
Week 5 : More on Lists
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Reduction of Lists

Another common operation on lists is to combine the elements of a list

using a given operator.

For example:

sum(List(x1, ..., xn)) = 0 + x1 + ... + xn
product(List(x1, ..., xn)) = 1 ∗ x1 ∗ ... ∗ xn

We can implement this by using the usual recursive scheme:

def sum(xs : List[Int]): Int = xs match {
case Nil ⇒ 0
case y :: ys ⇒ y + sum(ys)

}

def product(xs : List[Int]): Int = xs match {
case Nil ⇒ 1
case y :: ys ⇒ y ∗ product(ys)

}
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The generic method reduceLeft inserts a given binary operator between

two adjacent elements.

For example.

List(x1, ..., xn).reduceLeft(op) = (...(x1 op x2) op ... ) op xn

It's now possible to write more simply:

def sum(xs : List[Int]) = (0 :: xs) reduceLeft {(x :Int, y :Int) ⇒ x + y}
def product(xs : List[Int]) = (1 :: xs) reduceLeft {(x :Int, y :Int) ⇒ x ∗ y}
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Implementation of reduceLeft

How can we implement reduceLeft?

abstract class List[a] { ...
def reduceLeft(op : (a, a) ⇒ a): a = this match {

case Nil ⇒ error("Nil.reduceLeft")
case x :: xs ⇒ (xs foldLeft x)(op)

}

def foldLeft[b](z : b)(op : (b, a) ⇒ b): b = this match {
case Nil ⇒ z
case x :: xs ⇒ (xs foldLeft op(z, x))(op)

}
}

The function reduceLeft is de�ned in terms of another function which is

often useful, foldLeft.
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foldLeft takes an accumulator, z, as an additional parameter, which is

returned when foldLeft is called on an empty list.

In other words,

(List(x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ... ) op xn

So, sum and product can also be de�ned as follows:

def sum(xs : List[Int]) = (xs foldLeft 0) {(x, y) ⇒ x + y}
def product(xs : List[Int]) = (xs foldLeft 1) {(x, y) ⇒ x ∗ y}
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FoldRight and ReduceRight

Applications of foldLeft and reduceLeft unfold on trees that lean to the left:

op

. . .

op

op

z x1

x2

. . .

xn

They have two dual functions, foldRight and reduceRight, which produce

trees which lean to the right, i.e.,

List(x1, ..., xn).reduceRight(op) = x1 op ( ... (xn−1 op xn)...)
(List(x1, ..., xn) foldRight acc)(op) = x1 op ( ... (xn op acc)...)

They are de�ned as follows
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def reduceRight(op : (a, a) ⇒ a): a = this match {
case Nil ⇒ error("Nil.reduceRight")
case x :: Nil ⇒ x
case x :: xs ⇒ op(x, xs.reduceRight(op))

}
def foldRight[b](z : b)(op : (a, b) ⇒ b): b = this match {

case Nil ⇒ z
case x :: xs ⇒ op(x, (xs foldRight z)(op))

}

For operators that are both associative and commutative, foldLeft and

foldRight are equivalent (even though there may be a di�erence in

e�ciency).

But sometimes, only one of the two operators is appropriate.

Example: Here is another formulation of concat:

def concat[a](xs : List[a], ys : List[a]): List[a] =
(xs foldRight ys) {(x, xs) ⇒ x :: xs}

Here, it isn't possible to replace foldRight by foldLeft. Why?
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Back to Reversing Lists

Here is a function for reversing lists which has a linear cost.

The idea is to use the operation foldLeft:

def reverse[a](xs : List[a]): List[a] = (xs foldLeft z?)(op?)

All that remains is to replace the parts z? and op?.

Let's try to deduce them from examples.

