
Week 5 : More on Lists

1

Reduction of Lists

Another common operation on lists is to combine the elements of a list

using a given operator.

For example:

sum(List(x1, ..., xn)) = 0 + x1 + ... + xn
product(List(x1, ..., xn)) = 1 ∗ x1 ∗ ... ∗ xn

We can implement this by using the usual recursive scheme:

def sum(xs : List[Int]): Int = xs match {
case Nil ⇒ 0
case y :: ys ⇒ y + sum(ys)

}

def product(xs : List[Int]): Int = xs match {
case Nil ⇒ 1
case y :: ys ⇒ y ∗ product(ys)

}

2

The generic method reduceLeft inserts a given binary operator between

two adjacent elements.

For example.

List(x1, ..., xn).reduceLeft(op) = (...(x1 op x2) op ...) op xn

It's now possible to write more simply:

def sum(xs : List[Int]) = (0 :: xs) reduceLeft {(x :Int, y :Int) ⇒ x + y}
def product(xs : List[Int]) = (1 :: xs) reduceLeft {(x :Int, y :Int) ⇒ x ∗ y}

3

Implementation of reduceLeft

How can we implement reduceLeft?

abstract class List[a] { ...
def reduceLeft(op : (a, a) ⇒ a): a = this match {

case Nil ⇒ error("Nil.reduceLeft")
case x :: xs ⇒ (xs foldLeft x)(op)

}

def foldLeft[b](z : b)(op : (b, a) ⇒ b): b = this match {
case Nil ⇒ z
case x :: xs ⇒ (xs foldLeft op(z, x))(op)

}
}

The function reduceLeft is de�ned in terms of another function which is

often useful, foldLeft.

4

foldLeft takes an accumulator, z, as an additional parameter, which is

returned when foldLeft is called on an empty list.

In other words,

(List(x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ...) op xn

So, sum and product can also be de�ned as follows:

def sum(xs : List[Int]) = (xs foldLeft 0) {(x, y) ⇒ x + y}
def product(xs : List[Int]) = (xs foldLeft 1) {(x, y) ⇒ x ∗ y}

5

FoldRight and ReduceRight

Applications of foldLeft and reduceLeft unfold on trees that lean to the left:

op

. . .

op

op

z x1

x2

. . .

xn

They have two dual functions, foldRight and reduceRight, which produce

trees which lean to the right, i.e.,

List(x1, ..., xn).reduceRight(op) = x1 op (... (xn−1 op xn)...)
(List(x1, ..., xn) foldRight acc)(op) = x1 op (... (xn op acc)...)

They are de�ned as follows

6

def reduceRight(op : (a, a) ⇒ a): a = this match {
case Nil ⇒ error("Nil.reduceRight")
case x :: Nil ⇒ x
case x :: xs ⇒ op(x, xs.reduceRight(op))

}
def foldRight[b](z : b)(op : (a, b) ⇒ b): b = this match {

case Nil ⇒ z
case x :: xs ⇒ op(x, (xs foldRight z)(op))

}

For operators that are both associative and commutative, foldLeft and

foldRight are equivalent (even though there may be a di�erence in

e�ciency).

But sometimes, only one of the two operators is appropriate.

Example: Here is another formulation of concat:

def concat[a](xs : List[a], ys : List[a]): List[a] =
(xs foldRight ys) {(x, xs) ⇒ x :: xs}

Here, it isn't possible to replace foldRight by foldLeft. Why?

7

Back to Reversing Lists

Here is a function for reversing lists which has a linear cost.

The idea is to use the operation foldLeft:

def reverse[a](xs : List[a]): List[a] = (xs foldLeft z?)(op?)

All that remains is to replace the parts z? and op?.

Let's try to deduce them from examples.

To start,

Base Case: List()

reverse(List()) (by speci�cation of reverse)
= (List() foldLeft z)(op) (by de�nition of reverse)
= z (by de�nition of foldLeft)

Consequently, z = List().

