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Abstract
In a reflective programming language such as Black, user programs
are interpreted by an infinite tower of meta-circular interpreters.
Each level of the tower can be accessed and modified, so the
semantics of the language changes dynamically during execution.

In this project, we show that, using staging, it is possible to
compile a user program under modified, possibly also compiled,
semantics – a question raised in previous work (Asai 2014).

How? All functions are polymorphic as to whether they gener-
ate code or run. Generated code, when compiled, is also polymor-
phic in this way so that there’s no difference between built-in and
compiled functions.

Compiling a function in a tower of interpreters effectively col-
lapses the tower.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Code Generation, Optimization, Compilers;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages–Operational semantics, Partial evaluation

Keywords Reflection, metacircular interpreter, partial evaluation,
binding-time analysis, staging, Scala

1. Introduction
In a reflective programming language such as Black (Asai et al.
1996), programs are interpreted by an infinite tower of meta-
circular interpreters. Each level of the tower can be accessed and
modified, so the semantics of the language changes dynamically
during execution.

We answer a question left open in previous work (Asai 2014),
which used staging to specialize a function with respect to the built-
in semantics of the tower: can we specialize a function with respect
to the current, possibly user-modified, semantics of the tower?

1.1 An Example
At the user-level, we define the usual function for the Fibonacci
sequence.

(define fib (lambda (n)
(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (fib 7) ;; => 13

[Copyright notice will appear here once ’preprint’ option is removed.]

At the meta-level, we change the evaluation of variables so that
it increments a meta-level counter when a variable name is n. The
special form EM shifts the tower up, so that its argument executes at
the meta-level. By changing the definition of the function eval-var,
we modify the meaning of evaluating a variable one level down.
The interpreter function takes three arguments: the expression,
environment and continuation from the level below.

(EM (begin
(define counter 0)
(define old-eval-var eval-var)
(set! eval-var (clambda (e r k)
(if (eq? e 'n) (set! counter (+ counter 1)))
(old-eval-var e r k)))))

> (fib 7) ;; => 13
> (EM counter) ;; => 102

We can compile a function by defining it with clambda instead
of lambda (as was done for eval-var). Our goal is that the behavior
of a clambda matches that of a lambda when applied, assuming the
current semantics are fixed.

(set! fib (clambda (n)
(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (EM (set! counter 0))
> (fib 7) ;; => 13
> (EM counter) ;; => 102

On the other hand, if we undo the meta-level changes, the
compiled function still updates the counter. If we re-compile the
function under the current semantics, it stops updating the counter.

(EM (set! eval-var old-eval-var))
> (EM (set! counter 0))
> (fib 7) ;; => 13
> (EM counter) ;; => 102
(set! fib (clambda (n)
(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))))

> (EM (set! counter 0))
> (fib 7) ;; => 13
> (EM counter) ;; => 0

As for the generated code, the fib function compiled under
the modified semantics has extra code (summarized in black) for
incrementing the counter for each occurrence of the variable n in
its body, but is otherwise similar to the code (summarized in gray)
compiled under the original semantics.

{(k, xs) =>
_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_1 =>
_cell_set(<cell counter>, c_1)
_app(‘<, _cons(_car(xs), ‘(2)), _cont{v_1 =>
_if(_true(v_1),
_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_2 =>
_cell_set(<cell counter>, c_2)
_app(k, _cons(_car(xs), ‘()), _cont{v_2 =>
v_2})}),
_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_3 =>
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_cell_set(<cell counter>, c_3)
_app(‘-, _cons(_car(xs), ‘(1)), _cont{v_3 =>
_app(_cell_read(<cell fib>), _cons(v_3, ‘()), _cont{v_4 =>
_app(‘+, _cons(_cell_read(<cell counter>), ‘(1)), _cont{c_4 =>
_cell_set(<cell counter>, c_4)
_app(‘-, _cons(_car(xs), ‘(2)), _cont{v_5 =>
_app(_cell_read(<cell fib>), _cons(v_5, ‘()), _cont{v_6 =>
_app(‘+, _cons(v_4, _cons(v_6, ‘())), _cont{v_7 =>
_app(k, _cons(v_7, ‘()), _cont{v_8 =>
v_8})})})})})})})}))})})}

In the generated code, mutable cells are directly referenced, out-
side the concepts (such as environments) explicitly represented in
the user-accessible interpreters. The modified interpreter function
from the meta-level is inlined into code compiled for the user-level.
Compilation collapses the levels of the tower.

1.2 Roadmap
• We define a tower of interpreters, whose semantics is well-

suited to compilation (Section 2).
• We apply staging to compile a program in a tower of inter-

preters, combining several generative patterns: turning inter-
preters into compilers, abstracting over staging decisions, gen-
erating code that can also be staged (Section 3).

• We show several examples in our system, confirming that com-
pilation has reasonable behavior (Section 4).

• We offer a parting perspective (Section 5).

2. Tower of Interpreters
In a “classic” tower of interpreters (Smith 1984; Wand and Fried-
man 1986; Danvy and Malmkjær 1988; Asai et al. 1996; Asai
2014), each level has its own environment and its own continuation.
Conceptually, the semantics of one level is given by the interpreter
at the level above, which takes an expression, an environment and
a continuation, together with a stream of all the environments and
continuations of the levels above.

For compilation, we’d rather avoid reasoning about level shift-
ing, up and down, explicitly. Therefore, we drop meta-continuations
in favor of one global continuation, which fits better with a model
of evaluation with one global “pc” counter.