To start,

Base Case: List()

reverse(List()) (by speci�cation of reverse)
= (List() foldLeft z)(op) (by de�nition of reverse)
= z (by de�nition of foldLeft)

Consequently, z = List().
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Then,

Induction Step: List(x)

reverse(List(x)) (by speci�cation reverse)
= (List(x) foldLeft List())(op) (by def. of reverse with z = List())
= op(List(), x) (by de�nition of foldLeft)

Consequently, op(List(), x) = List(x) = x :: List(). This suggests to take

for op the operator :: and swapping its operands.

We thus arrive at the following implementation of reverse.

def reverse[a](xs : List[a]): List[a] =
(xs foldLeft List[a]()){(xs, x) ⇒ x :: xs}

Remark: the type parameter in List[a]() is necessary for type inference.

Q: What's the complexity of this implementation of reverse ?
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More on Fold and Reduce

Exercise: Complete the following de�nitions, based on the usage of

foldRight, which introduce base operations for manipulating lists.

def mapFun[a, b](xs : List[a], f : a ⇒ b): List[b] =
(xs foldRight List[b]()){ ?? }

def lengthFun[a](xs : List[a]): Int =
(xs foldRight 0){ ?? }
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Handling Nested Lists

We can extend the usage of higher order functions on lists to many

calculations which are usually expressed using nested loops.

Example: Given a positive integer n, �nd all pairs of positive integers i

and j, with 1 ≤ j < i < n such that i + j is prime.

For example, if n = 7, the sought pairs are

i 2 3 4 4 5 6 6

j 1 2 1 3 2 1 5

i+ j 3 5 5 7 7 7 11
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A natural way to do this is to:

• Generate the sequence of all pairs of integers (i, j) such that

1 ≤ j < i < n.

• Filter the pairs for which i + j is prime.

One natural way to generate the sequence of pairs is to:

• Generate all the integers i between 1 and n (excluded). This can be

realized by the function

def range(from : Int, end : Int): List[Int] =
if (from ≥ end) List()
else from :: range(from + 1, end)

which is prede�ned in List.

• For each integer i, generate the list of pairs (i, 1), ..., (i, i−1). This can
be achieved by combining range and map:

List.range(1, i) map (x ⇒ (i, x))

• Finally, combine all the sub-lists using foldRight with :::.
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By reassembling the pieces, we obtain the following expression:

List.range(1, n)
.map(i ⇒ List.range(1, i).map(x ⇒ (i, x)))
.foldRight(List[(Int, Int)]()) {(xs, ys) ⇒ xs ::: ys}
.�lter(pair ⇒ isPrime(pair._1 + pair._2))
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The �atMap Function

The combination of applying a function to the elements of a list and then

concatenating the results is so common, that we have introduced a special

method for this in List.scala:

abstract class List[a] { ...
def �atMap[b](f : a ⇒ List[b]): List[b] = this match {

case Nil ⇒ Nil
case x :: xs ⇒ f(x) ::: (xs �atMap f)

}
}

With �atMap, we could have written an expression more concisely:

List.range(1, n)
.�atMap(i ⇒ List.range(1, i).map(x ⇒ (i, x)))
.�lter(pair ⇒ isPrime(pair._1 + pair._2))

Q: Find a concise way to de�ne isPrime. (Hint: Use forall de�ned in List).
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The zip Function

The zip method in the List class combines two lists into one list of pairs.

abstract class List[a] { ...
def zip[b](that : List[b]): List[(a,b)] =

if (this.isEmpty | | that.isEmpty) Nil
else (this.head, that.head) :: (this.tail zip that.tail)

Example: By using zip and foldLeft, we can de�ne the scalar product of

two lists in the following way.

def scalarProduct(xs : List[Double], ys : List[Double]): Double =
(xs zip ys)
.map(xy ⇒ xy._1 ∗ xy._2)
.foldLeft(0.0){(x, y) ⇒ x + y}
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Summary

• We have seen that lists are a fundamental data structure in functional

programming.

• Lists are de�ned by parametric classes and are manipulated by

polymorphic methods.