8

Then,

Induction Step: List(x)

reverse(List(x)) (by speci�cation reverse)
= (List(x) foldLeft List())(op) (by def. of reverse with z = List())
= op(List(), x) (by de�nition of foldLeft)

Consequently, op(List(), x) = List(x) = x :: List(). This suggests to take

for op the operator :: and swapping its operands.

We thus arrive at the following implementation of reverse.

def reverse[a](xs : List[a]): List[a] =
(xs foldLeft List[a]()){(xs, x) ⇒ x :: xs}

Remark: the type parameter in List[a]() is necessary for type inference.

Q: What's the complexity of this implementation of reverse ?

9

More on Fold and Reduce

Exercise: Complete the following de�nitions, based on the usage of

foldRight, which introduce base operations for manipulating lists.

def mapFun[a, b](xs : List[a], f : a ⇒ b): List[b] =
(xs foldRight List[b]()){ ?? }

def lengthFun[a](xs : List[a]): Int =
(xs foldRight 0){ ?? }

10

Handling Nested Lists

We can extend the usage of higher order functions on lists to many

calculations which are usually expressed using nested loops.

Example: Given a positive integer n, �nd all pairs of positive integers i

and j, with 1 ≤ j < i < n such that i + j is prime.

For example, if n = 7, the sought pairs are

i 2 3 4 4 5 6 6

j 1 2 1 3 2 1 5

i+ j 3 5 5 7 7 7 11

11

A natural way to do this is to:

• Generate the sequence of all pairs of integers (i, j) such that

1 ≤ j < i < n.

• Filter the pairs for which i + j is prime.

One natural way to generate the sequence of pairs is to:

• Generate all the integers i between 1 and n (excluded). This can be

realized by the function

def range(from : Int, end : Int): List[Int] =
if (from ≥ end) List()
else from :: range(from + 1, end)

which is prede�ned in List.

• For each integer i, generate the list of pairs (i, 1), ..., (i, i−1). This can
be achieved by combining range and map:

List.range(1, i) map (x ⇒ (i, x))

• Finally, combine all the sub-lists using foldRight with :::.

12

By reassembling the pieces, we obtain the following expression:

List.range(1, n)
.map(i ⇒ List.range(1, i).map(x ⇒ (i, x)))
.foldRight(List[(Int, Int)]()) {(xs, ys) ⇒ xs ::: ys}
.�lter(pair ⇒ isPrime(pair._1 + pair._2))

13

The �atMap Function

The combination of applying a function to the elements of a list and then

concatenating the results is so common, that we have introduced a special

method for this in List.scala:

abstract class List[a] { ...
def �atMap[b](f : a ⇒ List[b]): List[b] = this match {

case Nil ⇒ Nil
case x :: xs ⇒ f(x) ::: (xs �atMap f)

}
}

With �atMap, we could have written an expression more concisely:

List.range(1, n)
.�atMap(i ⇒ List.range(1, i).map(x ⇒ (i, x)))
.�lter(pair ⇒ isPrime(pair._1 + pair._2))

Q: Find a concise way to de�ne isPrime. (Hint: Use forall de�ned in List).

14

The zip Function

The zip method in the List class combines two lists into one list of pairs.

abstract class List[a] { ...
def zip[b](that : List[b]): List[(a,b)] =

if (this.isEmpty | | that.isEmpty) Nil
else (this.head, that.head) :: (this.tail zip that.tail)

Example: By using zip and foldLeft, we can de�ne the scalar product of

two lists in the following way.

def scalarProduct(xs : List[Double], ys : List[Double]): Double =
(xs zip ys)
.map(xy ⇒ xy._1 ∗ xy._2)
.foldLeft(0.0){(x, y) ⇒ x + y}

15

Summary

• We have seen that lists are a fundamental data structure in functional

programming.

• Lists are de�ned by parametric classes and are manipulated by

polymorphic methods.