Thus, our tower has a fixed level structure, where level 0 is in-
terpreted by level 1, which is interpreted by level 2, and so on.
Each level has its own global environment, containing bindings for
primitives (such as null?, +, display) and, except level 0, for in-
terpreter functions (such as base-eval, eval-var, base-apply). Each
interpreter function takes as arguments an expression, an environ-
ment and a continuation. These arguments usually come from the
level below, and are manipulated as reified structures. In addi-
tion, an interpreter function statically knows about its fixed meta-
environment (the stream of all environments in levels above and
including its own) and is dynamically given a meta-continuation,
which represents the rest of the computation or context around the
interpreter function call. Similarly, closures, created from lambda,
save not only their lexical environment, but also their lexical meta-
environment.

Even though the tower structure is fixed, the semantics is not,
since interpreter functions can be redefined using set!. Hence, in
the host language, we do not hard-code references to mutually-
recursive interpreter functions, but look up such references in the
meta-environment (via meta_apply).

Below is the code for building the tower level structure. The rep-
resentation of interpreter functions is wrapped to look just like user-
defined compiled functions. The meta-environment being created
is passed lazily on to the interpreter functions during frame initial-
ization. The meta-environment constructor takes an environment

eagerly, and the next meta-environment lazily; thus, the stream of
environments fixes infinitely many upper levels, potentially.

def binding(s: String, v: Value): Value = P(S(s), cell_new(v, s))
def init_frame_list = List(
P(S("null?"), Prim("null?")),
P(S("+"), Prim("+")),
/* ... */
P(S("display"), Prim("display"))

)
def init_mframe(m: => MEnv) = list_to_value(List(
binding("eval-begin", evalfun(eval_begin_fun(m))),
binding("eval-EM", evalfun(eval_EM_fun(m))),
binding("eval-clambda", evalfun(eval_clambda_fun(m))),
binding("eval-lambda", evalfun(eval_lambda_fun(m))),
binding("eval-application", evalfun(eval_application_fun(m))),
binding("eval-var", evalfun(eval_var_fun(m))),
/* ... */
binding("base-eval", evalfun(base_eval_fun(m))),
binding("base-apply", evalfun(base_apply_fun(m)))) ++
init_frame_list

)
def init_env =
cons(cell_new(init_frame, "global"), N)

def init_meta_env(m: => MEnv) =
cons(cell_new(init_mframe(m), "global"), N)

def init_menv[R[_]:Ops]: MEnv = {
lazy val m: MEnv = MEnv(init_meta_env(m), init_menv[R])
m

}

Mutable cells are represented explicitly. From the code above,
each initial environment is a list of one global frame. The head
of the list is mutable so that more definitions can be added to the
frame. The value binding of interpreter functions is also mutable,
so that an interpreter can be modified.

Finally, when we shift to the meta-level, the continuation from
the lower-level becomes an argument to the meta-level function, so
we need a new outer continuation – usually, it’s a trivial continu-
ation because there’s nothing to do after the shift. The meta_apply
function delegates to static_apply to actually apply the interpreter
function looked up in the meta-environment. If we have a closure
(from an uncompiled lambda), then we recursively call meta_apply
again possibly going further up in the levels. If we have a com-
piled or built-in function, then we just apply it as a black-box, thus
breaking out of an infinite-tower regress.

def meta_apply[R[_]:Ops](m: MEnv, s: Value,
exp: Value, env: Value, cont: Value): R[Value] = {
val MEnv(meta_env, meta_menv) = m
val o = implicitly[Ops[R]]; import o._
val fun = env_get(meta_env, s) match {
case c@Cell(_) => cell_read(c)

}
val args = P(exp, P(env, P(cont, N)))
static_apply[R](fun, args, id_cont[R])

}
def static_apply[R[_]:Ops](fun: Value, args: Value, cont: Value) = {
val o = implicitly[Ops[R]]; import o._
fun match {
case Clo(params, body, cenv, m) =>
meta_apply[R](m, S("eval-begin"), body,
env_extend[R](cenv, params, args), cont)

case Evalfun(key) =>
val f = funs(key).fun[R]
f(cons(cont, args))

case Prim(p) =>
apply_cont[R](cont, apply_primitive(p, args))

case _ if isCont(fun) =>
apply_cont[R](fun, car(args)) // lost cont

}
}

Before we explain the R markings next, let us give the definition
of eval_EM, which shifts the computation up a level:
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def eval_EM[R[_]:Ops](m: MEnv,
exp: Value, env: Value, cont: Value): R[Value] = {
val o = implicitly[Ops[R]]; import o._
val e = exp match {
case P(_, P(e, N)) => e

}
val MEnv(meta_env, meta_menv) = m
meta_apply[R](meta_menv, S("base-eval"), e, meta_env, cont)

}

The continuation cont is kept when shifting up with eval_EM.
However, meta_apply gives a new outer-continuation id_cont be-
cause the continuation from the level below becomes part of the
arguments.

In a “classic” tower, a continuation eventually returns an Answer
type, which is usually different from a regular Value type. In our
system, continuations just return regular values, instead of answers.

3. Compilation via Staging
In the partial evaluation and staging literature (Futamura 1999;
Consel and Danvy 1993; Rompf and Amin 2015), it is well-known
how to turn an interpreter into a compiler: make the program itself
static (known during code generation) and the input to the program
dynamic (unknown during code generation).

