
Week 7: Symbolic Computation

In the previous weeks, we've seen the essential elements of modern

functional programming:

• Functions (�rst class)

• Types (parametric)

• Pattern Matching

• Lists

This week, we'll apply some of these elements to a more extensive example:

symbolic di�erentiation.

But �rst, we must cover the relationship between functions and objects in

Scala.

1



Functions and Objects

Scala is a functional language.

⇒ This implies that functions are values (of the �rst class)

Scala is also an object-oriented language (pure):

⇒ This means that each value is an object.

So, functions are objects in Scala.

In fact, functions with n parameters are instances of the standard trait,

scala.Functionn, which is de�ned as

trait Functionn[T1, ..., Tn, U] {
def apply(x1 : T1, ..., xn : Tn): U

}

2



In particular:

• The functional type

(T1, ..., Tn) ⇒ U

is just a shorthand for the class type

Functionn[T1, ..., Tn, U]

• The expression of anonymous function

(x1 : T1, ..., xn : Tn) ⇒ E

where E has type U is a shorthand for an expression of object creation

new Functionn[T1, ..., Tn, U] {
def apply(x1 : T1, ..., xn : Tn): U = E

}

• On the other hand, each time the value of an object is applied to

arguments, a method apply is implicitly inserted.

x(y1, ..., yn) is shorthand for x.apply(y1, ..., yn)

If x isn't a method.

3



Example: Let's consider the following Scala code

val plus1 : Int ⇒ Int = x : Int ⇒ x + 1
plus1(2)

It results in the following code for an object.

val plus1 : Function1[Int, Int] = new Function1[Int, Int] {
def apply(x : Int): Int = x + 1

}
plus1.apply(2)

4



Anonymous Partial Functions

Anonymous functions can also be constructed from case expressions.

Until now, case was always used along with match.

But it is also possible to use case alone.

Example: Given a list of lists xss, the following expression returns the

heads of all non-empty lists in xss:

xss �atMap {
case x :: xs ⇒ List(x)
case List() ⇒ List()

}

In fact, this expression is equivalent to:

5



xss �atMap {
y ⇒ y match {

case x :: xs ⇒ List(x)
case List() ⇒ List()

}
}

The part in curly braces is an anonymous function.

6



More extensive example: symbolic

di�erentiation

We will now use pattern matching in a program that performs symbolic

di�erentiation of expressions.

Our goal is to write a function derive, which can ideally be used as follows:

scala> val x = Var("x")
scala> val expr = Number(7) ∗ x ∗ x ∗ x + Number(3) ∗ x
scala> expr derive x
21 ∗ x ∗ x + 3

We begin by de�ning the language of the expressions we'd like to derive.

To start, we consider expressions composed only of numbers, variables, and

operators + ∗.

This brings us to the following class hierarchy:

7



trait Expr { ... }
case class Number(x : Int) extends Expr
case class Var(name : String) extends Expr
case class Sum(e1 : Expr, e2 : Expr) extends Expr
case class Prod(e1 : Expr, e2 : Expr) extends Expr

Note that Expr is a trait, because we want that it's not possible to create

values of this type directly.

Next, we de�ne the function derive in the class Expr.

trait Expr {
def derive(v : Var): Expr = this match {

case Number(_) ⇒ Number(0)
case Var(name) ⇒ if (name == v.name) Number(1) else Number(0)
case Sum(e1, e2) ⇒ Sum(e1 derive v, e2 derive v)
case Prod(e1, e2) ⇒ Sum(Prod(e1, e2 derive v), Prod(e2, e1 derive v))

}
}

8



That's it! We can already test our derivation program.

scala> val x = Var("x")
scala> val expr = Prod(x, x)
scala> expr derive x
Sum(Prod(Var(x), Number(1)), Prod(Var(x), Number(1)))

9



Implicit Members of Case Classes

Note that case classes implicitly de�ne access functions for the parameters

of their constructor. In other words, the de�nition

case class Var(name : String) extends Expr

is transformed and augmented in the following way

case class Var(_name : String) extends Expr {
def name : String = _name
override def toString() = "Var(" + name + ")"

}

Note also that case classes implicitly de�ne a function toString; that's why

case class instances are printed like

Sum(Prod(Var(x), Number(1)), Prod(Var(x), Number(1)))

and not like

Sum@6547859495

10



However, for our example, this isn't enough; we'd like to be able to see the

expressions in a more readable form.

To do this, we rede�ne the function toString in each case class:

11



case class Number(x : Int) extends Expr {
override def toString() = x.toString()

}
case class Var(name : String) extends Expr {

override def toString() = name
}
case class Sum(e1 : Expr, e2 : Expr) extends {

override def toString() = e1.toString() + " + " + e2.toString()
}
case class Prod(e1 : Expr, e2 : Expr) extends {

override def toString() = {
def factorToString(e : Expr) = e match {

case Sum(_, _) ⇒ "(" + e.toString() + ")"
case _ ⇒ e.toString()

}
factorToString(e1) + " ∗ " + factorToString(e2)

}
}

The factorToString function of Prod puts parentheses around the factor of

a product only if this factor is a sum.

