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Abstract—Our aim is to propose a new type-theoretic founda-
tion of Scala based on a core calculus for path-dependent types.
Towards this end, we review three papers presenting calculi in
which path-dependent types are essential: a calculus for first-
class translucent ML-like modules, the Tribe calculus for virtual
classes, and the νObj calculus for reasoning about classes and
objects with type members.

Index Terms—calculus, objects, dependent types, scala

I. INTRODUCTION

THE aim of this research is to propose a new sound
and tractable type-theoretic foundation of Scala [1] and

languages like it: the Dependent Object Types calculus (DOT).
The properties we are interested in modeling are Scala’s path-
dependent types and abstract type members, as well as its
mixture of nominal and structural typing through the use of re-
finement types. Compared to previous approaches [2], [3], we
make no attempt to model inheritance or mixin composition.
Furthermore, the calculus is more normative than descriptive,
in that it does not precisely describe what’s currently in Scala.

Path-dependent types are a key concept in the DOT calculus,
and a unifying concept of the three papers we choose to
study. A dependent type is a type which depends on a term.
A path-dependent type is a limited form of dependent type,
in which a type depends on a path: a chain of immutable
fields or stable values. Path-dependent types arise when terms,
usually objects, can have types as members. Abstract type
members, together with explicit selftypes and modular mixin
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composition, have been identified as key abstractions for the
construction of reusable components [4].

Scala Example: In the code below, type T is an abstract type
member of AbsCell. In a library method taking an abstract cell
c, the expression c.set(c.init) is well-typed because c.init

has type c.T and c.set has the type of a function that expects a
parameter of type c.T. Note that c.T is a path-dependent type.

abstract class AbsCell {
type T
val init: T
private var value: T = init
def get = value
def set(x: T) { value = x }

}
object Library {
def reset(c: AbsCell) { c.set(c.init) }
def update(c: AbsCell)(oldval: c.T, newval: c.T) =
if (oldval == c.get) { c.set(newval); true }
else false

}

In section II, we survey selected previous work related
to path-dependent types. Whenever possible, we contrast the
formalisms with concrete examples in Scala. In section III, we
discuss in more details our proposal for a new type-theoretic
foundation of Scala based on path-dependent types.

II. SURVEY OF THE SELECTED PAPERS

We present three papers [5], [6], [2], each of which models
a calculus with path-dependent types.

• The first paper, A Type-Theoretic Approach to Higher-
Order Modules with Sharing by Robert Harper and Mark
Lillibridge [5], presents a calculus for modules in the ML
tradition. Path-dependent types arise because modules,
which may contain type components, are first-class values
in their calculus.

• The second paper, Tribe: a simple virtual class calculus
by Dave Clarke, Sophia Drossopoulou, James Noble and
Tobias Wrigstad [6], presents a core calculus for virtual
classes. Path-dependent types arise because, in Tribe,
paths are types, and, almost vice versa: each type is a
generalized form of path.

• The third paper, A Nominal Theory of Objects with
Dependent Types by Martin Odersky, Vincent Cremet,
Christine Röckl and Matthias Zenger [2], presents a
calculus which unifies concepts from advanced object-
oriented systems and module systems and, with [3],
serves as a type-theoretic foundation for many features of
Scala’s type system. Path-dependent types arise because
any path p has a singleton type p.type, from which type
members can be selected.
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A. A Type-Theoretic Approach to Higher-Order Modules with
Sharing

In [5], Harper and Lillibridge present a calculus for first-
class modules, with complete control over the propagation of
information between compile-time program units.

Their module system is inspired by Standard ML (SML).
The SML module system has three constructs: signatures,
structures, and functors. A structure is a module: it defines
a collection of types, values and (sub)structures packaged as
a program unit. A signature is an interface, the “type” of
a structure: it describes the types, values and (sub)structures
of a structure by giving their kinds, types and interfaces. A
functor is a function mapping structures to structures. SML
has a notion of “type sharing” which allows stating that types
specified in separate modules are actually equal.

