
Week 4 : Pattern Matching (Filtrage de motifs)

Suppose we want to write a small interpreter for arithmetic expressions.

To keep it simple, we will restrict ourselves to numbers and additions.

Expressions can be represented as a class hierarchy, with a base class Expr

and two subclasses, Number and Sum.

To treat an expression, it's necessary to know the expression's shape and

its components.

This brings us to the following implementation.

1

abstract class Expr {
def isNumber : Boolean
def isSum : Boolean
def numValue : Int
def leftOp : Expr
def rightOp : Expr

}
class Number(n : Int) extends Expr {

def isNumber : Boolean = true

def isSum : Boolean = false

def numValue : Int = n
def leftOp : Expr = error("Number.leftOp")
def rightOp : Expr = error("Number.rightOp")

}
class Sum(e1 : Expr, e2 : Expr) extends Expr {

def isNumber : Boolean = false

def isSum : Boolean = true

def numValue : Int = error("Sum.numValue")
def leftOp : Expr = e1
def rightOp : Expr = e2

} 2

We can now write an evaluation function as follows.

def eval(e : Expr): Int = {
if (e.isNumber) e.numValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else error("Unknown expression " + e)

}

Problem: Writing all these classi�cation and accessor functions quickly

becomes tedious!

So, what happens if we want to add new expression forms, say

class Prod(e1 : Expr, e2 : Expr) extends Expr // e1 * e2
class Var(x : String) extends Expr // Variable `x'

We should add methods for classi�cation and access to all classes de�ned

above.

How can we �x this problem?

3

Solution 1: Object-Oriented Decomposition

For example, suppose that we want to only evaluate expressions.

We could then de�ne:

abstract class Expr {
def eval : Int

}
class Number(n : Int) extends Expr {

def eval : Int = n
}
class Sum(e1 : Expr, e2 : Expr) extends Expr {

def eval : Int = e1.eval + e2.eval
}

But what happens if we'd like to display expressions now? We have to

de�ne new methods in all the subclasses.

4

And if you want to simplify the expressions, e.g. by means of the rule:

a ∗ b + a ∗ c → a ∗ (b + c)

Problem: This is a non-local simpli�cation. It cannot be encapsulated in

the method of a single object.

We are back to square one; we need access methods for di�erent subclasses.

5

Solution 2: Functional Decomposition via

Matching

Finding: the sole purpose of test and accessor functions is to reverse the

construction process:

• Which subclass was used?

• What were the arguments of the constructor?

This situation is so common that we automate it in Scala.

6

Case Classes (Type Algebras)

A case class is similar to a normal class de�nition, except that it is

preceded by the modi�er case. For example:

abstract class Expr
case class Number(n : Int) extends Expr
case class Sum(e1 : Expr, e2 : Expr) extends Expr

Like before, this de�nes an abstract base class Expr, and two concrete

subclasses Number and Sum.

It also implicitly de�nes construction functions, factory functions.

def Number(n : Int) = new Number(n)
def Sum(e1 : Expr, e2 : Expr) = new Sum(e1, e2)

so we can write Number(1) instead of new Number(1).

However, these classes are now empty. So how can we access the members?

7

Pattern Matching

Pattern matching is a generalization of switch from C/Java to class

hierarchies.

It's expressed in Scala using the keyword match.

Exemple :

def eval(e : Expr): Int = e match {
case Number(n) ⇒ n
case Sum(e1, e2) ⇒ eval(e1) + eval(e2)

}

Rules:

• match is followed by a sequence of cases.

• Each case associates an expression to a pattern.

• An exception MatchError is thrown if no pattern matches the value of

the selector.

8

Pattern forms

• Patterns are constructed from:

• constructors, e.g. Number, Sum,

• variables, e.g. n, e1, e2,

• "wildcard" patterns _,

• constants, e.g. 1, true.

• Variables always begin with a lowercase letter.

• The same variable name can only appear once in a pattern. So,

Sum(x, x) is not a legal pattern.