For our use case, we want to use interpreter functions, both to in-
terpret expressions and to compile the body of clambda expressions.
In case of compilation, the body expression is known (static), how-
ever, the actual arguments and meta-continuation are not known
(dynamic), since they are only supplied when the function is called.
Furthermore, user-defined compiled functions should be usable as
or in interpreter functions, in both interpretation and compilation
mode. Hence, compilation should produce code that can also pro-
duce code. Similarly, first-class objects with code, such as functions
and continuations, should be usable in both modes (interpretation
and compilation), regardless of which mode they were created in.
In summary, we want our functions to be polymorphic over whether
they interpret or compile, and also generate code that is polymor-
phic in the same way.

In LMS (Rompf and Odersky 2012), staging is driven by types.
An expression of type Rep[T] is dynamic (not known during the first
stage), while an expression of bare type T is static (known during
the first stage). Scala’s local type inference performs binding-time
inference.

In LMS, we can abstract over staging decisions by abstracting
over the higher-kinded type Rep (Ofenbeck et al. 2013). Given a
parameter higher-kinded type R[_], and a type class Ops[R[_]],
which defines the operations on R[_] types, we instantiate R to
NoRep (defined as type NoRep[A] = A) and Rep to either interpret or
compile.

Below is the code for the entry-point interpreter function. The
function dispatches on the form of the expression, delegating to
other interpreter functions accordingly. Even though the expres-
sion, environment and continuation of the level below are known
(static: Value), the result of the function is not known (dynamic:
R[Value]). The function calls starting with _ (such as _lifted) are
part of the operations for R[_] types, behaving differently for each
instantiation type (NoRep vs Rep).

def base_eval[R[_]:Ops](m: MEnv,
exp: Value, env: Value, cont: Value): R[Value] = {

val o = implicitly[Ops[R]]; import o._
exp match {
case I(_) | B(_) | Str(_) =>
apply_cont[R](cont, _lift(exp))

case S(sym) =>
meta_apply[R](m, S("eval-var"), exp, env, cont)

case P(S("lambda"), _) =>
meta_apply[R](m, S("eval-lambda"), exp, env, cont)

case P(S("clambda"), _) =>
meta_apply[R](m, S("eval-clambda"), exp, env, cont)

/* ... case let, if, begin, set!, define, quote, ... */
case P(S("EM"), _) =>
meta_apply[R](m, S("eval-EM"), exp, env, cont)

case P(fun, args) =>
meta_apply[R](m, S("eval-application"), exp, env, cont)

}
}

The result is dynamic (R[Value]), so that we indeed can turn
the interpreter into a compiler. Above, we use _lift to turn a static
(known) Value into dynamic (though constant) R[Value].

The evaluation of variables shows why the result needs to be
dynamic during code generation. If the variable points to a cell in
the environment, then we need to generate code to read the cell.
We most likely don’t want to read the cell during code generation,
because the result of the read depends on writes to the cell. If the
variable points to a code value in the environment, the dynamic
value represents a symbolic value, such as an argument of a clambda
for which we are generating code.
def eval_var[R[_]:Ops](m: MEnv,
exp: Value, env: Value, cont: Value): R[Value] = {
val o = implicitly[Ops[R]]; import o._
env_get(env, exp) match {
case Code(v: R[Value]) =>
apply_cont[R](cont, _cell_read(v))

case v@Cell(_) =>
apply_cont[R](cont, _cell_read(v))

case v => apply_cont[R](cont, _lift(v))
}

}

To evaluate a clambda expression, we might need to switch
from interpretation to compilation. In any case, we evaluate the
static body of the clambda in an extended environment, in which
parameters of the clambda are mapped to symbolic values.
case class Code[R[_]](c: R[Value]) extends Value

The continuation with which the body returns is also dynamic,
as it is passed when the function is applied. We “unlift” the contin-
uation argument k, because meta_apply like other interpreter func-
tions expects a known continuation.
def eval_clambda[R[_]:Ops](m: MEnv,
exp: Value, env: Value, cont: Value): R[Value] = {
val o = implicitly[Ops[R]]; import o._
val (params, body) = exp match {
case P(_, P(params, body)) => (params, body)

}
def eval_body[RF[_]:Ops](kv: RF[Value]): RF[Value] = {
val or = implicitly[Ops[RF]]
val args = or._cdr(kv)
lazy val k = or._car(kv)
meta_apply[RF](m, S("eval-begin"), body,
env_extend[RF](env, params, Code(args)),
unlift_cont[RF](k))

}
val f = if (!inRep) {
/* switch to compilation mode */
trait Program extends EvalDsl {
def snippet(kv: Rep[Value]): Rep[Value] =
eval_body[Rep](kv)(OpsRep)

}
val r = new EvalDslDriver with Program
r.precompile
_lift(evalfun(r.f))

} else {
/* already in compilation mode */
/* need to create a poly-stage function */
/* ... */

}
apply_cont[R](cont, f)

}
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3.1 Stage Polymorphism for First-Class Values
The type of a compiled function is Value => R[Value]. The type of a
continuation is R[Value] => R[Value]. The continuation or function
is created in a certain stage, say W[_]:Ops. If W = NoRep, then we
might need to lift NoRep[Value] = Value to R[Value]. If W = Rep, then
we are generating textual code, which will abstract over the stage,
once more – so let’s think of it as just W. So, we need to convert
W[Value] to R[Value] in order to use values from the context. These
contexts can be nested, so we need to transitively convert from any
outer W[Value] to any inner R[Value].

trait Convert[W[_], R[_]] {
implicit def convert(v: W[Value]): R[Value]

}
implicit def convertNoRep[R[_]:Ops] = new Convert[NoRep, R] {
val o = implicitly[Ops[R]]
def convert(v: Value) = o._lift(v)

}
implicit def convertSame[R[_]] = new Convert[R, R] {
def convert(v: R[Value]) = v

}
def convertTrans[R1[_],R2[_],R3[_]](
implicit ev12: Convert[R1, R2], ev23: Convert[R2,R3]) =
new Convert[R1,R3] {
def convert(v: R1[Value]) = ev23.convert(ev12.convert(v))

}

Now, the type of a compiled function or a continuation is
with respect to a stage context, W. The actual function is stage-
polymorphic, given evidence that we can convert from W to R.

abstract class Fun[W[_]:Ops] {
def fun[R[_]:Ops](implicit ev: Convert[W,R]): W[Value] => R[Value]

}
abstract class FunC[W[_]] {
def fun[R[_]:Ops](implicit ev: Convert[W,R]): R[Value] => R[Value]

}

In the host language, this style of polymorphism is unfortu-
nately cumbersome to use.