Their module system addresses some shortcomings of the
SML module system. Though the SML module system is
higher-order, because SML provides functors and substruc-
tures, it still treats modules as second-class. For example,
it isn’t possible to return a structure from an if expression.
In fact, allowing this might require obscuring the visibility
of the resulting structure to ensure soundness, which we
illustrate with an example below. Another limitation of the
SML module system is that “type sharing” is restricted to
equality between type names, not general type expressions.
In effect, this means that the transparency / opaqueness of a
signature cannot be fully fine-tuned. Their proposal introduces
translucent signatures, which allows any type to be partially
or fully determined by a type expression.

Their calculus is grounded in type theory. It is based on
Girard’s Fω [7]. They add translucent sums to model modules,
dependent functions to model functors, a notion of subtyp-
ing to model module implementation-interface matching. The
crucial addition and novelty is that of a translucent sum. A
translucent sum has the form of a possibly empty sequence
of bindings. Similarly, a translucent sum type has the form
of a possibly empty sequence of declarations. They differ
from traditional records, because they can contain types and
because later fields can depend on earlier ones. Translucent
sums are ordinary values. Since they model modules, it means
that modules are first-class values, and their module system is
higher-order “for free”.

Scala’s abstract types have close resemblances to abstract
types of signatures in these ML-like module systems. In
particular, in their calculus, there’s a form of dependent type,
since translucent sums are terms that may contain types. More
concretely, their so-called VALUE rules enable a translucent
sum to be given a more precise type by referring to the names
of its type members with a path selection – this ability based
on path-dependent types is not only essential for breaking
the dependencies between (sub)fields but also critical for
the propagation of typing information. Compared to Scala,
these path-dependent types are more limited because recursive
references and bounded quantifications are not allowed.

In terms of theoretical results, Lillibridge shows in his thesis
that a simplified kernel system based on this calculus is sound,
even in the presence of side effects [8]. In the appendix of the

paper, they show that subtyping, and hence type checking, is
undecidable.

ML-like Example and Scala Encoding: Consider this exam-
ple, in a ML-like language implementing the calculus of the
paper. Since modules are first-class, we can flip a coin and
return a module depending on the outcome:
structure XInt = struct
type T = int
val v = 3
val f = negate

end
structure XBool = struct
type T = bool
val v = true
val f = not

end
structure X =
if flip() then XInt else XBool

But now, what should be the static type or signature of
structure X? In ML, in order to make the if expression
typecheck, the two branches must have equal types. In the
calculus, the subsumption rule is used to coerce both types to
their least upper bound, represented by the signature:
signature XType = sig
type T
val v = T
val f = T -> T

end

It is straightforward to encode this example in Scala, with
the correspondence Object = Module, and Object Type =
Signature. Indeed, the νObj calculus, which we study in
section II-C embraces this correspondence, and further claims:
Class = Method = Functor, as we will see. Note that type
members, and hence path-dependent types, are crucial for this
correspondence.
object Test extends App {
object coin {
val r = new util.Random()
def flip() = r.nextBoolean()

}
type XType = {
type T
val v: T
val f: T ⇒ T

}
val xInt = new {
type T = Int
val v = 3
val f = - (_:T)

}
val xBool = new {
type T = Boolean
val v = true
val f = ! (_:T)

}
val x: XType = if (coin.flip()) xInt else xBool

println(x.f(x.v))
}

B. Tribe: a simple virtual class calculus

In [6], Clarke et al. present a calculus for virtual classes.
Virtual classes allow families of classes to be inherited, rather
than just single classes. Classes are lexically nested inside
other classes. When a class is inherited, its nested inner classes
are inherited along with their methods and fields. Further
binding enables the nested classes to be further extended. Path-
dependent types arise naturally to distinguish objects coming
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from different families. Yet, thanks to family polymorphism,
code written for one family also works for extensions of that
family. In Tribe, path types can depend simultaneously on both
classes and objects. Additionally, paths can use an out field to
move from an object to the object which surrounds it. This out

feature enables ubiquitous access to an object’s family without
the need to drag around family arguments.

