
Week 6: The For Notation

Higher-order functions such as map, �atMap or �lter provide powerful

constructs for manipulating lists.

But sometimes the level of abstraction required by these function make the

program di�cult to understand.

In this case, Scala's for notation can be used.

Example: Let persons be a list of people, with �elds name and age. To

obtain the names of people over 20 years old, we write:

for (p ← persons if p.age > 20) yield p.name

which is equivalent to:

persons �lter (p ⇒ p.age > 20) map (p ⇒ p.name)

The for expression is similar to loops in imperative languages, except that

it builds a list of the results of all iterations.

1

Syntax of For

A for expression is of the form

for (s) yield e

Here, s is a sequence of generators and of �lters.

• A generator is of the form p ← e', where p is a pattern and e' an

expression whose value is a list.

• A �lter is of the form if f where f is an expression of type Boolean. It

removes all bindings for which f is false.

• The sequence must start with a generator.

• If there are several generators in the sequence, the last generators vary

faster than the �rst.

And e is an expression whose value is returned by an iteration.

2

Use of for

Here are two examples which were previously resolved with higher-order

functions:

Example: Given a positive integer n, �nd all the pairs of positive integers

(i, j) such that 1 ≤ j < i < n, and i + j is �rst.

for (i ← List.range(1, n);
j ← List.range(1, i);
if isPrime(i+j)

) yield (i, j)

Example: We can write the scalar product of two vectors as well.

def scalarProduct(xs : List[Double], ys : List[Double]) : Double =
sum (for ((x, y) ← xs zip ys) yield x ∗ y)

3

Example: the n queens

• The eight queens problem is to place eight queens on a chessboard so

that no queen is threatened by another.

• In other words, there can't be two queens in the same row, column, or

diagonal.

• We now develop a solution for a chessboard of any size, not just 8.

• One way to solve the problem is to place a queen on each row.

• Once we have placed k − 1 queens, one must place the kth queen in a

column where it's not �in check" with any other queen on the board.

4

• We can solve this problem with a recursive algorithm:

• Suppose that we have already generated all the solutions

consisting of placing k−1 queens on a board of size n.

• Each solution is represented by a list (of length k−1) containing
the numbers of columns (between 0 and n−1).
• The column number of the queen in the k−1th row comes �rst in

the list, followed by the column number of the queen in row k−2,
etc.

• The solution set is thus represented by a list of lists, with one

element for each solution.

• Now, to place the kth queen, we generate all possible extensions

of each solution preceded by a new queen:

5

def queens(n : Int): List[List[Int]] = {
def placeQueens(k : Int): List[List[Int]] = {

if (k == 0) List(List())
else {

for (queens ← placeQueens(k − 1);
col ← List.range(0, n);
if isSafe(col, queens, 1)) yield col :: queens

}
}
placeQueens(n)

}

Exercise: Write a function

def isSafe(col : Int, queens : List[Int], delta : Int): Boolean

which tests if a queen in an indicated column col is secure amongst the

other placed queens. Here, delta is the di�erence between the row of the

queen to be placed and the line of the �rst queen in the list.

6

Queries with for

The for notation is essentially equivalent to the common operations of

query languages for databases.

Example: Suppose that we have a database of books books, represented

as a list of books.

class Book {
val title : String
val authors : List[String]

}

val books : List[Book] = List(
new Book {

val title = "Structure and Interpretation of Computer Programs"
val authors = List("Abelson, Harald", "Sussman, Gerald J.")

},

7

new Book {
val title = "Introduction to Functional Programming"
val authors = List("Bird, Richard")

},
new Book {

val title = "E�ective Java"
val authors = List("Bloch, Joshua")

}
)

So to �nd the titles of books whose author's name is � Bird�:

for (b ← books; a ← b.authors; if (a startsWith "Bird")
) yield b.title

(Here, startsWith is a method of java.lang.String). java.lang.String). Or,

to �nd all the books which have the word �Program� in the title:

for (b ← books if containsString(b.title, "Program")
) yield b.title

(Here, containsString is a method that we have to write, for example, using

the method indexOf of java.lang.String).

