
Week 3: Functions and Data

In this section, we'll learn how functions create and encapsulate data

structures.

Exemple : Rational Numbers

We want to design a package for doing rational arithmetic.

A rational number x
y is represented by two integers:

• its numerator x, and

• its denominator y.

Suppose we want to implement the addition of two rational numbers.

One could de�ne the two functions

def addRationalNumerator(n1 : Int, d1 : Int, n2 : Int, d2 : Int): Int
def addRationalDenominator(n1 : Int, d1 : Int, n2 : Int, d2 : Int): Int

but it would be di�cult to manage all these numerators and denominators.

1

A better choice is to combine the numerator and denominator of a rational

number in a data structure.

In Scala, we do this by de�ning a class:

class Rational(x : Int, y : Int) {
def numer = x
def denom = y

}

The de�nition above introduces two entities:

• A new type, named Rational.

• A constructor Rational to create elements of this type.

Scala keeps the names of types and values in di�erent namespaces. So

there's no con�ict between the two de�ntions of Rational.

We call the elements of a class type objects.

We create an object by pre�xing an application of the constructor of the

class with the operator new, for example new Rational(1, 2).

2

Members of an object

Objects of the class Rational have two members, numer and denom.

We select the members of an object with the in�x operator `.' (like in

Java).

Exemple :

scala> val x = new Rational(1, 2)
scala> x.numer
1
scala> x.denom
2

3

Working with objects

We can now de�ne the arithmetic functions that implement the standard

rules.

n1

d1
+ n2

d2
= n1d2+n2d1

d1d2
n1

d1
− n2

d2
= n1d2−n2d1

d1d2
n1

d1
· n2

d2
= n1n2

d1d2
n1

d1
/n2

d2
= n1d2

d1n2

n1

d1
= n2

d2
i� n1d2 = d1n2

4

Exemple :

scala> def addRational(r : Rational, s : Rational): Rational =
new Rational(

r.numer ∗ s.denom + s.numer ∗ r.denom,
r.denom ∗ s.denom)

scala> def makeString(r : Rational) =
r.numer + "/" + r.denom

scala> makeString(addRational(new Rational(1, 2), new Rational(2, 3)))
7/6

5

Methods

One could go further and also package functions operating on a data

abstraction in the data abstraction itself.

Such functions are called methods.

Exemple : Rational numbers now would have, in addition to the functions

numer and denom, the functions add, sub, mul, div, equal, toString.

One might, for example, implement this as follows:

class Rational(x : Int, y : Int) {
def numer = x
def denom = y
def add(r : Rational) =

new Rational(
numer ∗ r.denom + r.numer ∗ denom,
denom ∗ r.denom)

def sub(r : Rational) =

6

...
...
override def toString() = numer + "/" + denom

}

Remark: the modi�er override declares that toString rede�nes a method

that already exists (in the class java.lang.Object).

Here is how one might use the new Rational abstraction:

scala> val x = new Rational(1, 3)
scala> val y = new Rational(5, 7)
scala> val z = new Rational(3, 2)
scala> x.add(y).mul(z)
66/42

7

Data Abstraction

The previous example has shown that rational numbers aren't always

represented in their simplest form. (Why?)

One would expect the rational numbers to be reduced to their smallest

numerator and denominator by dividing them by their divisor.

We could implement this in each rational operation, but it would be easy

to forget this division in an operation.

A better alternative consists of normalizing the representation in the class

when the objects are constructed:

8

class Rational(x : Int, y : Int) {
private def gcd(a : Int, b : Int): Int = if (b == 0) a else gcd(b, a % b)
private val g = gcd(x, y)
def numer = x / g
def denom = y / g
...

}

gcd and g are private members; we can only access them from inside the

Rational class.

With this de�nition, we obtain:

scala> val x = new Rational(1, 3)
scala> val y = new Rational(5, 7)
scala> val z = new Rational(3, 2)
scala> x.add(y).mul(z)
11/7

In this example, we calculate gcd immediately, because we expect that the

functions numer and denom are often called.