In Tribe, types are a form of generalized paths: a final
variable, this or a class name then followed by a possibly
empty sequence of field, out or class selections. Given the code
below, we can read the type kitt.Passenger.name as the name
of one of Kitt’s passengers (including the driver). Subtyping
is natural: kitt.driver <: Car.driver <: Car.Passenger <: Car.

Traveller <: Vehicle.Traveller. Crucially, kitt.driver is not a
subtype of karr.driver and similarly for kitt.Passenger and
karr.Passenger.
class Vehicle { class Traveller { ... } }
class Car extends Vehicle {
class Passenger extends Traveller {
class String { ... }
final String name;

}
final Passenger driver;

}
final Car kitt;
final Car karr;

Though Scala doesn’t have virtual classes, its abstract types
enable it to emulate some (but not all) of the benefits of virtual
classes as presented in the Tribe calculus. On the other hand,
Tribe doesn’t have virtual types. In a follow-up paper [9],
an improved variant of Tribe with simpler types, cross-family
inheritance and generics is presented and a formalization of
ownership types built upon it.

In terms of theoretical results, there’s a sketch of sound-
ness in the paper, but it’s unclear whether it is correct. In
particular, the substitution lemma does not seem valid when
null is the value to be substituted and the expression has
a type which contains the variable to be substituted. In the
follow-up paper [9], the soundness proof sketch seems more
plausible but then is tied to the ownership system formalism.
Decidability of subtyping, and hence typechecking, has not
yet been established.

Tribe Example and Scala Encoding: Let’s now re-use an
example from the paper, and discuss how we would emulate
it in Scala.
class Graph {
class Node {
Edge connect(Node other) {
return new Edge(this, other);

}
}
class Edge {
Node from, to;
Edge(Node f, Node t) { from = f; to = t; }

}
}

class ColouredGraph extends Graph { // subclassing
class Node { // further binding
Colour nodeColour;

}
}

class Library {
int distance(Graph.Node n1, n1.out.Node n2) { ... }

e.out.Edge copyEdge(Graph.Edge e) {

e.out.Node from = e.from;
e.out.Node to = e.to;
new e.out.Edge(from, to);

}
}

The “tests” are:
final ColouredGraph cg1, cg2;
cg1.Node cn1, cn3;
cg2.Node cn2;
cn1.connect(cn3); // Type Correct
cn2.connect(cn3); // Type Error!!!

Now, we can emulate this Tribe example in Scala at the
expense of some syntactic overhead, since further binding and
out selection are not native. We use virtual types to ensure
that the inner classes are indeed “virtual”, i.e. dynamically
instead of statically dispatched. In order to conform to the
“virtual class” pattern, the leaf classes Graph and ColouredGraph

are no longer in a subclassing / further-binding with one
another, as this would only bring confusion when ascribing a
coloured graph to a graph, since the constructors are statically
dispatched. Emulating out faithfully involves a bit of hackery
in making Scala recognize that, for example, e.from.type is a
subtype of e.out.Node. As noted in the Tribe paper, using out

in library code obscures the symmetry between the parameters
(for example, in the distance method below) but allows the
family object to be recovered without being explicitly passed
around (contrast with the method distance2).
trait GraphBase { graph ⇒
type Node<: NodeBase
type Edge<: EdgeBase
def newNode(): Node
def newEdge(from: Node, to: Node): Edge

trait WithOut {
val out: graph.type = graph

}
trait NodeBase extends WithOut { this: Node ⇒
def connect(other: out.Node): out.Edge =
newEdge(this, other)

}
trait EdgeBase extends WithOut { this: Edge ⇒
val from: out.Node
val to: out.Node