8

Or, to �nd the names of all authors who have written at least two books

present in the database.

for (b1 ← books;
b2 ← books;
if b1.title.compareTo(b2.title) < 0;
a1 ← b1.authors;
a2 ← b2.authors;
if a1 == a2) yield a1

Problem: What happens if an author has published three books?

Solution: We must remove duplicate authors who are in the results list

twice.

This is achieved with the following function:

def removeDuplicates[A](xs : List[A]): List[A] =
if (xs.isEmpty) xs
else xs.head :: removeDuplicates(xs.tail �lter (x ⇒ x != xs.head))

It is equivalent to formulate the last expression as:

xs.head :: removeDuplicates(for (x ← xs.tail; if x != xs.head) yield x)

9

Parentheses: expressions of object creation

The previous example showed a new way to create objects:

new Book {
val title = "Structure and Interpretation of Computer Programs"
val authors = List("Abelson, Harald", "Sussman, Gerald.J")

}

Here, the name of the class is followed by a template (patron en français).

The template is composed of de�nitions for the object to be created.

Typically, these de�nitions implement the abstract members of the class.

This is similar to anonymous classes in Java.

10

We can see such an expression as being equivalent to the de�nition of a

local class and of a value of this class.

{
class Book' extends Book {

val title = "Structure and Interpretation of Computer Programs"
val authors = List("Abelson, Harald", "Sussman, Gerald.J")

}
(new Book'): Book

}

11

Translation of for

The syntax of for is closely related to the higher-order functions map,

�atMap and �lter.

First of all, these functions can all be de�ned in terms of for:

abstract class List[A] {
...
def map[B](f : A ⇒ B): List[B] =

for (x ← this) yield f(x)

def �atMap[B](f : A ⇒ List[B]): List[B] =
for (x ← this; y ← f(x)) yield y

def �lter(p : A ⇒ Boolean): List[A] =
for (x ← this; if (p(x))) yield x

}

12

Then, the expressions for them can be expressed in terms of map, �atMap

and �lter.

Here is the translation scheme used by the compiler (we limit ourselves

here to simple patterns)

• A simple for expression

for (x ← e) yield e'

is translated into

e.map(x ⇒ e')

• A for expression

for (x ← e; if f; s) yield e'

where f is a �lter and s is a (potentially empty) sequence of generators

and �lters, is translated into

for (x ← e.�lter(x ⇒ f); s) yield e'

(and the translation continues with the new expression)

13

• A for expression

for (x ← e; y ← e'; s) yield e�

where s is a (potentially empty) sequence of generators and �lters, is

translated into

e.�atMap(x ⇒ for (y ← e'; s) yield e�)

(and the translation continues with the new expression)

Example: If we take our example of pairs of the �rst sum:

for (i ← List.range(1, n);
j ← List.range(1, i);
if isPrime(i+j)

) yield (i, j)

this is what you get when you translate this expression:

List.range(1, n)
.�atMap(

i ⇒ List.range(1, i)
.�lter(j ⇒ isPrime(i+j))
.map(j ⇒ (i, j)))

14

Exercise: De�ne the following function in terms of for.

def concat[A](xss : List[List[A]]): List[A] =
xss.foldRight(List[A]())((xs, ys) ⇒ xs ::: ys)

Exercise: Translate

for (b ← books; a ← b.authors; if (a startsWith "Bird")) yield b.title
for (b ← books; if (containsString(b.title, "Program"))) yield b.title

into higher-order functions.

15

Generalization of for

Interestingly, the translation of for is not limited to lists; it is based soley

on the presence of the methods map,�atMap and �lter.

This gives the programmer the possibility to have the for syntax for other

types as well� we must only de�ne map, �atMap and �lter for these types.

There are many types for which this is useful: arrays, iterators, databases,

XML data, optional values, parsers, etc.

For example, books might not be a list, but a database stored on some

server.

As long as the client interface to the database de�nes the methods map,

�atMap et �lter, we can use the for syntax for querying the database.

16

Active research topic: What do we need to make the language scalable

(dimensionnables en français), so it can subsume domain speci�c languages

(including query languages like SQL and XQuery)?

17