• Constructors and the names of constants begin with a capital letter,

with the exception of the reserved words null, true, false.

9

Signi�cance of Pattern Matching

An expression of the type

e match { case p1 ⇒ e1 ... case pn ⇒ en }

matches the value of the selector e with the patterns p1, . . . , pn in the

order in which they are written.

• A constructor pattern C(p1, . . . , pn) matches all the values of type C

(or a subtype) that have been constructed with arguments matching

the patterns p1, . . . , pn.

• A variable pattern x matches any value, and binds the name of the

variable to this value.

• A constant pattern c matches values that are equal to c (in the sense

of ==)

The matching expression is rewritten to the right-hand side of the �rst case

where the pattern matches the selector.

10

References to the pattern variables are replaced by the corresponding

constructor arguments.

Exemple :

11

eval(Sum(Number(1), Number(2)))

→ Sum(Number(1), Number(2)) match {
case Number(n) ⇒ n
case Sum(e1, e2) ⇒ eval(e1) + eval(e2)

}

→ eval(Number(1)) + eval(Number(2))

→ Number(1) match {
case Number(n) ⇒ n
case Sum(e1, e2) ⇒ eval(e1) + eval(e2)

} + eval(Number(2))

→ 1 + eval(Number(2))
→∗ 1 + 2 → 3

12

Pattern Matching and Methods

Of course, it's also possible to de�ne the evaluation function as a method

of the superclass.

Exemple :

abstract class Expr {
def eval : Int = this match {

case Number(n) ⇒ n
case Sum(e1, e2) ⇒ e1.eval + e2.eval

}
}

13

Exercise

We consider the following three classes representing trees of integers.

These classes can be seen as an alternative representation of IntSet :

abstract class IntTree
case class Empty extends IntTree
case class Node(elem : Int, left : IntTree, right : IntTree) extends IntTree

Complete the following implementation of the function contains for the

IntTrees.

def contains(t : IntTree, v : Int): Boolean = t match {
...

}

14

Lists

The list is a fundamental data structure in functional programming.

A list having x1, ..., xn as elements is written List(x1, ..., xn).

Examples:

val fruit = List("apples", "oranges", "pears")
val nums = List(1, 2, 3, 4)
val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))
val empty = List()

Note the similarity with the initialization of an array in C or Java.

However, there are two important di�erences between lists and arrays.

1. Lists are immutable� the elements of a list cannot be changed.

2. Lists are recursive, while arrays are �at.

15

Type List

Like arrays, lists are homogeneous: the elements of a list must all have the

same type.

The type of a list with elements of type T is written List[T] (compared to

[]T for the type of arrays of elements of type T in C or Java.)

For example:

val fruit : List[String] = List("apples", "oranges", "pears")
val nums : List[Int] = List(1, 2, 3, 4)
val diag3 : List[List[Int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))

16

Constructors of Lists

All lists are constructed from:

• the empty list Nil, and

• the construction operation :: (pronounced cons); so x :: xs returns a

new list with the �rst element x, followed by the elements of xs.

For example:

fruit = "apples" :: ("oranges" :: ("pears" :: Nil))
nums = 1 :: (2 :: (3 :: (4 :: Nil)))
empty = Nil

Convention: The operator `::' associates to the right. A :: B :: C is

interpreted as A :: (B :: C).

We can thus omit the parentheses in the de�nition above.

For example:

17

nums = 1 :: 2 :: 3 :: 4 :: Nil

18

Operations on Lists

All operations on lists can be expressed in terms of the following three

operations:

head return the �rst element of the list

tail return the list composed of all the elements except the �rst.

isEmpty return true i� the list is empty

These operations are de�ned as methods of objects of type list. For

example:

fruit.head = "apples"
fruit.tail.head = "oranges"

diag3.head = List(1, 0, 0)

empty.head → (Exception "head of empty list")

19

Example

Suppose we want to sort a list of numbers in ascending order:

• One way to sort the list List(7, 3, 9, 2) is to sort the tail List(3, 9, 2)

to obtain List(2, 3, 9).