}
}

class Graph extends GraphBase {
class Node extends NodeBase
class Edge(val from: Node, val to: Node) extends EdgeBase
def newNode() = new Node
def newEdge(from: Node, to: Node) = new Edge(from, to)

}

class ColouredGraph extends GraphBase {
class Node(val colour: String) extends NodeBase
class Edge(val from: Node, val to: Node) extends EdgeBase
def newNode() = new Node("blue")
def newEdge(from: Node, to: Node) = new Edge(from, to)

}

object Library {
def distance(n1: GraphBase#Node)(n2: n1.out.Node): Int = {
val e: n1.out.Edge = n1.connect(n2)
0 // ...

}
def copyEdge(e: GraphBase#Edge): e.out.Edge =
e.out.newEdge(e.from, e.to)

def distance2(g: GraphBase)(n1: g.Node, n2: g.Node): Int = {
val e: g.Edge = n1.connect(n2)
0 // ...

}
def copyEdge2(g: GraphBase)(e: g.Edge): g.Edge =
g.newEdge(e.from, e.to)

}
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object Test extends App {
val cg1, cg2 = new ColouredGraph()
val cn1 = new cg1.Node("blue")
val cn2 = new cg2.Node("green")
val cn3 = new cg1.Node("red")
val e = cn1.connect(cn3)
// this is a type mismatch
// cn2.connect(cn3)

val d1 = Library.distance(cn1)(cn3)
val d2 = Library.distance2(cg1)(cn1, cn3)
val e1 = Library.copyEdge(e)
val e2 = Library.copyEdge2(cg1)(e)
// these are all type mismatches
// Library.distance(cn1)(cn2)
// Library.distance2(cg2)(cn1, cn3)
// Library.copyEdge2(cg2)(e)

}

C. A Nominal Theory of Objects with Dependent Types

In [2], Odersky et al. presents νObj, a calculus for classes
and objects which can have types as members. It proposes
three kinds of type members: aliases, abstract types, and new
types. The calculus can encode Java’s inner classes, virtual
types, family polymorphism, essential aspects of the ML-like
module systems including sharing constraints and higher-order
functors, and System F<: [7]. The calculus can be used as a
basis for unifying concepts that so far existed in parallel in
advanced object systems and module systems. νObj makes
the following connections: Object = Module, Object type =
Signature, Class = Method = Functor.

The terms in νObj denote objects or classes. They consist
of variables x denoting objects, selections t.l, object creations
νx← t ; u defining an object x of class t whose scope is the
term u, class templates [x : S| d], and mixin compositions
t &S u denoting a class of self type S combined from two
classes t and u. A value is a variable or a class template. A
path is a variable followed by a possibly empty sequence of
selections.

The types in νObj consist of singleton types p.type, type
selections T•L, record types {x| D}, compound types T & U ,
and class types [x : S| D].

A class template [x : S| d] is closely related to a translucent
sum of section II-A, except that it needs to be instantiated
into an object while a translucent sum is a module. Like in a
translucent sum, d binds term labels to values and type labels
to types. The x of type S stands for the self, i.e. the object
being constructed from the template. Its scope is the bindings
d. Since the self is explicitly typed, the bindings in class
templates can “contractively” refer to each other (and even to
themselves) via x, while recall that, in translucent sums, only
later fields can refer to earlier ones but the references don’t
have any “contractive” restrictions. Roughly, “contractiveness”
in νObj guarantees that a field cannot be referenced before it
is initialized.

Contrasting concrete type bindings d used in class template
terms with type declarations D used in record and class types,
the possible type binders in type declarations are type aliases
=, new types ≺ and abstract types <:. Only the first two are
also concrete type binders available in type bindings of class
templates.

A class type [x : S| D] contains as values classes that
instantiate to objects of (sub)type {x| D}. The explicit self
type S may be different from {x| D}. Declarations in S which
are not in D play the role of abstract members – they must
be defined by mixin composition in order for the class to be
instantiated.

