
Week 8: Functions and States

Until now, our programs have been side-e�ect free.

Therefore, the concept of time wasn't important.

For all programs that terminate, any sequence of actions would have given

the same results.

This was also re�ected in the substitution model of computation.

Rewriting can be done anywhere in a term, and all rewritings which

terminate lead to the same solution.

This is an important result of the λ-calculus, the theory behind functional

programming.

1

Stateful Objects

One normally develops the world like a set of objects, some of which have a

state that changes over the course of time.

An object has a state if its behavior is in�uenced by its history.

Example: a bank account has a state, because the answer to the question

�can I withdraw 100 CHF ?�

may vary over the course of the lifetime of the account.

2

Implementation of State

Every form of mutable state is constructed from variables.

A variable de�nition is written like a value de�nition, but with the

keyword var in place of val.

Example:

var x : String = "abc"
var count = 111

Just like a value de�nition, a variable de�nition associates a value with a

name.

However, in the case of variable de�nitions, this association can be changed

later through an assignment, like in Java.

Example:

x = "salut"
count = count + 1

3

State in Objects

Objects in the "real world" with state are represented by objects that have

some variable members.

Example: Here is a class modeling a bank account.

class BankAccount {
private var balance = 0
def deposit(amount : Int) {

if (amount > 0) balance = balance + amount
}
def withdraw(amount : Int): Int =

if (0 < amount && amount ≤ balance) {
balance = balance − amount
balance

} else error("insu�cient funds")
}

4

The class de�nes a variable balance that contains the current balance of

the account.

The methods deposit and withdraw change the value of the balance

through assignments.

Note that balance is private (private) in the BankAccount class� it

therefore cannot be accessed from outside the class.

To create bank accounts, we use the usual notation for object creation:

val account = new BankAccount

5

Example: Here is a scala session that manipulates bank accounts.

scala> :l bankaccount.scala
loading �le 'bankaccount.scala'
scala> val account = new BankAccount
account : BankAccount = BankAccount@1797795
scala> account deposit 50
res0 : Unit = ()
scala> account withdraw 20
res1 : Int = 30
scala> account withdraw 20
res2 : Int = 10
scala> account withdraw 15
java.lang.Error : insu�cient funds

at scala.Predef$error(Predef.scala :74)
at BankAccount$class.withdraw(bankaccount.scala :13)
at <top−level>(console :1)

scala>

Applying the same operation to an account twice in a row produces

di�erent results. Clearly, accounts are stateful objects.

6

Identity and Change

Assignment poses the new problem of deciding whether two expressions are

"the same"

When one excludes assignments and one writes:

val x = E; val y = E

where E is an arbitrary expression, then it is reasonable to assume that x

and y are the same. That is to say that we could have also written:

val x = E; val y = x

(This property is usually called referential transparency)

But once we allow the assignment, the two formulations are di�erent.

For example:

val x = new BankAccount; val y = new BankAccount

Q : Are x and y the same?

7

Operational Equivalence

To respond to the last question, we must specify what is meant by "the

same".

The precise meaning of "being the same" is de�ned by the property of

operational equivalence.

In a somewhat informal way, this property is stated as follows.

Suppose we have two de�nitions x and y.

To test if x and y are the same, we must:

• Execute the de�nitions followed by an arbitrary sequence of operations

that involves x and y, observing the possible outcomes.

• Then, execute the de�nitions with another sequence S' obtained by

renaming all occurrences of y by x in S

• If the results obtained by executing S' are di�erent, then the

expressions x and y are certainly di�erent.

8

• On the other hand, if all possible pairs of sequences (S, S') produce

the same result, then x and y are the same.

Based on this de�nition, let's see if the expressions

scala> val x = new BankAccount
scala> val y = new BankAccount

de�ne the values x and y such that they are the same.

Here are the de�nitions again, followed by a test sequence:

scala> val x = new BankAccount
scala> val y = new BankAccount
scala> x deposit 30
30
scala> y withdraw 20
java.lang.Error : insu�cient funds

Now rename all occurrences of y with x in this sequence. We obtain:

9

scala> val x = new BankAccount
scala> val y = new BankAccount
scala> x deposit 30
30
scala> x withdraw 20
10

The �nal results are di�erent. We conclude that x and y are not the same.

On the other hand, if we de�ne

val x = new BankAccount
val y = x

then no sequence of operations can distinguish between x and y, so x and y

are the same in this case.

10

Assignment and Substitution Model

The preceding examples show that our model of computation by

substitution cannot be used.

Indeed, according to this model, one can always replace the name of a

value by the expression that de�nes it.