• The next step is to insert the head 7 in the right place to obtain the

result List(2, 3, 7, 9).

This idea describes Insertion Sort :

def isort(xs : List[Int]): List[Int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

What is a possible implementation of the missing function insert?

What is the complexity of insertion sort?

20

List Patterns

Because :: and Nil are both case classes, it is also possible to decompose

lists via pattern matching.

As syntactic sugar, the constructor List(...) can also be used as a pattern,

with the translation List(p1, ..., pn) = p1 :: ... :: pn :: Nil.

An alternative is then to rewrite isort as follows.

def isort(xs : List[Int]): List[Int] = xs match {
case List() ⇒ List()
case y :: ys ⇒ insert(y, isort(ys))

}

with

21

def insert(x : Int, xs : List[Int]): List[Int] = xs match {
case List() ⇒ List(x)
case y :: ys ⇒ if (x ≤ y) x :: xs else y :: insert(x, ys)

}

22

Other Functions on Lists

By using the list constructors and patterns, we can now formulate other

common functions on lists.

The length function

length(xs) must return the number of elements in xs. It is de�ned as

follows.

def length(xs : List[String]): Int = xs match {
case List() ⇒ 0
case y :: ys ⇒ 1 + length(ys)

}
scala> length(nums)
4

Problem: We cannot apply length on lists of strings.

How can we formulate the function so that it is applicable to all lists?

23

Polymorphism

Idea: Pass the type of elements as an additional type parameter to the

function length.

def length[a](xs : List[a]): Int =
if (xs.isEmpty) 0
else 1 + length(xs.tail)

scala> length[Int](nums)
4

Syntax:

• We write the type parameters, formal or actual, between brackets. For

example: [a], [Int].

• We can omit the actual type parameters when they can be inferred

from the parameters of the function and the expected result type

(which is usually the case).

24

In our example, we could have also written:

length(nums) /∗ [Int] inferred given that nums : List[Int] ∗/

However, we cannot omit the formal type parameters:

scala> def length(x : a) = ...
<console>:4 : error : not found : type a

Functions which take type parameters are called polymorphic.

This word means �which has several forms� in Greek; in fact, the function

can be applied to di�erent argument types.

25

Concatenating Lists

The :: is asymmetric: it is applied to an element of a list and a list.

There also exists the operator ::: (pronounced concat) which concatenates

two lists.

scala> List(1, 2) ::: List(3, 4)
List(1, 2, 3, 4)

::: can be de�ned in terms of primitive operations. We write an equivalent

function

def concat[a](xs : List[a], ys : List[a]): List[a] = xs match {
case List() ⇒

?
case x :: xs1 ⇒

?
}

26

Q : What is the complexity of concat?

27

The last and init Functions

The method head returns the �rst element of a list. We can write a

function that returns the last element of a list in the following way.

def last[a](xs : List[a]): a = xs match {
case List() ⇒ error("last of empty list")
case List(x) ⇒ x
case y :: ys ⇒ last(ys)

}

Exercice : Write an init function which returns all the elements of a list

without the last (in other words, init and last are complementary).

28

An Aside: Exceptions

There is a prede�ned error function, error, which terminates a program

with a given error message.

It is de�ned as

def error(msg : String): Nothing =
throw new RuntimeException(msg)

Note that the function error is declared as returning a value of type

Nothing.

Nothing is a subtype of all other types. There exists no value of this type.

In fact, it indicates that error does not return at all.

29

The reverse Function

Here is a function that reverses the elements of a list.

def reverse[a](xs : List[a]): List[a] = xs match {
case List() ⇒ List()
case y :: ys ⇒ reverse(ys) ::: List(y)

}

Q : What is the complexity of reverse ?

A : n+ (n− 1) + ...+ 1 = n(n+ 1)/2 where n is the length of xs.

Can we do better? (to solve later).