First, we turn interpreter function definition into actual first-
class functions to put in the initial environment for a meta-level.
Here is the wrapping for base_eval; the others are similar:

def base_eval_fun(m: => MEnv): Fun[NoRep] = new Fun[NoRep] {
def fun[R[_]:Ops](implicit ev: Convert[NoRep,R]) =
{ (vc: Value) =>
val P(mcont, P(exp, P(env, P(cont, N)))) = vc
apply_cont[R](mcont, base_eval[R](m, exp, env, cont))

}
}

Notice that we apply the active continuation mcont passed into the
function. This ensures that interpreter functions can be used in non-
tail positions too.

Here is the missing part from eval_clambda:

/* ... */
} else {
/* already in compilation mode */
/* need to create a poly-stage function */
_fun(new Fun[R] { def fun[RF[_]:Ops](
implicit ev0: Convert[R,RF]) =
{ ((kv0: R[Value]) => { val kv = ev0.convert(kv0)
eval_body[RF](kv)

})}})
}

/* ... */

Here is the unlifting of the continuation, which delegates to a
regular lifted application:

def unlift_cont[R[_]:Ops](k: => R[Value]): Value = {
val o = implicitly[Ops[R]]
o._cont(new FunC[R] {def fun[R1[_]:Ops](

implicit ev: Convert[R,R1]) =
{ v =>
apply_lifted_cont[R1](ev.convert(k), v)

}})
}
def apply_lifted_cont[R[_]:Ops](cont: R[Value], v: R[Value]):
R[Value] = {
val o = implicitly[Ops[R]]; import o._
_app(cont, _cons(v, N), id_cont[R])

}

In the generated code, we want to delegate the conversion to
the Scala compiler. So we generate principled implicit conversions
between any mode W from an outer context, and a mode R in an inner
context of W.

3.2 Meta-Applying Application
Application requires some “unlifting” to fit into our setting, be-
cause the result of evaluation is dynamic, so both the evaluated
function and arguments are dynamic values. The default implemen-
tation for base-apply delegates to a lifted operation _app, so that
generated code contains code for _app calls by default.

def eval_application[R[_]:Ops](m: MEnv,
exp: Value, env: Value, cont: Value) = {
val o = implicitly[Ops[R]]; import o._
val P(fun, args) = exp
meta_apply[R](m, S("base-eval"), fun, env, _cont(
new FunC[R] { def fun[R1[_]:Ops](
implicit ev: Convert[R,R1]) = { v =>
val o1 = implicitly[Ops[R1]]
meta_apply[R1](m, S("eval-list"), args, env, o1._cont(
new FunC[R1] { def fun[R2[_]:Ops](
implicit ev12: Convert[R1,R2]) = { vs =>
val o2 = implicitly[Ops[R2]]
meta_apply[R2](m, S("base-apply"),
cons(o2._unlift(ev12.convert(v)), o2._unlift(vs)),
env, cont)

}}))
}}))

}
def base_apply_fun(m: => MEnv): Fun[NoRep] = new Fun[NoRep] {
def fun[R[_]:Ops](implicit ev: Convert[NoRep,R]) =
{ (vc: Value) =>
val o = implicitly[Ops[R]]
val P(mcont, P(P(fun, args), P(env, P(cont, N)))) = vc
apply_cont[R](mcont, base_apply[R](m,
o._lift(fun), o._lift(args), env, cont))

}
}
def base_apply[R[_]:Ops](m: MEnv, fun: R[Value], args: R[Value],
env: Value, cont: Value) = {
val o = implicitly[Ops[R]]
o._app(fun, args, cont)

}

In Ops[NoRep]:

def _app(fun: Value, args: Value, cont: Value) =
static_apply[NoRep](fun, args, cont)

For application, we _unlift then re-_lift the function and ar-
guments in order to package them as expected through the var-
ious functions. For Ops[NoRep], these operations are just identi-
ties, so there is nothing to worry about. However, for Ops[Rep],
we have to ensure that we don’t over-do the wrappings, so that
_lift(_unlift(v))=v.

3.3 Optimizations
We use smart constructors from LMS to perform some optimiza-
tions. For example, _lift and _unlift pattern-match on their argu-
ment to avoid over-wrapping. In addition, we inline applications
where function and arguments are more or less known. We also
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discard cells that are locally allocated, and then only read – this
requires some extra book-keeping too.