For example, in

val x = new BankAccount
val y = x

the x in the de�nition of y could be replaced by new BankAccount

But we have seen that this change leads to a di�erent program.

The substitution model ceases to be valid when we add the assignment.

We'll see next week how to modify the model to re�ect alternative

assignments.

11

Loops

Theory: Variables make it possible to model all imperative programs.

But what about control statements like loops?

We can model them using functions.

Example: Here is a Scala program that uses a while loop:

def power (x : Double, exp : Int): Double = {
var r = 1.0
var i = exp
while (i > 0) { r = r ∗ x; i = i − 1 }
r

}

In Scala, while is a keyword.

But how could we de�ne while by using a function?

12

De�nition of while

The instruction while can be de�ned as a function that takes two

arguments:

• a condition of type boolean, and

• a command, of type Unit

The condition and the command must be passed by name so that they're

reevaluated in each iteration.

This brings us to the following de�nition of while.

def while(condition : ⇒ Boolean)(command : ⇒ Unit): Unit =
if (condition) {

command; while(condition)(command)
} else {
}

Note that while is tail recursive, it should be able to operate with a

constant stack size.

13

Exercise: Write a function implementing the loop, repeat, that must be

used as follows:

repeat {
command

} (condition)

Is it also possible to obtain the following syntax?

repeat {
command

} until (condition)

14

for Loops

The for loop in Java is an exception; it cannot be modeled simply by a

higher-order function.

The reason is that in a Java program of type

for (int i = 1; i < 3; i = i + 1) { System.out.print(i + " "); }

the arguments of for contain the declaration of the variable i, which is

visible in other arguments and in the body.

However, in Scala there exists a similar syntax for for loops.

for (i ← List.range(1, 3)) { System.out.print(i + " ") }

This displays 1 2.

Compare this expression with the following:

scala> for (i ← List.range(1, 3)) yield i
List(1, 2)

15

Advanced Example: Discrete Event Simulation

We now consider an example of how assignments and higher-order

functions can be combined in interesting ways.

We will construct a digital circuit simulator.

This example also shows how to build programs for discrete event

simulation.

16

Digital Circuits

Let's start with a small description language for digital circuits.

A digital circuit is composed of wires and of functional components

Wires transport signals that are transformed by components.

We represent signals using booleans true and false.

The base components (gates) are:

• The Inverter, whose output is the inverse of its input.

• The AND Gate, whose output is the conjunction of its inputs.

• The OR Gate, whose output is the disjunction of its inputs.

Other components can be constructed by combining these base

components.

The components have a reaction time (or delay), i.e. their outputs don't

change immediately after a change to their inputs.

17

A Language for Digital Circuits

We describe the elements of a digital circuit using the following Scala

classes and functions.

To start with, the class Wire models wires.

Wires can be constructed as follows:

val a = new Wire; val b = new Wire; val c = new Wire

or in the equivalent way:

val a, b, c = new Wire

On the other hand, there exist the following functions:

def inverter(input : Wire, output : Wire): Unit
def andGate(a1 : Wire, a2 : Wire, output : Wire): Unit
def orGate(o1 : Wire, o2 : Wire, output : Wire): Unit

which create base components, as a side e�ect.

18

More complex components can be constructed from these.

For example, a half-adder can be de�ned as follows:

def halfAdder(a : Wire, b : Wire, s : Wire, c : Wire) {
val d = new Wire
val e = new Wire
orGate(a, b, d)
andGate(a, b, c)
inverter(c, e)
andGate(d, e, s)

}

19

This half-adder can in turn be used to de�ne a full adder:

def fullAdder(a : Wire, b : Wire, cin : Wire, sum : Wire, cout : Wire) {
val s = new Wire
val c1 = new Wire
val c2 = new Wire
halfAdder(a, cin, s, c1)
halfAdder(b, s, sum, c2)
orGate(c1, c2, cout)

}

20

What do we have left to do?

To continue, the class Wire and the functions inverter, andGate, and

orGate represent a small description language of digital circuits.

We now give the implementation of this class and its functions which allow

us to simulate circuits.

These implementations are based on a simple API for discrete event

simulation.

21

Simulation API

A discrete event simulator performs actions, speci�ed by the user at a

given moment.

An action is a function that doesn't take any parameters and which

returns Unit:

type Action = () ⇒ Unit

The time is simulated; it has nothing to with the actual time.

A concrete simulation happens inside an object that inherits from the

abstract class Simulator which has the following signature:

abstract class Simulator {
def currentTime : Int
def afterDelay(delay : Int)(block : ⇒ Unit): Unit
def run(): Unit

}

22

Here,

currentTime returns the current simulated time in the form of an integer.

afterDelay registers an action to perform after a certain delay (relative to

the current time, currentTime).

run performs the simulation until there are no more actions waiting.