12



We thus insert a minimum number of parentheses.

We now obtain:

scala> val x = Var("x")
scala> val expr = Prod(x, x)
scala> expr derive x
x ∗ 1 + x ∗ 1

It's better, but this immediately calls for a new improvement:

We'd also like to be able to use + and ∗ in the input expressions.

How can we do this?

Using the same technique used to de�ne + and ∗ like operators on integers:

simply de�ne methods named + and ∗ in the Expr class.

13



trait Expr {
def + (that : Expr) = Sum(this, that)
def ∗ (that : Expr) = Prod(this, that)
def derive(v : Var): Expr = this match {

case Number(_) ⇒ Number(0)
case Var(name) ⇒ if (name == v.name) Number(1) else Number(0)
case Sum(e1, e2) ⇒ (e1 derive v) + (e2 derive v)
case Prod(e1, e2) ⇒ e1 ∗ (e2 derive v) + e2 ∗ (e1 derive v)

}
}

We can now write:

scala> val x = Var("x")
scala> val expr = x ∗ x
scala> expr derive x
x ∗ 1 + x ∗ 1
scala> val expr1 = Number(2) ∗ x ∗ x + Number(3) ∗ x
scala> expr1 derive x
2 ∗ x ∗ 1 + x ∗ (2 ∗ 1 + x ∗ 0) + 3 ∗ 1 + x ∗ 0

14



It seems like there's more work.

The expression returned is correct, but not simpli�ed.

This can be annoying for longer expressions.

Solution: we need to simplify the expressions.

Like in the rationals example, we can simplify in di�erent places:

1. during the construction of an expression,

2. when displaying an expression, or

3. when the user explicitly requests.

Here, we chose the �rst solution: we want to simplify the expressions as

soon as they are constructed.

15



trait Expr {

def + (that : Expr) =
/∗ retourne la version simpli�ée de this + that ∗/

def ∗ (that : Expr) =
/∗ retourne la version simpli�ée de this ∗ that ∗/

def derive(x : Var): Expr =
/∗ comme précédemment ∗/

}

Many simpli�cations are possible, including:

Number(0) ∗ e → Number(0)
Number(1) ∗ e → e
Number(0) + e → e
Number(n) ∗ Number(m) → Number(n ∗ m)
Number(n) + Number(m) → Number(n + m)
Var(x) ∗ Number(n) → Number(n) ∗ Var(x)
e ∗ Var(x) + e' ∗ Var(x) → (e + e') ∗ Var(x)

etc.

16



Here is how the simpli�cations on products can be implemented.

def ∗ (that : Expr) = (this, that) match {
case (Number(0), _) ⇒ Number(0)
case (_, Number(0)) ⇒ Number(0)
case (Number(1), e) ⇒ e
case (e, Number(1)) ⇒ e
case (Number(x), Number(y)) ⇒ Number(x ∗ y)
case (Var(x), Number(y)) ⇒ Prod(Number(y), Var(x))
case (x, y) ⇒ Prod(x, y)

}

Exercise:

• Implement the simpli�cations on sums in the class Expr.

• Are there other useful simpli�cations?

Exercise: Add a case class Power(e : Expr, n : Int) to represent

exponents, and modify your program accordingly.

17



Two Forms of Decomposition

We've seen two fundamental ways to organize class hierarchies.

1. In the classical object-oriented way, by declaring operations as

methods, which are implemented separately in each subclass, or

2. by having subclasses with few methods (if any), and by using pattern

matching to decompose an object.

In languages without pattern matching, we can use the Visitor design

pattern.

The choice of the best solution depends on the situation.

The most important factor in�uencing this choice depends on what needs

to be extended in the future.

18



Object-Oriented Decomposition

Returning to our original class Expr. If all one wants is to evaluate

expressions, one can easily implement the method eval in each subclass.

In this case, it is very simple to add new expression types, for example:

class Prod(e1 : Expr, e2 : Expr) extends Expr {
def eval = e1.eval ∗ e2.eval

}

However, the addition of new operations (like printing) implies the

addition of a new method in each existing subclass.

19



Decomposition Using Pattern Matching

On the other hand, if one decides to perform the decomposition by using

pattern matching, it becomes very easy to add new operations.

For example, to add evaluation (eval) to our class of expressions, just write:

def eval(e : Expr): Int = e match {
case Number(n) ⇒ n
case Var(_) ⇒ error("cannot evaluate variable")
case Sum(e1, e2) ⇒ eval(e1) + eval(e2)
case Prod(e1, e2) ⇒ eval(e1) ∗ eval(e2)

}

But now, the addition of a new type of expression is problematic, because

it involves �nding all expressions using pattern matching in order to add

the new case.

20



Question: Which of the the two decompositions would you choose for...

• ... a Java compiler, in which the class hierarchy represents the

syntactic constructs of the Java language?

• a window manager, in which the class hierarchy represents the objects

to be displayed?

Exercise:

• Add a parameter env of type Map[String, Expr] to the eval function so

it can also evaluate expressions containing variables.

21


