Week 4 : Pattern Matching (Filtrage de motifs)

Suppose we want to write a small interpreter for arithmetic expressions.
To keep it simple, we will restrict ourselves to numbers and additions.
Expressions can be represented as a class hierarchy, with a base class Expr and two subclasses, Number and Sum.

To treat an expression, it's necessary to know the expression's shape and its components.

This brings us to the following implementation.

```
abstract class Expr {
    def isNumber: Boolean
    def isSum: Boolean
    def numValue: Int
    def leftOp: Expr
    def rightOp: Expr
}
class Number(n: Int) extends Expr {
    def isNumber: Boolean = true
    def isSum: Boolean = false
    def numValue: Int = n
    def leftOp: Expr = error("Number.leftOp")
    def rightOp: Expr = error("Number.rightOp")
}
class Sum(e1: Expr, e2: Expr) extends Expr {
    def isNumber: Boolean = false
    def isSum: Boolean = true
    def numValue: Int = error("Sum.numValue")
    def leftOp: Expr = e1
    def rightOp: Expr = e2
    }

We can now write an evaluation function as follows.
```

def $\operatorname{eval}(e: E x p r):$ Int $=\{$
if (e.isNumber) e.numValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else error("Unknown expression " $+e$)
\}

```

Problem: Writing all these classification and accessor functions quickly becomes tedious!

So, what happens if we want to add new expression forms, say
class Prod(e1: Expr, e2: Expr) extends Expr \(\quad / /\) e1 *e2
class \(\operatorname{Var}(x:\) String \()\) extends Expr // Variable ' \(x\) '
We should add methods for classification and access to all classes defined above.

How can we fix this problem?

\section*{Solution 1: Object-Oriented Decomposition}

For example, suppose that we want to only evaluate expressions.
We could then define:
```

abstract class Expr {
def eval: Int
}
class Number(n: Int) extends Expr {
def eval: Int = n
}
class Sum(e1: Expr, e2: Expr) extends Expr {
def eval:Int = e1.eval + e2.eval
}

```

But what happens if we'd like to display expressions now? We have to define new methods in all the subclasses.

And if you want to simplify the expressions, e.g. by means of the rule:
\[
a * b+a * c \quad \rightarrow \quad a *(b+c)
\]

Problem: This is a non-local simplification. It cannot be encapsulated in the method of a single object.

We are back to square one; we need access methods for different subclasses.

\section*{Solution 2: Functional Decomposition via Matching}

Finding: the sole purpose of test and accessor functions is to reverse the construction process:
- Which subclass was used?
- What were the arguments of the constructor?

This situation is so common that we automate it in Scala.

\section*{Case Classes (Type Algebras)}

A case class is similar to a normal class definition, except that it is preceded by the modifier case. For example:
```

abstract class Expr
case class Number(n: Int) extends Expr
case class Sum(e1: Expr, e2: Expr) extends Expr

```

Like before, this defines an abstract base class Expr, and two concrete subclasses Number and Sum.

It also implicitly defines construction functions, factory functions.
```

def Number(n:Int) = new Number(n)
def Sum(e1: Expr, e2: Expr) = new Sum(e1, e2)

```
so we can write Number(1) instead of new Number(1).
However, these classes are now empty. So how can we access the members?

\section*{Pattern Matching}

Pattern matching is a generalization of switch from C/Java to class hierarchies.

It's expressed in Scala using the keyword match.
Exemple :
```