9

It is also possible to call gcd in the code of numer and denom:

For example,

class Rational(x : Int, y : Int) {
private def gcd(a : Int, b : Int): Int = if (b == 0) a else gcd(b, a % b)
def numer = x / gcd(x, y)
def denom = y / gcd(x, y)

}

This can be advantageous if it is expected that the functions numer and

denom are called infrequently.

Clients observe exactly the same behavior in each case.

This ability to choose di�erent implementations of the data without

a�ecting clients is called data abstraction.

It is a cornerstone of software engineering.

10

Self Reference

On the inside of a class, the name this represents the object on which the

current method is executed.

Exemple : Add the functions less and max to the class Rational.

class Rational(x : Int, y : Int) {
//...

def less(that : Rational) =
numer ∗ that.denom < that.numer ∗ denom

def max(that : Rational) = if (this.less(that)) that else this

}

Note that a simple name x, which refers to another member of the class, is

an abbreviation of this.x. Thus, an equivalent way to formulate less is as

follows.

def less(that : Rational) =
this.numer ∗ that.denom < that.numer ∗ this.denom

11

Constructors

The constructor introduced with the new type Rational is called the

primary constructor of the class.

Scala also allows the declaration of auxillary constructors named this.

Exemple : Add an auxillary constructor to the class Rational.

class Rational(x : Int, y : Int) {
def this(x : Int) = this(x, 1)

//...
}

With this de�nition, we obtain:

scala> val x = new Rational(2)
scala> val y = new Rational(1, 2)
scala> x.mul(y)
1/1

12

Classes and Substitutions

We previously de�ned the meaning of a function application using a

computation model based on substitution. Now we extend this model to

classes and objects.

Question: How is an instantiation of the class new C(e1, ..., em) evaluted?

Answer: The expression arguments e1, ..., em are evaluated like the

arguments of a normal function. That's it. The resulting expresion, say,

new C(v1, ..., vm), is already a value.

Now suppose that we have a class de�nition,

class C(x1, ..., xm) { ... def f(y1, ..., yn) = b ... }

where

• The formal parameters of the class are x1, ..., xm.

• The class de�nes a method f with formal parameters y1, ..., yn.

13

(The list of function parameters can be absent. For simplicity, we have

omitted the parameter types.)

Question: How is the expression new C(v1, ..., vm).f(w1, ..., wn)

evaluated?

Answer: The expression can be rewritten as:

[w1/y1, ..., wn/yn]
[v1/x1, ..., vm/xm]

[new C(v1, ..., vm)/this] b

There are three substitutions at work here:

1. the substitution of the formal parameters y1, ...,

yn of the function f by the arguments w1, ..., wn,

2. the substitution of the formal parameters x1, ...,

xm of the class C by the class arguments v1, ..., vm,

3. the substitution of the self reference this by the value of the object

new C(v1, ..., vn).

14

Examples of Rewriting

new Rational(1, 2).numer
→

1

new Rational(1, 2).denom
→

2

new Rational(1, 2).less(new Rational(2, 3))
→

new Rational(1, 2).numer ∗ new Rational(2, 3).denom <
new Rational(2, 3).numer ∗ new Rational(1, 2).denom

→ ... →
1 ∗ 3 < 2 ∗ 2

→ ... →
true

15

Operators

In principle, the rational numbers de�ned by Rational are as natural as

integers.

But for the user of these abstractions, there is a noticeable di�erence:

• We write x + y, if x and y are integers, but

• We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this di�erence. We procede in two steps.

Step 1 Any method with a parameter can be used like an in�x operator.

It is therefore possible to write

r add s r.add(s)
r less s in place of r.less(s)
r max s r.max(s)

Step 2 Operators can be used as identi�ers.

16

Thus, an identi�er can be:

• A letter, followed by a sequence of letters or numbers

• An operator symbol, followed by other operator symbols.

The priority of an operator is determined by its �rst character.

