
Week 2 : Evaluating a Function Application

(Review)

A simple rule : One evaluates a function application f(e1, ..., en)

• by evaluating the expressions e1, ..., en resulting in the values

v1, ..., vn, then

• by replacing the application with the body of the function f, in which

• the actual parameters v1, ..., vn replace the formal parameters of f.

This can be formalized as a rewriting of the program itself:

def f (x1, ..., xn) = B ; ... f (v1, ..., vn)
→

def f (x1, ..., xn) = B ; ... [v1/x1, ..., vn/xn] B

Here, [v1/x1, ..., vn/xn] B denotes the expression B in which all occurences

of xi have been replaced by vi.

[v1/x1, ..., vn/xn] is called a substitution.

1

Example of rewriting:

Consider gcd:

def gcd(a : Int, b : Int): Int = if (b == 0) a else gcd(b, a % b)

gcd(14, 21) Evaluated as follows :

gcd(14, 21)
→ if (21 == 0) 14 else gcd(21, 14 % 21)
→ if (false) 14 else gcd(21, 14 % 21)
→ gcd(21, 14 % 21)
→ gcd(21, 14)
→ if (14 == 0) 21 else gcd(14, 21 % 14)
→ → gcd(14, 21 % 14)
→ gcd(14, 7)
→ if (7 == 0) 14 else gcd(7, 14 % 7)
→ → gcd(7, 14 % 7)
→ gcd(7, 0)
→ if (0 == 0) 7 else gcd(0, 7 % 0)
→ → 7

2

Another example of rewriting:

Consider factorial:

def factorial(n : Int): Int = if (n == 0) 1 else n ∗ factorial(n − 1)

factorial(5) can then be rewritten as follows:

factorial(5)
→ if (5 == 0) 1 else 5 ∗ factorial(5 − 1)
→ 5 ∗ factorial(5 − 1)
→ 5 ∗ factorial(4)
→ ... → 5 ∗ (4 ∗ factorial(3))
→ ... → 5 ∗ (4 ∗ (3 ∗ factorial(2)))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ factorial(1))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ factorial(0))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ 1))))
→ ... → 120

What are the di�erences between the two rewritten sequences?

3

Tail Recursion

Implementation Detail : If a function calls itself as its last action, the

function's stack frame can be reused. This is called tail recursion.

⇒ Tail recursive functions are iterative processes.

In general, if the last action of a function consists of calling a function

(which may be the same), one stack frame is su�cient for both functions.

Such calls are called, tail-calls.

Exercise: Design a tail recursive version of factorial.

4

Value De�nitions

• A de�nition

def f = expr

introduces f as a name for the expression expr.

• expr will be evaluated each time that f is used.

• In other words, def f introduces a function without parameters.

• By comparison, a value de�nition

val x = expr

introduces x as a name for the value of an expression expr.

• expr will be evaluated once, at the point of de�nition of the value.

5

Example:

scala> val x = 2
x : Int = 2
scala> val y = square(x)
y : Int = 4
scala> y
res0 : Int = 4

Example:

scala> def loop : Int = loop
loop : Int
scala> val x : Int = loop (in�nite loop)
�C

6

Higher-Order Functions

Functional languages treat functions as �rst-class values.

This means that, like any other value, a function can be passed as a

parameter and returned as a result.

This provides a �exible way to compose programs.

Functions that take other functions as parameters or that return functions

as results are called higher order functions.

7

Example:

Take the sum of the integers between a and b:

def sumInts(a : Int, b : Int): Double =
if (a > b) 0 else a + sumInts(a + 1, b)

Take the sum of the cubes of all the integers between a and b :

def cube(x : Int): Double = x ∗ x ∗ x
def sumCubes(a : Int, b : Int): Double =

if (a > b) 0 else cube(a) + sumCubes(a + 1, b)

Take the sum of the reciprocals of the integers between a and b:

def sumReciprocals(a : Int, b : Int): Double =
if (a > b) 0 else 1.0 / a + sumReciprocals(a + 1, b)

These are special cases of
∑b

n=a f(n) for di�erent values of f .