Mixin composition is not commutative. When expanding a
type to a record type, a compound type R1 & R2 expands to
a record type containing the concatenation of the declarations
in R1 and R2, but if some label is defined in both R1 and R2,
the definition in R2 overrides (and so must be more specific
than) the definition in R1. Though this break of commutativity
is justified from an implementation standpoint, it is awkward
from a typing standpoint: in particular, least upper bounds and
greatest lower bounds do not always exist in Scala.

In terms of theoretical results, the paper confirms the type
soundness of the calculus and the undecidability of its type
checking by reduction to F<:.
νObj Example: We show how to encode monomorphic

functions into the calculus. The paper goes further and gener-
alizes the encoding to system F<:.

A λ-abstraction λ(x : T ) t is represented as a class with an
abstract member arg for the function argument:
[x: {arg: T}| fun = [res = t′]]

t′ corresponds to term t in which all occurrences of x are
replaced by x.arg. We cannot directly access arg on the right-
hand side of fun: this wouldn’t be “contractive”, because arg

might not be initialized before fun. Hence, we pack t′ in
another class to ensure contractiveness. Now, an application
g(e) gets decomposed into three subsequent steps:
ν gapp ←g & [arg = e];
ν geval ←gapp.fun;
geval.res

First we instantiate function g with a concrete argument
yielding a thunk gapp. Then we evaluate this thunk by creating
an instance geval of it. Finally we extract the result by querying
field res of geval.

This example illustrates the correspondence between
classes, methods and functors claimed by νObj.

III. RESEARCH PROPOSAL

In our own research, we have been exploring a new core
calculus for path-dependent types, the Dependent Object Types
(DOT) calculus, which could serve as a new type-theoretic
foundation for Scala and languages like it. The three cal-
culi presented demonstrate that path-dependent types arise
in diverse settings, and thus, it is valuable to identify a
core calculus which captures their essence. In DOT, we are
not concerned with modeling orthogonal concepts such as
inheritance and mixin composition.

DOT aims to bring more uniformity and simplicity to Scala.
Scala, and νObj which models it, conflate the concepts of
compound types (which inherit the members of several parent
types) and mixin composition (which build classes from other
classes and traits). At first glance, this offers an economy of
concepts. However, it is problematic because mixin composi-
tion and intersection types have quite different properties. In
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particular, we have seen in section II-C that mixin composition
is not commutative, unlike classical intersection types.

In DOT, we replace Scala’s compound types by classical in-
tersection types, which are commutative. We also complement
this by classical union types. Intersections and unions form
a lattice wrt subtyping. This addresses another problematic
feature of Scala: In Scala’s current type system, least upper
bounds and greatest lower bounds do not always exist. Here
is an example: Given two traits

trait A { type T<: A }
trait B { type T<: B }

The greatest lower bound of A and B is approximated by the
infinite sequence

A with B { type T<: A with B { type T<: A with B {
type T < ...

}}}

The limit of this sequence does not exist as a type in Scala.
This is problematic because glbs and lubs play a central role in
Scala’s type inference. The absence of universal glbs and lubs
makes type inference more brittle and more unpredictable.

Our immediate goal is to prove type soundness of the
DOT calculus. We first tried to prove the calculus type-safe
using the standard theorems of preservation and progress [10],
[7]. Unfortunately, for the DOT calculus and any variants
that we devised, preservation doesn’t hold. Indeed, we found
many counterexamples to preservation due to narrowing, i.e.
a type becoming more precise after substitution. However, the
standard theorems of preservation and progress are just one
way to prove type soundness. We are exploring a promising
avenue to prove type safety using the powerful method of
step-indexed logical relations [11], [12], [13]. In the process
of proving the calculus sound, we are also refining it.

In future work, we plan to investigate translations of Scala
features into the core DOT calculus, and implement an exper-
imental compiler front-end which uses the DOT calculus for
type-checking.
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