The following table lists the characters in ascending order of priority:

(all letters)
|
�
&
< >
= !
:

+ −
∗ / %
(all other special characters)

Therefore, we can de�ne Rational more naturally:

17

class Rational(x : Int, y : Int) {
private def gcd(a : Int, b : Int): Int = if (b == 0) a else gcd(b, a % b)
private val g = gcd(x, y)
def numer = x / g
def denom = y / g
def + (r : Rational) =

new Rational(
numer ∗ r.denom + r.numer ∗ denom,
denom ∗ r.denom)

def − (r : Rational) =
new Rational(

numer ∗ r.denom − r.numer ∗ denom,
denom ∗ r.denom)

def ∗ (r : Rational) =
new Rational(

numer ∗ r.numer,
denom ∗ r.denom)

//...
override def toString() = numer + "/" + denom

}

18

... and rational numbers can be used like Int or Double:

scala> val x = new Rational(1, 2)
scala> val y = new Rational(1, 3)
scala> x ∗ x + y ∗ y
13/36

19

Abstract Classes

Consider the task of writing a class for sets of integers with the following

operations.

abstract class IntSet {
def incl(x : Int): IntSet
def contains(x : Int): Boolean

}

IntSet is an abstract class.

Abstract classes can contain members which are missing an

implementation (in our case, incl and contains).

Consequently, no object of an abstract class can be instantiated with the

operator new.

20

Class Extensions

Let's consider implementing sets as binary trees.

There are two types of possible trees: a tree for the empty set, and a tree

consisting of an integer and two sub trees.

Here are their implementations:

class Empty extends IntSet {
def contains(x : Int): Boolean = false

def incl(x : Int): IntSet = new NonEmpty(x, new Empty, new Empty)
}

21

class NonEmpty(elem : Int, left : IntSet, right : IntSet) extends IntSet {
def contains(x : Int): Boolean = {

if (x < elem) left contains x
else if (x > elem) right contains x
else true }

def incl(x : Int): IntSet = {
if (x < elem) new NonEmpty(elem, left incl x, right)
else if (x > elem) new NonEmpty(elem, left, right incl x)
else this }

}

Remarks:

• Empty and NonEmpty both extend the class IntSet.

• This means that the types Empty and NonEmpty conform to the type

IntSet: an object of type Empty or NonEmpty can be used wherever

an object of type IntSet is required.

22

Base Classes and Subclasses

• IntSet is called a base class of Empty and NonEmpty.

• Empty and NonEmpty are subclasses of IntSet.

• In Scala, any user-de�ned class extends another class.

• In the absence of extends, the class scala.ScalaObject is implicit.

• Subclasses inherit all the members of their base class.

• The de�nitions of contains and incl in the classes Empty and

NonEmpty implement the abstract functions in the base class IntSet.

• It is also possible to rede�ne an existing, non-abstract de�nition in a

subclass by using override.

Exemple :

abstract class Base { class Sub extends Base {
def foo = 1 override def foo = 2
def bar : Int def bar = 3

} }

23

Exercice : Write the methods union and intersection for forming the

union and the intersection of two sets.

Exercice : Add a method

def excl(x : Int): IntSet

which returns the given set without the element x. To achieve this, it is

also useful to implement a test method

def isEmpty : Boolean

24

Dynamic Binding

• Object-oriented languages (including Scala) implement dynamic

dispatch of methods.

• This means that the code invoked by a method call depends on the

runtime type of the object that contains the method.

Exemple :

(new Empty).contains(7)
→

false

25

Exemple :

(new NonEmpty(7, new Empty, new Empty)).contains(1)
→

if (1 < 7) new Empty contains 1
else if (1 > 7) new Empty contains 1
else true

→
new Empty contains 1

→
false

Dynamic dispatch of methods is analogous to calls to higher-order

functions.

Question:

Can we implement one concept in terms of the other?

26

Standard Classes

In fact, types such as Int or Boolean do not receive special treatment in

Scala. They are like the other classes, de�ned in the package scala.