Can we factor out the common pattern?

8

Summing with Higher-Order Functions

We de�ne:

def sum(f : Int ⇒ Double, a : Int, b : Int): Double = {
if (a > b) 0
else f(a) + sum(f, a + 1, b)

}

We can then write:

def sumInts(a : Int, b : Int): Double = sum(id, a, b)
def sumCubes(a : Int, b : Int): Double = sum(cube, a, b)
def sumReciprocals(a : Int, b : Int): Double = sum(reciprocal, a, b)

where

def id(x : Int): Double = x
def cube(x : Int): Double = x ∗ x ∗ x
def reciprocal(x : Int): Double = 1.0/x

The type Int ⇒ Double is the type of a function that takes one argument

of type Int and returns a result of type Double.

9

Anonymous Functions

• Passing functions as parameters leads to the creation of many small

functions.

• Sometimes it is cumbersome to have to de�ne (and name) these

functions using def.

• A shorter notation makes use of anonymous functions.

• Example: A function that raises its argument to a cube is written,

(x : Int) ⇒ x ∗ x ∗ x

Here, x : Int is the parameter of the function, and x ∗ x ∗ x is it's body.

• The type of the parameter can be omitted if it can be inferred (by the

compiler) from the context.

10

Anonymous Functions are Syntactic Sugar

• In general, (x1 : T1, ..., xn : Tn) ⇒ E is a function that relates the

result of the expression E to the parameters x1, ..., xn (such that E

can refer to x1, ..., xn).

• An anonymous function (x1 : T1, ..., xn : Tn) ⇒ E can always be

expressed by using def as follows:

{ def f (x1 : T1, ..., xn : Tn) = E ; f }

where f is a fresh name (not yet used in the program).

• We say that anonymous functions are syntactic sugar.

11

Summation with Anonymous Functions

We can now write it in a shorter way:

def sumInts(a : Int, b : Int): Double = sum(x ⇒ x, a, b)
def sumCubes(a : Int, b : Int): Double = sum(x ⇒ x ∗ x ∗ x, a, b)
def sumReciprocals(a : Int, b : Int): Double = sum(x ⇒ 1.0/x, a, b)

Can we still do better by getting rid of a and b since we only pass them to

the sum function without actually using them?

12

Currying

We rewrite sum as follows.

def sum(f : Int ⇒ Double): (Int, Int) ⇒ Double = {
def sumF(a : Int, b : Int): Double =

if (a > b) 0
else f(a) + sumF(a + 1, b)

sumF
}

• sum is now a function that returns another function. More precisely,

the specialized sum function sumF applies the function and sums the

results. We can then de�ne:
def sumInts = sum(x ⇒ x)
def sumCubes = sum(x ⇒ x ∗ x ∗ x)
def sumReciprocals = sum(x ⇒ 1.0/x)

• These functions can be applied like the other functions:

scala> sumCubes(1, 10) + sumReciprocals(10, 20)

13

Curried Application

How do we apply a function that returns a function?

Example:

scala> sum (cube) (1, 10)
3025.0

• sum (cube) applies sum to cube and returns the sum of cubes function

(sum(cube) is therefore equivalent to sumCubes).

• This function is next applied to the arguments (1, 10).

• Consequently, function application associates to the left:

sum(cube)(1, 10) == (sum (cube)) (1, 10)

14

De�nition of Currying

The de�nition of functions that return functions is so useful in functional

programming (FP) that there is a special syntax for it in Scala.

For example, the following de�nition of sum is equivalent to what we saw

before, but shorter:

def sum(f : Int ⇒ Double)(a : Int, b : Int): Double =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

In general, a de�nition of a curried function

def f (args1) ... (argsn) = E

where n > 1, is equivalent to

def f (args1) ... (argsn−1) = (def g (argsn) = E ; g)

where g is a fresh identi�er.