def eval(e: Expr): Int = e match {
case Number(n) = n
case Sum(e1, e2) => eval(e1) + eval(e2)
}

```

Rules:
- match is followed by a sequence of cases.
- Each case associates an expression to a pattern.
- An exception MatchError is thrown if no pattern matches the value of the selector.

\section*{Pattern forms}
- Patterns are constructed from:
- constructors, e.g. Number, Sum,
- variables, e.g. n, e1, e2,
- "wildcard" patterns _,
- constants, e.g. 1, true.
- Variables always begin with a lowercase letter.
- The same variable name can only appear once in a pattern. So, \(\operatorname{Sum}(x, x)\) is not a legal pattern.
- Constructors and the names of constants begin with a capital letter, with the exception of the reserved words null, true, false.

\section*{Significance of Pattern Matching}

An expression of the type
\(e\) match \(\left\{\right.\) case \(p_{1} \Rightarrow e_{1} \ldots\) case \(\left.p_{n} \Rightarrow e_{n}\right\}\)
matches the value of the selector \(e\) with the patterns \(p_{1}, \ldots, p_{n}\) in the order in which they are written.
- A constructor pattern \(C\left(p_{1}, \ldots, p_{n}\right)\) matches all the values of type \(C\) (or a subtype) that have been constructed with arguments matching the patterns \(p_{1}, \ldots, p_{n}\).
- A variable pattern \(x\) matches any value, and binds the name of the variable to this value.
- A constant pattern \(c\) matches values that are equal to \(c\) (in the sense of \(==\) )
The matching expression is rewritten to the right-hand side of the first case where the pattern matches the selector.

References to the pattern variables are replaced by the corresponding constructor arguments.

\section*{Exemple :}
```

 eval(Sum(Number(1), Number(2)))
 Sum(Number(1), Number(2)) match {
 case Number(n) => n
 case Sum(e1, e2) => eval(e1) + eval(e2)
 }
 eval(Number(1)) + eval(Number(2))
 Number(1) match {
 case Number(n) =>n
 case Sum(e1, e2) => eval(e1) + eval(e2)
 } + eval(Number(2))
 -> 1+eval(Number(2))
 ->* 1+2->3
    ```

\section*{Pattern Matching and Methods}

Of course, it's also possible to define the evaluation function as a method of the superclass.

Exemple :
```

abstract class Expr \{
def eval: Int = this match \{
case $\operatorname{Number}(n) \Rightarrow n$
case $\operatorname{Sum}(e 1, e 2) \Rightarrow e 1 . e v a l+e 2 . e v a l$
\}
\}

```

\section*{Exercise}

We consider the following three classes representing trees of integers.
These classes can be seen as an alternative representation of IntSet :
abstract class IntTree
case class Empty extends IntTree
case class Node(elem: Int, left: IntTree, right: IntTree) extends IntTree
Complete the following implementation of the function contains for the Int Trees.
def contains( \(t:\) IntTree, \(v:\) Int \():\) Boolean \(=t\) match \(\{\)
\}

\section*{Lists}

The list is a fundamental data structure in functional programming.
A list having \(x_{1}, \ldots, x_{n}\) as elements is written \(\operatorname{List}\left(x_{1}, \ldots, x_{n}\right)\).
Examples:
```

val fruit = List("apples", "oranges", "pears")
val nums $=\operatorname{List}(1,2,3,4)$
val diag3 $=\operatorname{List}(\operatorname{List}(1,0,0), \operatorname{List}(0,1,0), \operatorname{List}(0,0,1))$
val empty $=\operatorname{List}()$

```

Note the similarity with the initialization of an array in C or Java.
However, there are two important differences between lists and arrays.
1. Lists are immutable- the elements of a list cannot be changed.
2. Lists are recursive, while arrays are flat.

\section*{Type List}

Like arrays, lists are homogeneous: the elements of a list must all have the same type.

The type of a list with elements of type \(T\) is written \(\operatorname{List}[T]\) (compared to [] \(T\) for the type of arrays of elements of type T in C or Java.)

For example:
```

val fruit : List[String] = List("apples", "oranges", "pears")
val nums:List[Int] = List(1, 2, 3, 4)
val diag3: List[List[Int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))

```

\section*{Constructors of Lists}

All lists are constructed from:
- the empty list Nil, and
- the construction operation :: (pronounced cons); so \(x::\) xs returns a new list with the first element \(x\), followed by the elements of xs.