For reasons of e�ciency, the compiler usually represents the values of type

scala.Int by 32-bit integers, and the values of type scala.Boolean by Java's

Booleans, etc.

But this is just an optimization, this doesn't have any e�ect on the

meaning of a program.

Here is a possible implementation of the class Boolean.

27

The class Boolean

package scala
trait Boolean {

def ifThenElse[a](t : ⇒ a)(e : ⇒ a): a

def && (x : ⇒ Boolean): Boolean = ifThenElse[Boolean](x)(false)
def | | (x : ⇒ Boolean): Boolean = ifThenElse[Boolean](true)(x)
def ! : Boolean = ifThenElse[Boolean](false)(true)

def == (x : Boolean): Boolean = ifThenElse[Boolean](x)(x.!)
def != (x : Boolean): Boolean = ifThenElse[Boolean](x.!)(x)
def < (x : Boolean): Boolean = ifThenElse[Boolean](false)(x)
def > (x : Boolean): Boolean = ifThenElse[Boolean](x.!)(false)
def ≤ (x : Boolean): Boolean = ifThenElse[Boolean](x)(true)
def ≥ (x : Boolean): Boolean = ifThenElse[Boolean](true)(x.!)

}

val true = new Boolean { def ifThenElse[a](t : ⇒ a)(e : ⇒ a) = t }
val false = new Boolean { def ifThenElse[a](t : ⇒ a)(e : ⇒ a) = e }

28

The class Int

Here is a partial speci�cation of the class Int.

class Int extends Long {
def + (that : Double): Double
def + (that : Float): Float
def + (that : Long): Long
def + (that : Int): Int /∗ idem pour −, ∗, /, % ∗/
def << (cnt : Int): Int /∗ idem pour >>, >>> ∗/
def & (that : Long): Long
def & (that : Int): Int /∗ idem pour |, � ∗/
def == (that : Double): Boolean
def == (that : Float): Boolean
def == (that : Long): Boolean

/∗ idem pour !=, <, >, ≤, ≥ ∗/
}

29

Exercice : Provide an implementation of the abstract class below that

represents non-negative integers.

abstract class Nat {
def isZero : Boolean
def predecessor : Nat
def successor : Nat
def + (that : Nat): Nat
def − (that : Nat): Nat

}

Do not use standard numerical classes in this implementation.

Rather, implement two subclasses.

class Zero extends Nat
class Succ(n : Nat) extends Nat

One for the number zero, the other for strictly positive numbers.

30

Pure Object Orientation

A pure object-oriented language is one in which each value is an object.

If the language is based on classes, this means that the type of each value

is a class.

Is Scala a pure object-oriented language?

We have seen that Scala's numeric types and the Boolean type can be

implemented like normal classes.

We'll see next week that functions can also be seen as objects.

The function type A ⇒ B is treated like an abbreviation for objects that

have a method for application:

def apply(x : A): B

31

Recap

• We have seen how to implement data structures with classes.

• A class de�nes a type and a function to create objects of that type.

• Objects have functions as their members which can be selected using

the `.` in�x operator.

• Classes and members can be abstract, i.e., provided without a

concrete implementation.

• A class can extend another class.

• If the class A extends B then the type A conforms to type B.

This means that objects of type A can be used wherever objects of

type B are required.

32

Language Elements Introduced This Week

Types:

Type = ... | ident

A type can now be an identi�er, i.e., a class name.

Expressions:

Expr = ... | new Expr | Expr `.' ident

An expression can now be an object creation or a selection E.m of a

member m of an expression E whose value is an object

33

De�nitions:

Def = FunDef | ValDef | ClassDef
ClassDef = [abstract] class ident [`(' [Parameters] `)']

[extends Expr] [`{' {TemplateDef} `}']
TemplateDef = [Modi�er] Def
Modi�er = AccessModi�er | override

AccessModi�er = private | protected

A de�nition can now be a class de�nition such as

class C(params) extends B { defs }

De�nitions defs in a class can be preceeded by modi�ers private,

protected or override.

34