For _lift, we can simply inspect whether the Value passed in
is already some unlifted code. For _unlift and _app, we delegate
to smart constructors that know about the implementation layer of
LMS.
def _lift(v: Value) = v match {
case Code(r: Rep[Value]) => r
case _ => unit(v)

}
def _unlift(v: Rep[Value]) = unlift_rep(v)
def _app(f: Rep[Value], args: Rep[Value], cont: Value) =
app_rep(f, args, cont)

For unlift_rep, we pattern-match on the internal representation
of a Rep, which is either a constant Const or a symbol Sym, with an
associated definition.
def unlift_rep(r: Rep[Value]) = r match {
case Const(v: Value) => v
case _ => Code(r)

}

For app_rep, the cases are more involved, and more ad-hoc
too. They influence what semantics can be considered fixed at
compilation. Here, we consider primitives, and other compiled (or
built-in – no difference in representation) functions fair game. By
also considering functions that are read from a cell, we enable
more inlining: for example, inlining the old-eval-var call from
the modified eval-var interpreter function. Because the function
meta_apply already silently reads interpreter function cells, this is a
natural next step, that doesn’t fundamentally alter the model.
def app_rep(f: Rep[Value], args: Rep[Value], cont: Value):
Rep[Value] = (f, args) match {
case (Const(fprim@Prim(p)), Const(vs@P(_, _)))
if !effectful_primitives.contains(fprim) && !hasCode(vs) =>
val r = apply_primitive(p, vs)
apply_cont[Rep](cont, OpsRep._lift(r))

case (Def(Reflect(CellReadRep(Const(Cell(InCell(
Evalfun(ekey))))), _, _)), Const(vs@P(_, _))) =>
val efn = funs(ekey).fun[Rep]
efn(P(cont, vs))

case (Const(Evalfun(ekey)), Const(vs@P(_, _))) =>
val efn = funs(ekey).fun[Rep]
efn(P(cont, vs))

case (Const(fcont), Const(P(a, N))) if isCont(fcont) =>
apply_cont[Rep](fcont, OpsRep._lift(a))

case (Const(fcont), Def(ConsRep(a, Const(N)))) if isCont(fcont) =>
apply_cont[Rep](fcont, a)

case (_, _) =>
val x = fresh[Value]
val y = reifyEffects{
apply_cont[Rep](cont, x)

}
reflectEffect(AppRep(f, args, x, y))

}

3.4 Effects
Mutation is explicit at the host level through cells. This is not ex-
posed in the user language, but it is exposed in the compilation lan-
guage. These cell operations (allocations, writes, reads) are marked
as effectful by the LMS framework. Similarly, the display primi-
tive is marked effectful so that we don’t display at code generation
time, but defer to generating code.

3.5 Values in Text
With LMS, the generated code is then printed as text, which a reg-
ular compiler (like Scala’s) can then load in. Hence, it is essential
that the textual representation of values such as cells is semantic-
preserving. Hence, a cell in the generated code must reference some
dynamic cell in the running system.

Here is how values are represented in the host language. The
overriding of toString is to ensure that the textual representation in
generated code is syntactically valid Scala that can be meaningfully
re-incorporated.

sealed trait Value
case class I(n: Int) extends Value
case class B(b: Boolean) extends Value
case class S(sym: String) extends Value {
override def toString = "S(\""+sym+"\")"

}
case class Str(s: String) extends Value {
override def toString = "Str(\""+s+"\")"

}
case object N extends Value
case class P(car: Value, cdr: Value) extends Value
case class Prim(p: String) extends Value {
override def toString = "Prim(\""+p+"\")"

}
case class Clo(params: Value, body: Value, env: Value,
menv: MEnv) extends Value

case class Evalfun(key: Int) extends Value
case class Code[R[_]](c: R[Value]) extends Value
case class Cont(key: Int) extends Value
case class CodeCont[R[_]](f: FunC[R], thunk: () => R[Value])
extends Value {
lazy val force: R[Value] = thunk()

}
case class Cell(key: String) extends Value {
override def toString = "Cell(\""+key+"\")"

}

3.6 Compile-Time Continuations
At compile time, we typically only need the continuation to gener-
ate code following an _app call. We don’t really need a first-class
representation of the continuation until it is used as such, escaping
the context of an _app call.

def apply_cont[R[_]:Ops](cont: Value, v: R[Value]):
R[Value] = cont2fun[R](cont) match {
case Some(f) => f(v)
case None =>
val o = implicitly[Ops[R]]; import o._
static_apply[R](cont, P(_unlift(v), N), id_cont[R])

}

Still, a continuation should be a Value by our staging discipline,
so what do we do? We create a continuation code that can be forced
to a R[Value] only when actually used in a first-class position.

case class CodeCont[R[_]](f: FunC[R], thunk: () => R[Value])
extends Value {

lazy val force: R[Value] = thunk()
}

In Ops[Rep]:

def _cont(f: FunC[Rep]) = {
lazy val k: CodeCont[Rep] = CodeCont[Rep](f, () => cont_rep(k, f))
k

}

3.7 Partially Symbolic Environments
Environments introduce cells for enabling mutation via set!. When
extending an environment, we create a new frame, in which we bind
each parameter to an argument. The args value might be symbolic,
wrapped as a Code.

def env_extend[R[_]:Ops](env: Value, params: Value, args: Value) = {
val o = implicitly[Ops[R]]
val frame = make_pairs[R](params, args)
cons(if (o.inRep) frame else cell_new(frame, "frame"), env)

}
def make_pairs[R[_]:Ops](ks: Value, vs: Value):
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Value = (ks, vs) match {
case (N, N) => N
case (N, Code(_)) => N
case (S(s), _) => cons(cons(ks, vs), N)
case (P(k@S(s), ks), P(v, vs)) =>
val o = implicitly[Ops[R]]
cons(cons(k, o._unlift(o._cell_new(o._lift(v), s))),
make_pairs[R](ks, vs))

case (P(k@S(s), ks), Code(c : R[Value])) =>
val o = implicitly[Ops[R]]
cons(cons(k, o._unlift((o._cell_new(o._car(c), s)))),
make_pairs[R](ks, Code(o._cdr(c))))

}

3.8 Three Languages
The system comprises three languages:

1. The host language, Scala, in which the built-in interpreter func-
tions are written.

2. The user language, which exposes the user-level and the tower
structure, including all the meta-level interpreter functions.