For example:
```

fruit = "apples" :: ("oranges" :: ("pears" :: Nil))
nums = 1 :: (2 :: (3 :: (4 :: Nil)))
empty = Nil

```

Convention: The operator ' \(\because\) ' associates to the right. \(A:: B:: C\) is interpreted as \(A::(B:: C)\).

We can thus omit the parentheses in the definition above.
For example:
```

nums = 1 :: 2 :: 3 :: 4 :: Nil

```

\section*{Operations on Lists}

All operations on lists can be expressed in terms of the following three operations:
\begin{tabular}{ll} 
head & return the first element of the list \\
tail & return the list composed of all the elements except the first. \\
isEmpty & return true iff the list is empty
\end{tabular}

These operations are defined as methods of objects of type list. For example:
```

fruit.head = "apples"
fruit.tail.head = "oranges"
diag3.head = List(1, 0, 0)
empty.head }->\mathrm{ (Exception "head of empty list")

```

\section*{Example}

Suppose we want to sort a list of numbers in ascending order:
- One way to sort the list \(\operatorname{List}(7,3,9,2)\) is to sort the tail \(\operatorname{List}(3,9,2)\) to obtain \(\operatorname{List}(2,3,9)\).
- The next step is to insert the head 7 in the right place to obtain the result \(\operatorname{List}(2,3,7,9)\).

This idea describes Insertion Sort :
```

def isort(xs: List[Int]): List[Int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

```

What is a possible implementation of the missing function insert?
What is the complexity of insertion sort?

\section*{List Patterns}

Because :: and Nil are both case classes, it is also possible to decompose lists via pattern matching.

As syntactic sugar, the constructor List(...) can also be used as a pattern, with the translation \(\operatorname{List}\left(p_{1}, \ldots, p_{n}\right)=p_{1}:: \ldots: p_{n}::\) Nil.

An alternative is then to rewrite isort as follows.
def \(\operatorname{isort}(\mathrm{xs}: \operatorname{List}[\operatorname{Int}]): \operatorname{List}[\operatorname{Int}]=\mathrm{xs}\) match \(\{\)
case List() \(\Rightarrow \operatorname{List}()\)
case \(y\) :: ys \(\Rightarrow \operatorname{insert}(y\), isort(ys))
\}
with
def \(\operatorname{insert}(x: \operatorname{Int}, \mathrm{xs}: \operatorname{List}[\operatorname{Int}]): \operatorname{List}[\operatorname{Int}]=\mathrm{xs}\) match \(\{\)
case \(\operatorname{List}() \Rightarrow \operatorname{List}(x)\)
case \(y:: y s \Rightarrow\) if \((x \leq y) x:: x\) else \(y:: \operatorname{insert}(x, y s)\)
\}

\section*{Other Functions on Lists}

By using the list constructors and patterns, we can now formulate other common functions on lists.

The length function
length(xs) must return the number of elements in xs. It is defined as follows.
```

def length (xs: List[String]): Int $=$ xs match \{
case $\operatorname{List}() \Rightarrow 0$
case $y::$ ys $\Rightarrow 1+$ length (ys)
\}
scala> length(nums)
4

```

Problem: We cannot apply length on lists of strings.
How can we formulate the function so that it is applicable to all lists?

\section*{Polymorphism}

Idea: Pass the type of elements as an additional type parameter to the function length.
```

def length[a](xs: List[a]): Int =
if (xs.isEmpty) 0
else $1+$ length(xs.tail)
scala> length[Int](nums)
4

```

Syntax:
- We write the type parameters, formal or actual, between brackets. For example: [a], [Int].
- We can omit the actual type parameters when they can be inferred from the parameters of the function and the expected result type (which is usually the case).