• Lists are in functional languages what arrays are in imperative

languages.

• But contrary to arrays, we normally don't access elements of a list

using their index.

• We prefer to traverse lists recursively or via higher-order combinators

such as map, �lter, foldLeft or foldRight.

16

Reasoning About Lists

Recall the concatenation operation on lists (seen during week 4)

class List[a] {
...
def ::: (that : List[a]): List[a] = that match {

case Nil ⇒ this

case x :: xs ⇒ x :: (xs ::: this)
}

}

We would like to verify that the concatenation is associative, and that it

admits the empty list List() as neutral element to the left and to the right:

(xs ::: ys) ::: zs = xs ::: (ys ::: zs)

xs ::: List() = xs = List() ::: xs

Q: How can we prove properties like these?

A: By structural induction on lists.

17

Reminder: Natural Induction (or Recurrence)

Recall the principle of proof by natural induction:

To show a property P (n) for all the integers n ≥ b,

1. Show that we have P (b) (base case),

2. for all integers n ≥ b show that:

if one has P (n), then one also has P (n+ 1)

(induction step).

Example: Given

def factorial(n : Int): Int =
if (n == 0) 1 /* 1st clause */
else n ∗ factorial(n−1) /* 2nd clause */

Show that, for all n ≥ 4,

factorial(n) ≥ 2n

18

Base Case: 4

This case is established by simple calculations of factorial(4) = 24 and

24 = 16.

Induction Step: n+1 We have for n ≥ 4 :

factorial(n + 1)
= (n + 1) ∗ factorial(n) (by the 2nd clause of factorial (*))
≥ 2 ∗ factorial(n) (by calculating)
≥ 2 ∗ 2n. (by induction hypothesis)

Note that a proof can freely apply reduction steps like (*) to the interior of

a term.

That works because pure functional programs don't have side e�ects; so

that a term is equivalent to the term to which it reduces.

This principle is called referential transparency.

19

Structural Induction

The principle of structural induction is analogous to natural induction:

In the case of lists, it has the following form:

To prove a property P (xs) for all lists xs,

1. show that P(List()) holds (base case),

2. for a list xs and some element x, show that:

if P (xs) holds, then P (x :: xs) also holds

(induction step).

20

Example

We will show that (xs ::: ys) ::: zs = xs ::: (ys ::: zs), by structural

induction on xs.

Base Case: List()

For the left-hand side we have:

(List() ::: ys) ::: zs
= ys ::: zs (by the �rst clause of :::)

For the right-hand side, we have:

List() ::: (ys ::: zs)
= ys ::: zs (by the �rst clause of :::)

This case is therefore established.

21

Induction Step: x :: xs

For the left-hand side, we have:

((x :: xs) ::: ys) ::: zs
= (x :: (xs ::: ys)) ::: zs (by the second clause of :::)
= x :: ((xs ::: ys) ::: zs) (by the second clause of :::)
= x :: (xs ::: (ys ::: zs)) (by induction hypothesis)

For the right hand side we have:

(x :: xs) ::: (ys ::: zs)
= x :: (xs ::: (ys ::: zs)) (by the second clause of :::)

So this case (and with it, the property) is established.

Exercise: Show by induction on xs that xs ::: List() = xs.

22

Example (2)

For a more di�cult example, let's consider the function

abstract class List[a] { ...
def reverse : List[a] = this match {

case List() ⇒ List() /* 1st clause */
case x :: xs ⇒ xs.reverse ::: List(x) /* 2nd clause */

}
}

We'd like to prove the following proposition

xs.reverse.reverse = xs

We proceed by induction on xs. The base case is easy to establish:

List().reverse.reverse
= List().reverse (by the 1st clause of reverse)
= List() (by the 1st clause of reverse)

23

For the induction step, we try:

(x :: xs).reverse.reverse
= (xs.reverse ::: List(x)).reverse (by the 2nd clause of reverse)

We can't do anything more with this expression, therefore we turn to the

member on the right-hand side:

x :: xs
= x :: xs.reverse.reverse (by induction)

Both sides are simpli�ed in di�erent expressions.