30

The List Class

List is not a primitive type in Scala. It's de�ned by an abstract base class

and two subclasses :: and Nil. Here is a partial implementation.

abstract class List[a] {
def head : a
def tail : List[a]
def isEmpty : Boolean

}

Note that List is a parameterized class.

All the methods in the List class are abstract. The implementations of

these methods can be found in the two concrete subclasses:

• Nil for empty lists.

• :: for non-empty lists.

31

The Nil and :: Classes

These classes are de�ned as follows.

case class Nil[a] extends List[a] {
def isEmpty = true

def head : a = error("Nil.head")
def tail : List[a] = error("Nil.tail")

}

case class ::[a](x : a, xs : List[a]) extends List[a] {
def isEmpty = false

def head : a = x
def tail : List[a] = xs

}

32

More Methods of Lists

The functions presented so far are all methods of the class List. For

example:

33

abstract class List[a] {
def head : a
def tail : List[a]
def isEmpty : Boolean
def length = this match {

case Nil ⇒ 0
case x :: xs ⇒ 1 + xs.length

}
def init : List[a] = this match {

case Nil ⇒ error("Nil.init")
case x :: Nil ⇒ List()
case x :: xs ⇒ x :: init(xs)

}
...

}

34

The Cons and Concat Operators

Operators whose names end with `:' are treated specially in Scala.

• All operators of this type are right-associative. For example:

x + y + z = (x + y) + z but x :: y :: z = x :: (y :: z)

• All operators of this type are treated as a method of their right

operand. For example:

x + y = x.+(y) but x :: y = y.::(x)

(Note however that the operand expressions continue to be evaluated

from left to right. So, if d and e are expressions, then their expansion

is:

d :: e = (val x = d; e.::(x))

35

The de�nition of :: and ::: is now trivial:

abstract class List[a] {
...
def ::(x : a): List[a] = new scala.::(x, this)

def :::(pre�x : List[a]): List[a] = pre�x match {
case Nil ⇒ this

case p :: ps ⇒ p :: ps ::: this /∗ ou encore : this.:::(ps).::(p) ∗/
}

36

Even More Methods of Lists

The take(n) method returns the �rst n elements of its list (or the list itself

if it is shorter than n.)

The drop(n) method returns its list without the �rst n elements.

The apply(n) returns the n-th element of a list.

They are de�ned as:

37

abstract class List[a] {
...
def take(n : Int): List[Int] =

if (n == 0 | | isEmpty) List() else head :: tail.take(n − 1)

def drop(n : Int): List[Int] =
if (n == 0 | | isEmpty) this else tail.drop(n − 1)

def apply(n : Int) = drop(n).head
}

38

Sorting Lists Faster

As a non-trivial example, design a function to sort itemiz in a list that is

more e�cient than insertion sort.

A good algorithm for this is merge sort. The idea is as follows:

• If the list consists of zero or one elements, it is already sorted.

• Otherwise,

1. Separate the list into two sub-lists, each containing around half of

the elements of the original list.

2. Sort the two sub-lists.

3. Merge the two sorted sub-lists into a single sorted list.

To implement this, we must still specify

• the type of elements to sort

• how to compare two elements

39

The most �exible design is to make the function sort polymorphic and to

pass the comparison operation as an additional parameter. For example:

def msort[a](less : (a, a) ⇒ Boolean)(xs : List[a]): List[a] = {
val n = xs.length/2
if (n == 0) xs
else {

def merge(xs1 : List[a], xs2 : List[a]): List[a] = ...
merge(msort(less)(xs take n), msort(less)(xs drop n))

}
}

Exercice : De�ne the merge function. Here are two test cases.

merge(List(1, 3), List(2, 4)) = List(1, 2, 3, 4)
merge(List(1, 2), List()) = List(1, 2)

40

Here is an example of the usage of msort.

scala> def iless(x : Int, y : Int) = x < y
scala> msort(iless)(List(5, 7, 1, 3))
List(1, 3, 5, 7)

The de�nition of msort is curried to facilitate its specialization by

particular comparison functions.

scala> val intSort = msort(iless)
scala> val reverseSort = msort((x : Int, y : Int) ⇒ x > y)
scala> intSort(List(6, 3, 5, 5))
List(3, 5, 5, 6)
scala> reverseSort(List(6, 3, 5, 5))
List(6, 5, 5, 3)

Complexity:

The complexity of msort is O(n log n).