In our example, we could have also written:
```

length(nums) /* [Int] inferred given that nums: List[Int] */

```

However, we cannot omit the formal type parameters:
```

scala> def length $(\mathrm{x}: \mathrm{a})=\ldots$
<console>:4: error: not found: type a

```

Functions which take type parameters are called polymorphic.
This word means "which has several forms" in Greek; in fact, the function can be applied to different argument types.

\section*{Concatenating Lists}

The :: is asymmetric: it is applied to an element of a list and a list. There also exists the operator ::: (pronounced concat) which concatenates two lists.
```

scala> List(1, 2) ::: List(3, 4)

```
\(\operatorname{List}(1,2,3,4)\)
::: can be defined in terms of primitive operations. We write an equivalent function
```

def concat[a](xs: List[a], ys: List[a]): List[a] = xs match {
case List() =
?
case x :: xs1 =
?
}

```

\section*{Q : What is the complexity of concat?}

\section*{The last and init Functions}

The method head returns the first element of a list. We can write a function that returns the last element of a list in the following way.
```

def last[a](xs: List[a]): $a=x s$ match $\{$
case $\operatorname{List}() \Rightarrow \operatorname{error}($ "last of empty list")
case $\operatorname{List}(x) \Rightarrow x$
case $y:: y s \Rightarrow \operatorname{last}(y s)$
\}

```

Exercice : Write an init function which returns all the elements of a list without the last (in other words, init and last are complementary).

\section*{An Aside: Exceptions}

There is a predefined error function, error, which terminates a program with a given error message.

It is defined as
def error(msg : String): Nothing \(=\)
throw new RuntimeException(msg)
Note that the function error is declared as returning a value of type Nothing.

Nothing is a subtype of all other types. There exists no value of this type.
In fact, it indicates that error does not return at all.

\section*{The reverse Function}

Here is a function that reverses the elements of a list.
```

 def reverse[a](xs: List[a]): List[a] = xs match \{
 case List () \(\Rightarrow\) List ()
 case \(y\) :: ys \(\Rightarrow\) reverse(ys) ::: List(y)
 \}
 Q : What is the complexity of reverse ?
A : $n+(n-1)+\ldots+1=n(n+1) / 2$ where n is the length of xs.
Can we do better? (to solve later).

```

\section*{The List Class}

List is not a primitive type in Scala. It's defined by an abstract base class and two subclasses :: and Nil. Here is a partial implementation.
```

abstract class List[a] {
def head: a
def tail: List[a]
def isEmpty: Boolean
}

```

Note that List is a parameterized class.
All the methods in the List class are abstract. The implementations of these methods can be found in the two concrete subclasses:
- Nil for empty lists.
- :: for non-empty lists.

\section*{The Nil and :: Classes}

These classes are defined as follows.
```

case class Nil[a] extends List[a] {
def isEmpty = true
def head: a = error("Nil.head")
def tail:List[a] = error("Nil.tail")
}
case class ::[a](x: a, xs: List[a]) extends List[a] {
def isEmpty = false
def head: a = x
def tail: List[a] = xs
}

```

\section*{More Methods of Lists}

The functions presented so far are all methods of the class List. For example:
```

abstract class List[a] \{
def head: a
def tail: List[a]
def isEmpty: Boolean
def length $=$ this match \{
case Nil $\Rightarrow 0$
case $\mathrm{x}:: \mathrm{xs} \Rightarrow 1+\mathrm{xs}$.length
\}
def init: List $[\mathrm{a}]=$ this match \{
case Nil \Rightarrow error("Nil.init")
case $x::$ Nil $\Rightarrow \operatorname{List}()$
case $\mathrm{x}:: \mathrm{xs} \Rightarrow \mathrm{x}$:: init(xs)
\}
\}