• Lists are in functional languages what arrays are in imperative

languages.

• But contrary to arrays, we normally don't access elements of a list

using their index.

• We prefer to traverse lists recursively or via higher-order combinators

such as map, �lter, foldLeft or foldRight.
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Reasoning About Lists

Recall the concatenation operation on lists (seen during week 4)

class List[a] {
...
def ::: (that : List[a]): List[a] = that match {

case Nil ⇒ this

case x :: xs ⇒ x :: (xs ::: this)
}

}

We would like to verify that the concatenation is associative, and that it

admits the empty list List() as neutral element to the left and to the right:

(xs ::: ys) ::: zs = xs ::: (ys ::: zs)

xs ::: List() = xs = List() ::: xs

Q: How can we prove properties like these?

A: By structural induction on lists.
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Reminder: Natural Induction (or Recurrence)

Recall the principle of proof by natural induction:

To show a property P (n) for all the integers n ≥ b,

1. Show that we have P (b) (base case),

2. for all integers n ≥ b show that:

if one has P (n), then one also has P (n+ 1)

(induction step).

Example: Given

def factorial(n : Int): Int =
if (n == 0) 1 /* 1st clause */
else n ∗ factorial(n−1) /* 2nd clause */

Show that, for all n ≥ 4,

factorial(n) ≥ 2n
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Base Case: 4

This case is established by simple calculations of factorial(4) = 24 and

24 = 16.

Induction Step: n+1 We have for n ≥ 4 :

factorial(n + 1)
= (n + 1) ∗ factorial(n) (by the 2nd clause of factorial (*))
≥ 2 ∗ factorial(n) (by calculating)
≥ 2 ∗ 2n. (by induction hypothesis)

Note that a proof can freely apply reduction steps like (*) to the interior of

a term.

That works because pure functional programs don't have side e�ects; so

that a term is equivalent to the term to which it reduces.

This principle is called referential transparency.
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Structural Induction

The principle of structural induction is analogous to natural induction:

In the case of lists, it has the following form:

To prove a property P (xs) for all lists xs,

1. show that P(List()) holds (base case),

2. for a list xs and some element x, show that:

if P (xs) holds, then P (x :: xs) also holds

(induction step).

20



Example

We will show that (xs ::: ys) ::: zs = xs ::: (ys ::: zs), by structural

induction on xs.

Base Case: List()

For the left-hand side we have:

(List() ::: ys) ::: zs
= ys ::: zs (by the �rst clause of :::)

For the right-hand side, we have:

List() ::: (ys ::: zs)
= ys ::: zs (by the �rst clause of :::)

This case is therefore established.
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Induction Step: x :: xs

For the left-hand side, we have:

((x :: xs) ::: ys) ::: zs
= (x :: (xs ::: ys)) ::: zs (by the second clause of :::)
= x :: ((xs ::: ys) ::: zs) (by the second clause of :::)
= x :: (xs ::: (ys ::: zs)) (by induction hypothesis)

For the right hand side we have:

(x :: xs) ::: (ys ::: zs)
= x :: (xs ::: (ys ::: zs)) (by the second clause of :::)

So this case (and with it, the property) is established.

Exercise: Show by induction on xs that xs ::: List() = xs.
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Example (2)

For a more di�cult example, let's consider the function

abstract class List[a] { ...
def reverse : List[a] = this match {

case List() ⇒ List() /* 1st clause */
case x :: xs ⇒ xs.reverse ::: List(x) /* 2nd clause */

}
}

We'd like to prove the following proposition

xs.reverse.reverse = xs

We proceed by induction on xs. The base case is easy to establish:

List().reverse.reverse
= List().reverse (by the 1st clause of reverse)
= List() (by the 1st clause of reverse)
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For the induction step, we try:

(x :: xs).reverse.reverse
= (xs.reverse ::: List(x)).reverse (by the 2nd clause of reverse)

We can't do anything more with this expression, therefore we turn to the

member on the right-hand side:

x :: xs
= x :: xs.reverse.reverse (by induction)

Both sides are simpli�ed in di�erent expressions.