This complexity doesn't depend on the initial distribution of elements in

41

the list.

42

Tuples

Tuple2 is the class of Tuples. It can be de�ned as

case class Tuple2[a, b](_1 : a, _2 : b)

As a usage example, here is a function that returns the quotient and

remainder of two given whole numbers...

def divmod(x : Int, y : Int) = Tuple2(x / y, x % y)

And this is how the function can be used:

divmod(x, y) match {
case Tuple2(n, d) ⇒ println("quotient : " + n + ", remainder : " + d)

}

It is also possible to use the name of the constructor parameters to directly

access the elements of a case class. For example:

43

val p = divmod(x, y); println("quotient : " + p._1)

44

The idea of pairs is generalized in Scala to tuples of larger arities. There

exists a case class for each Tuplen for each n between 2 and 22.

In fact, tuples are so common that there is a special syntax:

The expression or pattern

(x1, ..., xn) is an alias for Tuplen(x1, ..., xn)

The type

(T1, ..., Tn) is an alias for Tuplen[T1, ..., Tn]

With these abbreviations, the previous example is written as follows:

def divmod(x : Int, y : Int): (Int, Int) = (x / y, x % y)
divmod(x, y) match {

case (n, d) ⇒ println("quotient : " + n + ", reste : " + d)
}

45

Recurring Patterns for Computations on Lists

• The examples have shown that functions on lists often have similar

structures.

• We can identify several recurring patterns, like,

• transforming each element in a list in a certain way,

• retrieving a list of all elements satisfying a criterion,

• combining the elements of a list using an operator.

• Functional languages allow programmers to write generic functions

that implement patterns such as these.

• These functions are higher-order functions that take a transformation

or an operator as an argument.

46

Applying a Function to Elements of a List

A common operation is to transform each element of a list and then return

the list of results.

For example, to multiply each element of a list by the same factor, we

write:

def scaleList(xs : List[Double], factor : Double): List[Double] = xs match {
case Nil ⇒ xs
case y :: ys ⇒ y ∗ factor :: scaleList(ys, factor)

}

This scheme can be generalized to the method map of the List class:

47

abstract class List[a] { ...
def map[b](f : a ⇒ b): List[b] = this match {

case Nil ⇒ this

case x :: xs ⇒ f(x) :: xs.map(f)
}
...

}

48

In using map, scaleList can be written more concisely.

def scaleList(xs : List[Double], factor : Double) =
xs map (x ⇒ x ∗ factor)

Exercice : Consider a function to square each element of a list, and

return the result. Complete the two following equivalent de�nitions of

squareList.

def squareList(xs : List[Int]): List[Int] = xs match {
case List() ⇒ ??
case y :: ys ⇒ ??

}

def squareList(xs : List[Int]): List[Int] =
xs map ??

49

Filtering

Another common operation on lists is the selection of all elements

satisfying a given condition. For example:

def posElems(xs : List[Int]): List[Int] = xs match {
case Nil ⇒ xs
case y :: ys ⇒ if (y > 0) y :: posElems(ys) else posElems(ys)

}

This pattern is generalized by the method �lter of the List class:

abstract class List[a] {
...
def �lter(p : a ⇒ Boolean): List[a] = this match {

case Nil ⇒ this

case x :: xs ⇒ if (p(x)) x :: xs.�lter(p) else xs.�lter(p)
}

50

Using �lter, posElems can be written more concisely.

def posElems(xs : List[Int]): List[Int] =
xs �lter (x ⇒ x > 0)

51