```

\section*{The Cons and Concat Operators}

Operators whose names end with ' \(\because\) ' are treated specially in Scala.
- All operators of this type are right-associative. For example:
\[
x+y+z=(x+y)+z \quad \text { but } \quad x:: y:: z=x::(y:: z)
\]
- All operators of this type are treated as a method of their right operand. For example:
\[
x+y=x .+(y) \quad \text { but } \quad x:: y=y:::(x)
\]
(Note however that the operand expressions continue to be evaluated from left to right. So, if \(d\) and \(e\) are expressions, then their expansion is:
\[
d:: e=(\operatorname{val} x=d ; e .::(x))
\]

The definition of :: and ::: is now trivial:
```

abstract class List[a] \{
def $::(\mathrm{x}: \mathrm{a}):$ List $[\mathrm{a}]=$ new scala.::(x, this)
def:::(prefix: List[a]): List[a] = prefix match \{
case Nil \Rightarrow this
case $p:: p s \Rightarrow p$:: $p s:::$ this /* ou encore : this.: $::(p s) .::(p)$ */
\}

```

\section*{Even More Methods of Lists}

The take(n) method returns the first \(n\) elements of its list (or the list itself if it is shorter than n.)

The \(\operatorname{drop}(n)\) method returns its list without the first \(n\) elements.
The apply \((n)\) returns the \(n\)-th element of a list.
They are defined as:
```

abstract class List[a] \{
def take($n:$ Int): List $[$ Int $]=$
if $(n=0 \|$ isEmpty) List () else head :: tail.take $(n-1)$
$\boldsymbol{d e f} \operatorname{drop}(n: \operatorname{Int}): \operatorname{List}[$ Int $]=$
if $(n=0 \|$ isEmpty) this else tail.drop $(n-1)$
$\boldsymbol{d e f} \operatorname{apply}(n:$ Int $)=\operatorname{drop}(n) . h e a d$
\}

```

\section*{Sorting Lists Faster}

As a non-trivial example, design a function to sort itemiz in a list that is more efficient than insertion sort.

A good algorithm for this is merge sort. The idea is as follows:
- If the list consists of zero or one elements, it is already sorted.
- Otherwise,
1. Separate the list into two sub-lists, each containing around half of the elements of the original list.
2. Sort the two sub-lists.
3. Merge the two sorted sub-lists into a single sorted list.

To implement this, we must still specify
- the type of elements to sort
- how to compare two elements

The most flexible design is to make the function sort polymorphic and to pass the comparison operation as an additional parameter. For example:
```

def msort[a](less: (a, a) = Boolean)(xs: List[a]): List[a] = {
val n = xs.length/2
if (n== 0) xs
else {
def merge(xs1: List[a], xs2: List[a]): List[a] = ...
merge(msort(less)(xs take n), msort(less)(xs drop n))
}
}

```

Exercice : Define the merge function. Here are two test cases.
```

merge(List(1, 3), List(2, 4)) = List(1, 2, 3, 4)
merge(List(1, 2), List()) = List(1, 2)

```

Here is an example of the usage of msort.
```

scala> def iless(x: Int, y: Int) = x < y
scala> msort(iless)(List(5, 7, 1, 3))
List(1, 3, 5, 7)

```

The definition of msort is curried to facilitate its specialization by particular comparison functions.
```

scala> val intSort = msort(iless)
scala> val reverseSort = msort((x: Int, y: Int) }=>\textrm{x}>y
scala> intSort(List(6, 3, 5, 5))
List(3, 5, 5, 6)
scala> reverseSort(List(6, 3, 5, 5))
List(6, 5, 5, 3)

```

Complexity:
The complexity of msort is \(O(n \log n)\).
This complexity doesn't depend on the initial distribution of elements in
the list.