23

The Wire Class

A wire must support three base operations:

• getSignal : Boolean returns the current value of the signal transported

by the wire.

• setSignal(sig : Boolean): Unit modi�es the value of the signal

transported by the wire.

• addAction(a : Action): Unit attaches the speci�ed procedure to the

actions of the wire. All of the attached actions are executed at each

change of the transported signal.

Here is an implementation of the class Wire:

24

class Wire {
private var sigVal = false

private var actions : List[Action] = List()
def getSignal : Boolean = sigVal
def setSignal(s : Boolean) {

if (s != sigVal) {
sigVal = s
actions foreach (_())

}
}
def addAction(a : Action) {

actions = a :: actions
a()

}
}

The state of a wire is modeled by two private variables:

• The sigVal variable represents the current value of the signal.

• The actions variable represents the actions currently attached to the

wire.

25

The Inverter

We implement the inverter by installing an action on its input wire.

This action produces the inverse of the input signal on the output wire.

The change must be e�ective after a delay of InverterDelay units of

simulated time.

We thus obtain the following implementation:

def inverter(input : Wire, output : Wire) {
def invertAction() {

val inputSig = input.getSignal
afterDelay(InverterDelay) { output setSignal !inputSig }

}
input addAction invertAction

}

26

The AND Gate

The AND gate is implemented in a similar way.

The action of an AND gate produces the conjunction of input signals on

the output wire.

This must happen after a delay of AndGateDelay units of simulated time.

We thus obtain the following implementation:

def andGate(a1 : Wire, a2 : Wire, output : Wire) {
def andAction() {

val a1Sig = a1.getSignal
val a2Sig = a2.getSignal
afterDelay(AndGateDelay) { output setSignal (a1Sig & a2Sig) }

}
a1 addAction andAction
a2 addAction andAction

}

27

Exercise: Write the implementation of the OR gate.

Exercise: The OR gate can be de�ned in the same way by combining

inverters and AND gates. De�ne a function orGate in terms of andGate

and inverter. What is the delay of this component?

28

The Simulation Class

All we have left to do now is to implement the class Simulator.

The idea is to keep, in the Simulator object, an agenda of actions to

perform.

This agenda is a list of pairs. Each pair is composed of an action and the

time when it must be produced.

The agenda list is sorted in such a way that the actions to be performed

�rst are in the beginning.

abstract class Simulator {
case class WorkItem(time : Int, action : Action)
private type Agenda = List[WorkItem]
private var agenda : Agenda = List()

There is also a private variable, curtime, that contains the current

simulation time: private var curtime = 0

29

An application of the afterDelay(delay)(block) method inserts the task

WorkItem(curtime + delay, () ⇒ block) into the agenda list at the right

position.

An application of the run method removes successive elements from the

agenda, and performs the associated actions.

This process continues until the agenda is empty:

def run() {
afterDelay(0) {

println("∗∗∗ simulation started, time = "+currentTime+" ∗∗∗")
}
while (!agenda.isEmpty) next()

}

The run method uses the next function, which removes the �rst action in

the agenda, executes it, and updates the current time.

The implementations of next and afterDelay are left as an exercise.

30

Launching the Simulation

Before launching the simulation, we still need a way to examine the

changes of the signals on the wires.

To this end, we de�ne the function probe.

def probe(name : String, wire : Wire) {
def probeAction() {

println(name +" "+ currentTime +" value = "+ wire.getSignal)
}
wire addAction probeAction

}

We now de�ne four wires and we place probes.

31

scala> val input1, input2, sum, carry = new Wire
scala> probe("sum", sum)
scala> probe("carry", carry)

Next, we de�ne a half-adder using these wires:

scala> halfAdder(input1, input2, sum, carry)

We now give the value true to input1 and launch the simulation:

scala> input1.setSignal(true); run
∗∗∗ simulation started, time = 0 ∗∗∗
sum 0 value = false

carry 0 value = false

sum 8 value = true

scala> input2.setSignal(true); run
∗∗∗ simulation started, time = 8 ∗∗∗
carry 11 value = true

sum 15 value = false

etc.

32

Summary

• State and assignments make our mental model of computation more

complicated.

• In particular, we lose referential transparency.

• On the other hand, the assignment allows us to formulate certain

programs in an elegant way.

• Example: discrete event simulation.

• Here, a system is represented by a mutable list of actions.

• The procedures of actions, when they're called, change the state of

objects and can also put in place other actions for the future.

• Like always, the choice between functional and imperative

programming must be made depending on the situation.

33