We must still show that

(xs.reverse ::: List(x)).reverse = x :: xs.reverse.reverse

Trying to prove it directly by induction doesn't work.

We must instead try to generalize the equation:

(ys ::: List(x)).reverse = x :: ys.reverse

24

This equation can be proved by a second induction argument on ys.

Exercise: Is it true that (xs drop m) apply n = xs apply (m + n) for all

integers m ≥ 0, n ≥ 0 and all lists xs ?

25

Structural Induction on Trees

Structural induction is not limited to lists; it applies to any tree structure.

The general induction principle is the following:

To show the property P(t) for all trees of a certain type,

• show P(l) for all the leaves l of the tree,

• for each internal node t with sub-trees s1, ..., sn, show that

P(s1) ∧ ... ∧ P(sn) ⇒ P(t).

Example: Recall our de�nition of IntSet with the operations contains and

incl:

abstract class IntSet {
def incl(x : Int): IntSet
def contains(x : Int): Boolean

}

26

case class Empty extends IntSet {
def contains(x : Int): Boolean = false

def incl(x : Int): IntSet = NonEmpty(x, Empty, Empty)
}
case class NonEmpty(elem : Int, left : IntSet, right : IntSet) extends IntSet {

def contains(x : Int): Boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true

def incl(x : Int): IntSet =
if (x < elem) NonEmpty(elem, left incl x, right)
else if (x > elem) NonEmpty(elem, left, right incl x)
else this

}

(With case modi�ers to enable the use of factory methods in place of

new).

What does it mean to prove the correctness of this implementation?

27

The Laws of IntSet

One way to de�ne and show the correctness of an implementation consists

of proving the laws that it respects.

In the case of IntSet, we have the following three laws:

For any set s, and elements x and y:

Empty contains x = false

(s incl x) contains x = true

(s incl x) contains y = s contains y if x 6= y

(In fact, we can show that these laws completely characterize the desired

data type).

How can we prove these laws?

Proposition 1: Empty contains x = false.

Proof: According to the de�nition of contains in Empty.

28

Proposition 2: (s incl x) contains x = true

Proof:

Base Case: Empty

(Empty incl x) contains x
= (by the de�nition of incl in Empty)

NonEmpty(x, Empty, Empty) contains x
= (by the de�nition of contains in NonEmpty)

true

Induction Step: NonEmpty(x, l, r)

(NonEmpty(x, l, r) incl x) contains x
= (by the de�nition of incl in NonEmpty)

NonEmpty(x, l, r) contains x
= (by the de�nition of contains in NonEmpty)

true

29

Induction Step: NonEmpty(y, l, r) with y < x

(NonEmpty(y, l, r) incl x) contains x
= (by the de�nition of incl in NonEmpty)

NonEmpty(y, l, r incl x) contains x
= (by the de�nition of contains in NonEmpty)

(r incl x) contains x
= (by the induction hypothesis)

true

Induction Step: NonEmpty(y, l, r) with y > x is analogous.

Proposition 3: If x 6= y then xs incl y contains x = xs contains x.

Proof: See blackboard.

30

Exercise

Suppose we add a function union to IntSet:

abstract class IntSet { ...
def union(other : IntSet): IntSet

}
class Expty extends IntSet { ...

def union(other : IntSet) = other
}
class NonEmpty(x : Int, l : IntSet, r : IntSet) extends IntSet { ...

def union(other : IntSet): IntSet = l union (r union (other incl x))
}

The correctness of union can be translated into the following law:

Proposition 4: (xs union ys) contains x = xs contains x | | ys contains x.
Is this true? Which hypothesis is missing? Find a counter-example.

Show proposition 4 by using structural induction on xs.

31

