calculus proposes a new type-theoretic foundation for Scala and
languages like it. It models

I path-dependent types

I abstract type members

I mixture of nominal and structural typing via refinement types

It does not model

I inheritance and mixin composition

I what’s currently in Scala

2



Path-dependent types

path-dependent type limited form of dependent type, in which a type
depends on a path

dependent type a type which depends on a term

path a chain of immutable fields or stable values

abstract class AbsCell {

type T

val init: T

private var value: T = init

def get = value

def set(x: T) { value = x }

}

object Library {

def update(c: AbsCell)(oldval: c.T, newval: c.T) =

if (oldval == c.get) { c.set(newval); true }

else false

}

val c = new AbsCell {

type T = Int

val init = 1

}

c.set(2)

val a: AbsCell = c

// a.T is opaque

a.set(a.init)

3



Selected Papers

1. A Type-Theoretic Approach to Higher-Order Modules with Sharing
by Robert Harper and Mark Lillibridge

POPL ’94

I calculus for modules in the ML tradition
I modules are first-class values

2. Tribe: a simple virtual class calculus
by Dave Clarke, Sophia Drossopoulou, James Noble and Tobias Wrigstad

AOSD ’07

I calculus for virtual classes
I paths are types, and types are “generalized” paths

3. A Nominal Theory of Objects with Dependent Types
by Martin Odersky, Vincent Cremet, Christine Röckl and Matthias Zenger

ECOOP ’03

I calculus unifying advanced object-oriented and module systems
I foundation for Scala

4



SML modules: Structures and Signatures

structure A = struct

type T = int

val v = 0

val f = fn x => x + 1

end

signature X = sig

type T

val v: T

val f: T -> T

end

structure B :> X = A

(* A.T transparent *)

val vA: int = A.v

(* B.T opaque *)

val vB: B.T = B.v

5



SML modules: Functors and Type Sharing

functor mkDoubler(arg: X) :> X where type T = arg.T = struct

type T = arg.T

val v = arg.v

val f = arg.f o arg.f

end

(* A2.T = A.T = int *)

structure A2 = mkDoubler(A);

val a: int = A2.f(A.v);

(* B2.T = B.T *)

structure B2 = mkDoubler(B);

val b: B.T = B2.f(B.v);

6



SML modules: Recap

structure a module
a collection of types, values and (sub)structures packaged as
a program unit.

signature an interface; the type of a structure
description of the types, values and (sub)structures of a
structure given by their kinds, types and interfaces.

functor a function mapping structures to structures

type-sharing enables stating that types specified in separate modules are
actually equal

7



Limitations of SML modules

I modules are not first-class; e.g. not possible to return a structure
from an if expression

I type sharing is restricted to equality between type names, not general
type expressions (limitation of SML ’90; lifted in SML ’97)

signature X’ = sig

type T

type T2T = T -> T

val v: T

val f: T2T

end

I in effect, transparency / opaqueness of a signature cannot be fully
fined-tuned

8



“Translucent” ML: Calculus

grounded in type theory; based on Girard’s Fω, adding:

I translucent sums to model modules

I dependent functions to model functors

I a notion of subtyping to model module implementation-interface
matching

9



“Translucent” ML: Translucent Sums

I translucent sums are values representing modules

I translucent sum: sequence of bindings

I translucent sum type: sequence of declarations

I unlike traditional records, later fields can depend on earlier ones

I fields can be types or terms

I any type can be partially or fully determined by a type expression

I dependent typing since translucent sums are terms that may contain
type components

10



“Translucent” ML: Example

structure XInt = struct

type T = int

val v = 3

val f = negate

end

structure XBool = struct

type T = bool

val v = true

val f = not

end

structure X =

if flip() then XInt else XBool

signature XType = sig

type T

val v: T

val f: T -> T

end

11



“Translucent” ML: Path-Dependent Types

I Scala’s abstract types ≈ ML’s abstract types of signatures;
limitations:

I recursive references
I bounded quantifications

I translucent sum can be given a more precise type by referring to the
name of its type member with a path selection; essential for

I breaking the dependencies between (sub)fields
I propagating typing information

12



Tribe: Example (Virtual Classes)
class Graph {

class Node {

Edge connect(Node other) {

return new Edge(this, other);

}

}

class Edge {

Node from, to;

Edge(Node f, Node t) { from = f; to = t; }

}

}

class ColouredGraph extends Graph { // subclassing

class Node { // further binding

Colour nodeColour;

}

}
13



Tribe: Example (Object Family and Family Polymorphism)

final ColouredGraph cg1, cg2;

cg1.Node cn1, cn3;

cg2.Node cn2;

cn1.connect(cn3); // Type Correct

cn2.connect(cn3); // Type Error!!!

class Library {

int distance(Graph.Node n1, n1.out.Node n2) { ... }

int distance2(Graph g, g.Node n1, g.Node n2) { ... }

e.out.Edge copyEdge(Graph.Edge e) {

e.out.Node from = e.from;

e.out.Node to = e.to;

new e.out.Edge(from, to);

}

}

14



Tribe Types
I in Tribe, types are a form of generalized paths: a final variable, this

or a class name then followed by a possibly empty sequence of field,
out or class selections

I kitt.Passenger.name: the name of one of Kitt’s passengers
I kitt.driver <: Car.driver <: Car.Passenger <:

Car.Traveller <: Vehicle.Traveller

I kitt.driver 6<: karr.driver and kitt.Passenger 6<:
karr.Passenger

class Vehicle { class Traveller { ... } }

class Car extends Vehicle {

class Passenger extends Traveller {

class String { ... }

final String name;