\section*{Tuples}

Tuple2 is the class of Tuples. It can be defined as
case class Tuple2[a, b] (_1:a, \(2: b)\)
As a usage example, here is a function that returns the quotient and remainder of two given whole numbers...
def \(\operatorname{divmod}(x:\) Int, \(y:\) Int \()=\operatorname{Tuple} 2(x / y, x \% y)\)
And this is how the function can be used:
```

$\operatorname{divmod}(x, y)$ match \{
case $\operatorname{Tuple} 2(n, d) \Rightarrow$ println("quotient: " $+n+$ ", remainder: " $+d$)
\}

```

It is also possible to use the name of the constructor parameters to directly access the elements of a case class. For example:

43
val \(p=\operatorname{divmod}(x, y) ;\) println("quotient: " \(\left.+p . \_1\right)\)

The idea of pairs is generalized in Scala to tuples of larger arities. There exists a case class for each \(T u p l e_{n}\) for each \(n\) between 2 and 22 .

In fact, tuples are so common that there is a special syntax:
The expression or pattern
\(\left(x_{1}, \ldots, x_{n}\right)\) is an alias for \(\operatorname{Tuplen}\left(x_{1}, \ldots, x_{n}\right)\)
The type
\(\left(T_{1}, \ldots, T_{n}\right)\) is an alias for Tuplen \(\left[T_{1}, \ldots, T_{n}\right]\)
With these abbreviations, the previous example is written as follows:
def divmod \((x:\) Int, \(y:\) Int \():(\) Int, Int \()=(x / y, x \% y)\) divmod( \(x, y\) ) match \{
case \((n, d) \Rightarrow\) println("quotient: " \(+n+\) ", reste: \("+d)\)
\}

\section*{Recurring Patterns for Computations on Lists}
- The examples have shown that functions on lists often have similar structures.
- We can identify several recurring patterns, like,
- transforming each element in a list in a certain way,
- retrieving a list of all elements satisfying a criterion,
- combining the elements of a list using an operator.
- Functional languages allow programmers to write generic functions that implement patterns such as these.
- These functions are higher-order functions that take a transformation or an operator as an argument.

\section*{Applying a Function to Elements of a List}

A common operation is to transform each element of a list and then return the list of results.

For example, to multiply each element of a list by the same factor, we write:
```

def scaleList(xs: List[Double], factor: Double): List[Double] = xs match \{
case Nil \Rightarrow xs
case y :: ys $\Rightarrow y *$ factor :: scaleList(ys, factor)
\}

```

This scheme can be generalized to the method map of the List class:
```

abstract class List[a] \{ ...
def map $[b](f: a \Rightarrow b):$ List $[b]=$ this match $\{$
case Nil \Rightarrow this
case $\mathrm{x}:: \mathrm{xs} \Rightarrow f(\mathrm{x})::$ xs.map (f)
\}
\}

```

In using map, scaleList can be written more concisely.
```

def scaleList(xs: List[Double], factor: Double) $=$
xs map ($\mathrm{x} \Rightarrow \mathrm{x} *$ factor)

```

Exercice : Consider a function to square each element of a list, and return the result. Complete the two following equivalent definitions of squareList.
```

def squareList(xs: List[Int]): List[Int] =xs match \{
case $\operatorname{List}() \Rightarrow$??
case y :: ys \Rightarrow ??
\}
$\boldsymbol{d e f}$ squareList(xs: List[Int]): List[Int] $=$
xs map ??

```

\section*{Filtering}

Another common operation on lists is the selection of all elements satisfying a given condition. For example:
```

def posElems(xs:List[Int]): List[Int] = xs match {
case Nil \# xs
case y :: ys m if (y>0) y :: posElems(ys) else posElems(ys)
}

```

This pattern is generalized by the method filter of the List class:
```

abstract class List[a] {
def filter(p:a m Boolean): List[a] = this match {
case Nil }=>\mathrm{ this
case x :: xs = if (p(x)) x :: xs.filter(p) else xs.filter(p)
}

```

Using filter, posElems can be written more concisely.
def posElems(xs: List[Int]): List[Int] =
xs filter \((\mathrm{x} \Rightarrow \mathrm{x}>0)\)```