3. The compilation language, which is defined by the lifted oper-
ations Ops[R].

The compilation language necessary for turning the interpreter
into a compiler is rather small:
trait Ops[R[_]] {
implicit def _lift(v: Value): R[Value]
def _liftb(b: Boolean): R[Boolean]
def _unlift(v: R[Value]): Value
def _app(fun: R[Value], args: R[Value], cont: Value): R[Value]
def _true(v: R[Value]): R[Boolean]
def _if(c: R[Boolean], a: => R[Value], b: => R[Value]): R[Value]
def _fun(f: Fun[R]): R[Value]
def _cont(f: FunC[R]): Value
def _cons(car: R[Value], cdr: R[Value]): R[Value]
def _car(p: R[Value]): R[Value]
def _cdr(p: R[Value]): R[Value]
def _cell_new(v: R[Value], memo: String): R[Value]
def _cell_read(c: R[Value]): R[Value]
def _cell_set(c: R[Value], v: R[Value]): R[Value]
def inRep: Boolean

}

4. Examples
In this section, we show several examples implemented in our
system. For all of these, unless otherwise specified, using lambda
or clambda does not alter the semantics.

4.1 Instrumentation
We can extend the initial example, so that we have an instr special
form, that count calls to several meta-level functions, and prints a
nice summary.

Here is a general hook to add a special form:
(EM
(define add-app-hook!
(lambda (n ev)
(let ((original-eval-application eval-application))
(set! eval-application

(lambda (exp env cont)
(if (eq? (car exp) n)

(ev exp env cont)
(original-eval-application exp env cont)))))))

)

4.2 Stack Inspection
There is a cute trick (Danvy and Goldberg 2002) to construct
(cnv xs ys) = (zip xs (reverse ys)) in n recursive calls and no
auxiliary data list, where xs and ys are lists of size n.

(define walk
(lambda (xs ys)

(if (null? xs)
(cons '() ys)
(let ((rys (walk (cdr xs) ys)))
(let ((r (car rys))

(ys (cdr rys)))
(cons (cons (cons (car xs) (car ys)) r)

(cdr ys)))))))
(define cnv
(lambda (xs ys)
(car (walk xs ys))))

To understand the trick, it’s helpful to visualize the stack. So we
create a special form taba, which takes a list of function names to
monitor and an expression to evaluate under temporarily modified
semantics that instrument the stack for monitored function calls.

(EM (begin
(define eval-taba-call
(lambda (add! original-eval-application)
(lambda (exp env cont)
(eval-list
(cdr exp) env
(lambda (ans-args)
(original-eval-application
exp env
(lambda (ans)
(add! ans-args ans)
(cont ans))))))))

(define eval-taba
(lambda (fns)
(lambda (exp env cont)
(let ((original-eval-application eval-application)

(stack '()))
(map (lambda (fn)

(add-app-hook!
fn
(eval-taba-call
(lambda (ans-args ans)
(set! stack (cons (list fn ans-args ans) stack)))

eval-application)))
fns)

(base-eval
exp env
(lambda (ans)
(set! eval-application original-eval-application)
(cont
(list ans stack))))))))

(add-app-hook!
'taba
(lambda (exp env cont)
((eval-taba (car (cdr exp))) (car (cdr (cdr exp))) env cont)))

))

Using our special form on a particular instance of the problem,
we see what happens when we go There And Back Again (TABA).
As we walk down the first list, we push elements on the stack, that
we pair with the elements of the second list explored on the way
up.

> (taba (cnv walk) (cnv '(1 2 3) '(a b c))) ;; =>
;; (((1 . c) (2 . b) (3 . a))
;; ((cnv ((1 2 3) (a b c)) ((1 . c) (2 . b) (3 . a)))
;; (walk ((1 2 3) (a b c)) (((1 . c) (2 . b) (3 . a))))
;; (walk ((2 3) (a b c)) (((2 . b) (3 . a)) c))
;; (walk ((3) (a b c)) (((3 . a)) b c))
;; (walk (() (a b c)) (() a b c))))

Note that since the taba special form modifies the semantics
temporarily, it won’t be able to monitor any already compiled
functions. Still, as expected, functions that are compiled inside the
taba expression will behave according the monitoring semantics.
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4.3 Reifiers
In tower of interpreters, a reifier is a way to go up the tower and
get a reified structure for the current computation from below.
From level n, the expression ((delta (e r k) body...) args...)
evaluates the expression body... with the environment from level
n+1, with e bound to the unevaluated expression args..., r bound
to the environment from level n, and k to the continuation from
level n. Within the body, (meaning e r k) can be used to reflect
back.

We can use delta to reify the continuation, like in Scheme’s
call/cc:

(define call/cc
(lambda (f)

((delta (e r k)
(k ((meaning 'f r (lambda (v) v)) k))))))

> (+ 1 (call/cc (lambda (k) 0))) ;; 1
> (+ 1 (call/cc (lambda (k) (k 0)))) ;; 1
> (+ 1 (call/cc (lambda (k) (begin (k 1) (k 3))))) ;; 2
> (+ 1 (call/cc (lambda (k) (begin (k (k 1)) (k 3))))) ;; 2

First, at the meta-level, we need a way to reify the current
environment, the one from the same meta-level. So we add this
facility by changing the meta-meta-level:

(EM (EM (begin
(define old-eval-var eval-var)

(set! eval-var
(clambda (e r k)

(if (eq? '_env e) (k r) (old-eval-var e r k))))
)))

Now, at the meta-level, we provide the definition of delta by
recognizing its pattern of application. This is a simplification: we
do not turn delta into a first-class object.