}

final Passenger driver;

}

final Car kitt;

final Car karr;

15



Tribe Calculus: Recap

I families of classes inherited together

I classes are lexically nested inside other classes: when a class is
inherited, its nested inner classes are inherited along with their
methods and fields

I two form of inheritance: subclassing and further binding

I family polymorphism: code written for one family also works for
extensions of that family

I in Tribe:
I path types can depend simultaneously on both classes and objects
I paths can use an out field to move from an object to the object which

surrounds it; enables ubiquitous access to an object’s family without
the need to drag around family arguments

16



Tribe: Discussion

I no virtual classes in Scala; its virtual types can emulate some (but not
all) of the benefits

I because of out field, Tribe has limited cross-family inheritance
class A {

class D { ... }

class B {

class C {

this.out.out.D foo;

}

}

}

class E {

class F extends A.B.C { ... }

}

I soundness? substitution lemma seems wrong when null is substituted
for a variable in an expression whose type contains that variable

I aims to have decidable type-checking, but still not proved so

17



νObj

A calculus for classes and objects which can have types as members. It
can encode:

I Java’s inner classes

I virtual types

I family polymorphism
I essential aspects of ML-like module systems, including

I sharing constraints
I higher-order functors

A basis for unifying concepts in advanced object and module systems.
Connections:

I Object = Module

I Object type = Signature

I Class = Method = Functor

18



νObj : Syntax

I terms in νObj denote objects or classes; consist of:

variables x
selections t.l

object creations νx← t ; u
class templates [x : S | d ]

mixin compositions t1 &S t2
(if omitted, S = S1 & (S2 & {x | D1 ] D2}))

I a value is a variable or class template

I a path is a variable followed by a possibly empty sequence of selections

I types in νObj consist of:

singleton types p.type
type selections T •L

record types {x | D}
class types [x : S | D]

compound types T & U

19



νObj : Details

I type bindings

type aliases =
new types ≺

abstract types <:
I class template [x : S | d ] related to translucent sum; some differences:

I needs to be instantiated
I “contractive” restriction

I class type [x : S | D]
I contains as values classes that instantiate to objects of (sub)type
{x | D}

I explicit self type S may be different from {x | D}
I declarations in S which are not in D play the role of abstract members,

defined by mixin composition during instantiation

20



νObj : Example (encoding of monomorphic functions)

I Encoding for a λ-abstraction λ(x : T ) t:

[ x : {arg : T}| fun = [ r e s = t ′ ] ]

(t ′ = t with x.arg substituted for x)

I Encoding for an application g(e):

ν gapp ← g & [ arg = e ] ;
ν geval ← gapp . fun ;
geval . r e s

21



νObj : Discussion

I conflate the concepts of compound types (which inherit the members
of several parent types) and mixin composition (which build classes
from other classes and traits)

I mixin composition is not commutative, unlike classical intersection
types

I in Scala, least upper bounds and greatest lower bounds do not always
exist, e.g:

trait A { type T <: A }

trait B { type T <: B }

// glb is an infinite sequence

A with B { type T <: A with B { type T <: A with B {

type T <: ...

}}}

22



DOT: Dependent Object Types

I core calculus for modeling path-dependent types
I we’ve seen path-dependent types arise in three settings:

I ML-like module systems
I virtual classes
I νObj / Scala

I DOT aims to bring more uniformity and simplicity to Scala
I replace Scala’s compound types with classical intersection types
I complement calculus with classical union types
I intersections and unions form a lattice wrt subtyping

23



DOT: Status

I basic calculus
I type safety

I showed by counterexamples that subject reduction doesn’t hold
I sketch of plausible proof via logical relations

I submission about this work-in-progress accepted to Foundations of
Object-Oriented Languages (FOOL ’12)

I future work
I confirm proof of type safety and/or refine calculus
I investigate translations of Scala features into DOT
I implement a compiler front-end which uses DOT for typechecking

24



DOT: Syntax

I terms

variables x , y , z
selections t.l

method invocations t.m(t)
object creations val y = new c t ′

c is a constructor Tc

{
l = v m(x) = t

}
I types

type selections p.L
refinement types T

{
z ⇒ D

}
type intersections T ∧ T ′

type unions T ∨ T ′

a top type >
a bottom type ⊥

25



DOT: Preservation Counterex. (Well-Formedness Lost)

// y .A is not well-formed after v is substituted for x .

val v = new >{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>,B : z .A..z .A}} {}
(app λx :>{z ⇒ L : ⊥..>{z ⇒ A : ⊥..>,B : ⊥..>}} .

val z = new >{z ⇒ l : ⊥ → >}{
l = λy :x .L ∧ >{z ⇒ A : z .B..z .B,B : ⊥..>}.

λa :y .A.(app (λx :>.x) a)}
(app (λx :>.x) z)

v)

26



System Fω: Higher-order polymorphic lambda-calculus

terms t typed lambda-calculus terms x – λx : T .t – t t
type abstraction λX :: K .t
type application t[T ]

types T type variable X
type of functions T → T

universal type ∀X :: K .T
operator abstraction λX :: K .T
operator application T T

kinds K kind of proper types ∗
kind of operators K ⇒ K

27



System F<:: Bounded Quantification

terms t typed lambda-calculus terms x – λx : T .t – t t
type abstraction λX <: T .t
type application t[T ]

types T type variable X
maximum type >

type of functions T → T
universal type ∀X <: T .T

28


	Introduction
	Survey of Selected Papers
	``Translucent'' ML
	Tribe Calculus
	Obj

	Proposal
	Backup Slides