We must still show that

(xs.reverse ::: List(x)).reverse = x :: xs.reverse.reverse

Trying to prove it directly by induction doesn't work.

We must instead try to generalize the equation:

(ys ::: List(x)).reverse = x :: ys.reverse
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This equation can be proved by a second induction argument on ys.

Exercise: Is it true that (xs drop m) apply n = xs apply (m + n) for all

integers m ≥ 0, n ≥ 0 and all lists xs ?
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Structural Induction on Trees

Structural induction is not limited to lists; it applies to any tree structure.

The general induction principle is the following:

To show the property P(t) for all trees of a certain type,

• show P(l) for all the leaves l of the tree,

• for each internal node t with sub-trees s1, ..., sn, show that

P(s1) ∧ ... ∧ P(sn) ⇒ P(t).

Example: Recall our de�nition of IntSet with the operations contains and

incl:

abstract class IntSet {
def incl(x : Int): IntSet
def contains(x : Int): Boolean

}
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case class Empty extends IntSet {
def contains(x : Int): Boolean = false

def incl(x : Int): IntSet = NonEmpty(x, Empty, Empty)
}
case class NonEmpty(elem : Int, left : IntSet, right : IntSet) extends IntSet {

def contains(x : Int): Boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true

def incl(x : Int): IntSet =
if (x < elem) NonEmpty(elem, left incl x, right)
else if (x > elem) NonEmpty(elem, left, right incl x)
else this

}

(With case modi�ers to enable the use of factory methods in place of

new).

What does it mean to prove the correctness of this implementation?
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The Laws of IntSet

One way to de�ne and show the correctness of an implementation consists

of proving the laws that it respects.

In the case of IntSet, we have the following three laws:

For any set s, and elements x and y:

Empty contains x = false

(s incl x) contains x = true

(s incl x) contains y = s contains y if x 6= y

(In fact, we can show that these laws completely characterize the desired

data type).

How can we prove these laws?

Proposition 1: Empty contains x = false.

Proof: According to the de�nition of contains in Empty.
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Proposition 2: (s incl x) contains x = true

Proof:

Base Case: Empty

(Empty incl x) contains x
= (by the de�nition of incl in Empty)

NonEmpty(x, Empty, Empty) contains x
= (by the de�nition of contains in NonEmpty)

true

Induction Step: NonEmpty(x, l, r)

(NonEmpty(x, l, r) incl x) contains x
= (by the de�nition of incl in NonEmpty)

NonEmpty(x, l, r) contains x
= (by the de�nition of contains in NonEmpty)

true
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Induction Step: NonEmpty(y, l, r) with y < x

(NonEmpty(y, l, r) incl x) contains x
= (by the de�nition of incl in NonEmpty)

NonEmpty(y, l, r incl x) contains x
= (by the de�nition of contains in NonEmpty)

(r incl x) contains x
= (by the induction hypothesis)

true

Induction Step: NonEmpty(y, l, r) with y > x is analogous.

Proposition 3: If x 6= y then xs incl y contains x = xs contains x.

Proof: See blackboard.
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Exercise

Suppose we add a function union to IntSet:

abstract class IntSet { ...
def union(other : IntSet): IntSet

}
class Expty extends IntSet { ...

def union(other : IntSet) = other
}
class NonEmpty(x : Int, l : IntSet, r : IntSet) extends IntSet { ...

def union(other : IntSet): IntSet = l union (r union (other incl x))
}

The correctness of union can be translated into the following law:

Proposition 4: (xs union ys) contains x = xs contains x | | ys contains x.
Is this true? Which hypothesis is missing? Find a counter-example.

Show proposition 4 by using structural induction on xs.
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