(EM (begin
(define delta?
(lambda (e)
(if (pair? e) (if (pair? (car e))
(eq? 'delta (car (car e)))
#f) #f)))

(define apply-delta
(lambda (e r k)
(let ((operator (car e))

(operand (cdr e)))
(let ((delta-params (car (cdr operator)))

(delta-body (cdr (cdr operator))))
(eval-begin
delta-body
(extend _env delta-params (list operand r k))
id-cont)))))

(define old-eval-application eval-application)
(set! eval-application

(lambda (e r k)
(if (delta? e)

(apply-delta e r k)
(old-eval-application e r k))))

(define meaning base-eval)
))

4.4 Meta-Level Undo
We can implement undo at the meta-level, so that it’s easy to
experiment with changes.

At the meta-meta-level, we change eval_var to provide the _env
reifier like for delta. In addition, we also monitor eval_set! to keep
track of changes at the meta-level:

(EM (EM (begin

(define undo-list '())

(define old-eval-set! eval-set!)

(set! eval-set!
(clambda (e r k)

(let ((name (car (cdr e))))
(eval-var name r (lambda (v)
(set! undo-list (cons (cons name v) undo-list))
(old-eval-set! e r k))))))

(define reflect-undo!
(clambda (r)

(if (null? undo-list)
'()
(begin
(old-eval-set!
(list 'set! (car (car undo-list))
(list 'quote (cdr (car undo-list))))

r
(lambda (v) v))
(set! undo-list (cdr undo-list))))))

)))

At the meta-level, we just provide a nice undo! function:

(EM
(define undo! (clambda ()
((EM reflect-undo!) _env)))

)

4.5 Semantics of Continuations
As pointed out in the code for static_apply, applying a continu-
ation jumps out of the surrounding context, ignoring it. We can
imagine alternative behaviors. Let’s re-define eval-var to explore
some alternatives.

(EM (begin
(define old-eval-var eval-var)
(set! eval-var (lambda (e r k)
(if (eq? '_dummy e) (begin (k 1) (k 2) (k 3))
(old-eval-var e r k))))

))

What should happen when we evaluate _dummy? In our system,
the default behavior is to jump out at the first call of k, so the result
is 1.

> _dummy ;; => 1

In a “classic” tower system, (k 1) returns 1 to the user-level.
When the user exits to the meta-level, the meta-continuation re-
sumes, and (k 2) returns 2 back to the user-level (and “in time”).
So there’s a ping-pong between the user-level and the meta-level
until the meta-continuation is back to the top one, for the meta-
level REPL. In Black:

> _dummy ;; => 1
> (exit 'up) ;; => 2
> (exit 'up) ;; => 3
> (exit 'up) ;; => up (meta-level)

Our system lacks meta-continuations, so we cannot exactly re-
produce this behavior. Still by re-defining base-apply at the meta-
meta level, we can explore alternative semantics for how continua-
tions at the meta-level should behave.

4.5.1 Auto-Continue
One alternative is to simply continue with the outer continuation,
after the inner one completes. Let’s change the meta-meta-level:

(EM (EM (begin
(define old-base-apply base-apply)
(set! base-apply (lambda (fa r k)
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(if (continuation? (car fa))
(k (old-base-apply fa r (lambda (x) x)))
(old-base-apply fa r k))))

)))

Now, by the semantics of begin, we execute the first call to k,
ignore the result, and continue with the second, and finally third
one:

> _dummy ;; => 3

4.5.2 Manually Resume
To simulate something like the “classic” tower, but with only one
program counter, we can record the pending outer context in a stack
instead of ignoring it. For this, we call the continuation, record the
resulting value to know how to resume with the outer continuation,
and return the value.

(EM (EM (begin
(define pending-thunks '())

(define old-base-apply base-apply)
(set! base-apply (lambda (fa r k)
(if (continuation? (car fa))
(let ((v (old-base-apply fa r (lambda (x) x))))
(set! pending-thunks (cons (lambda () (k v)) pending-thunks))
v)

(old-base-apply fa r k))))
)))

At the user-level, we provide a convenient function to resume!
from the pending thunks of the meta-meta-level.

(define resume! (lambda ()
(if (null? (EM (EM pending-thunks)))
'done
(EM (EM (let ((thunk (car pending-thunks)))
(set! pending-thunks (cdr pending-thunks))
(thunk)))))))

Resuming behaves more or less like we expect, except that
3 appears twice: once for the final call to k, and once after that
because of the id_cont that we use in the host implementation for
an empty outer continuation.

> _dummy ;; => 1
> (resume!) ;; => 2
> (resume!) ;; => 3
> (resume!) ;; => 3 // id_cont :(
> (resume!) ;; => done

4.6 Collapsing User-Level Interpreters
There’s nothing special about meta-level collapsing: we can do it
entirely at the user-level too. For example, we can define a user-
level interpreter for a little language and use the interpreter as a
compiler, since any compiled function is stage-polymorphic.

As a tiny example, here is a generic list matcher that ensures
that the list s has the list r as a prefix.

(define matches (clambda (r) (clambda (s)
(if (null? r) #t
(if (null? s) #f
(if (eq? (car r) (car s)) ((matches (cdr r)) (cdr s)) #f))))))

> ((matches '(a b)) '(a c)) ;; => #f
> ((matches '(a b)) '(a b)) ;; => #t
> ((matches '(a b)) '(a b c)) ;; => #t

Now, we can generate code for matching a particular prefix:

(define start_ab ((clambda () (matches '(a b)))))

The code generated for the clambda of start_ab just has the
low-level operations on the dynamic input s. The static input r
causes three unfolding of the matches body with the first static if

disappearing from the generated code. Conceptually, the generated
code is equivalent to the one generated for the following user-level
program:

(define start_ab (clambda (s)
(if (null? s) #f
(if (eq? 'a (car s))
((clambda (s)
(if (null? s) #f
(if (eq? 'b (car s))
((clamda (s) #t) (cdr s))
#f)))

(cdr s))))))

We can combine this user-level interpreter with a user-modified
meta-level too. For example, we can modify the meta-level eval-var
to count evaluations of variables named r or s. We can also gener-
ate code that will then just have extra counter increments like in the
initial example of section 1.1.

> ((matches '(a b)) '(a c)) ;; => #f (r: 5, s: 5)
> ((matches '(a b)) '(a b)) ;; => #t (r: 7, s: 6)
> ((matches '(a b)) '(a b c)) ;; => #t (r: 7, s: 6)

5. Perspective
In this work, we showed that it is possible to compile a function
in a tower of interpreters, under current, possibly user-modified,
semantics. We took several decisions, and used various techniques.

• In our design, the level structure of the tower is fixed. There
is one global continuation representing the rest of the computa-
tion, instead of one continuation per level. The fixed level struc-
ture and one global “pc” counter simplifies reasoning about
compilation, optimization, and application (as both environ-
ment and meta-environment are lexically scoped).

• Our system is comprised of three languages: the host language
(Scala), the user language (the tower), and the compilation
language (the lifted operations).

• Side-effects are explicit in the compilation language (so the
system knows to generate code instead of performing the side-
effects at code-generation time), not explicitly exposed in the
user language, and freely manipulated in the host language.

• Staging is driven by types, abstracting over staging decision too.
Because the body to specialize is static, we can get away with
a small set of lifted operations. We can also use host language
features, such as pattern-matching, without lifting.

• There is no difference between built-in functions and compiled
functions. Both can be used for interpretation or compilation.
Hence, the generated code is also stage-polymorphic. This is
pushing the technique to its extreme: interpreter vs compiler via
staging, both interpreter and compiler via stage polymorphism,
stage-polymorphic generated code.

• Stage polymorphism is complicated by first-class code (such
as nested functions and continuations). These nested code frag-
ments have to be polymorphic, and independent of their outer
context. This requires converting from the outer context to the
nested one. Because generated code is also stage-polymorphic,
the stage is actually a dynamic property of a call.

In terms of alternative or further designs, here are some sugges-
tions and questions:

• What about compilation in a “classic” tower of interpreters?
Shifting levels up and down would need to be made explicit
(and part of the compilation language). In addition, there is this
tension between the meta-state provided during compilation
and the one provided during application. What if the function is
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applied at a different level than the one in which it was created?
The tower at run-time might not even match any preconceived
model since by pushing onto the meta-state, one can change the
tower structure arbitrarily.
In our case, we avoid all these thorny issues by using a fixed
structure and a lexical discipline for both environments and
meta-environments.

(begin (define where_am_i 'user)
(EM (define where_am_i 'meta))
(EM (let ((old-eval-var eval-var)

(__k (lambda (x) x)))
(set! eval-var (lambda (e r k)

(if (eq? e '__k) (k __k)
(begin

(if (eq? e '_) (set! __k k)
'())

(old-eval-var e r k)))))))
(define _ 0))
> (+ _ 1) ;; => 1
> where_am_i ;; => user
> (EM where_am_i) ;; => meta
> (__k 2) ;; => 3
> where_am_i ;; => user
> (EM where_am_i) ;; => meta (in Black: user!)

It’s strange (counterintuitive) that calling the continuation _k
pushed another user-level in Black.
Some of our examples could be implemented more seamlessly
because we didn’t need to reason about inadvertently shifting
or pushing levels.

• It would be interesting to track semantic changes like assump-
tions in a JIT, in order to recompile or deoptimize functions
compiled under outdated semantics. The system would need to
make cell reads and writes more explicit so they can be tracked
and adapted. In the user language, cell operations are currently
implicit, while in the host language, cells can be freely manipu-
lated. Currently, it is only in the compilation language that reads
and writes are explicit.

• Stage-polymorphism has the overhead of applying the lifted
operations (even in the case of a NoRep instantiation). Could
we generate two versions of the code, one for interpretation
and one for compilation? What about nested functions and
continuations in this case? How would they maintain their two
modes, independently?

• What about tail-recursion and tail-reflection? The stage-polymorphic
interpreter, even without meta-applications, is not tail-recursive,
because _if has a recursive call in each branch. When generat-
ing code, we do want to explore both branches.

• We duplicate the continuation in each branch of an _if expres-
sion. Collapsing also duplicate code through inlining, for exam-
ple. Can we better control the generated code blow-up?

• Could we add common (re-)definitions, to all levels of the
towers at once, from the user language?

• What guarantees can we make with respect to the semantics of
compiled functions?

• The use of Code is not very principled. Is there a better more
principled way to mix dynamic parts in otherwise mostly static
values?

• Would it make sense to make the process of compilation and
optimizations under the control of the user language?

By showing that it’s possible to compile under user-modified
semantics in a tower of interpreters, it is our hope that this work
fosters further explorations in systems that combine compilation
and reification/reflection.
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