15

Or for short:

def f (args1) ... (argsn−1) = (argsn ⇒ E)

By repeating the process n times

def f (args1) ... (argsn−1) (argsn) = E

becomes equivalent to

def f = (args1 ⇒ (args2 ⇒ ... (argsn ⇒ E) ...))

This style of de�nition and function application is called currying, named

for its instigator, Haskell Brooks Curry (1900-1982), a twentieth century

logician.

In fact, the idea goes back to Moses Schön�nkel, but the word �currying"

has won (perhaps because �schön�nkeling" is more di�cult to pronounce).

16

Function Types

Question : Given,

def sum(f : Int ⇒ Double)(a : Int, b : Int): Double = ...

What is the type of sum ?

Note that functional types associate to the right. That is to say that

Int ⇒ Int ⇒ Int

is equivalent to

Int ⇒ (Int ⇒ Int)

17

Exercises:

1. The sum function uses linear recursion. Can you write a tail-recursive

version by replacing the ???

def sum(f : Int ⇒ Double)(a : Int, b : Int): Double = {
def iter(a : Int, result : Double): Double = {

if (??) ??
else iter(??, ??)

}
iter(??, ??)

}

2. Write a product function that calculates the product of the values of a

function for the points on a given interval.

3. Write factorial in terms of product.

4. Can you write a more general function, which generalizes both sum and

product ?

18

Find the �xed points of a function

• A number x is called a �xed point of a function f if

f(x) = x

• For some functions, f we can locate the �xed points by starting with

an initial estimate and then by applying f in a repetitive way.

x, f(x), f(f(x)), f(f(f(x))), ...

until the value does not vary anymore (or the change is su�ciently

small).

19

This leads to the following function for �nding a �xed point:

val tolerance = 0.0001
def isCloseEnough(x : Double, y : Double) = abs((x − y) / x) < tolerance
def �xedPoint(f : Double ⇒ Double)(�rstGuess : Double) = {

def iterate(guess : Double): Double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(�rstGuess)

}

20

Return to Square Roots

Here is a speci�cation of the function, sqrt.

sqrt(x) = the number y such that y ∗ y = x
= the number y such that y = x / y

Consequently, sqrt(x) is a �xed point function (y ⇒ x / y).

This suggests to calculate sqrt(x) by iteration towards a �xed point:

def sqrt(x : Double) =
�xedPoint(y ⇒ x / y)(1.0)

Unfortunately it does not converge. If we add a print instruction to the

function �xedPoint so we can follow the current value of guess, we get:

21

def �xedPoint(f : Double ⇒ Double)(�rstGuess : Double) = {
def iterate(guess : Double): Double = {

val next = f(guess)
println(next)
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(�rstGuess)

}

sqrt(2) then produces:

2.0
1.0
2.0
1.0
2.0
...

22

One way to control such oscillations is to prevent the estimation from

varying too much. This is done by averaging successive values of the

original sequence:

scala> def sqrt(x : Double) = �xedPoint(y ⇒ (y + x / y) / 2)(1.0)
scala> sqrt(2.0)

1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, if we fold the �xed point function �xedPoint we �nd the same

square root function that we found last week.

23

Functions as Return Values

• The previous examples have shown that the expressive power of a

language is greatly increased if we can pass function arguments.

• The following example shows that functions that return functions can

also be very useful.

• Consider again iteration towards a �xed point.

• We begin by observing that
√

(x) is a �xed point of the function.

y ⇒ x / y.

• Then, the iteration converges by averaging successive values.

• This technique of stabilizing by averaging is general enough to merit

being in an abstract function.

def averageDamp(f : Double ⇒ Double)(x : Double) = (x + f(x)) / 2

24

• using averageDamp, we can reformulate the square root function as

follows.

def sqrt(x : Double) = �xedPoint(averageDamp(y ⇒ x/y))(1.0)

• This expresses the elements of the algorithm as clearly as possible.

Exercise: Write a square root function by using �xedPoint and

averageDamp.

25

Résumé

• We saw last week that the functions are essential abstractions because

they allow us to introduce general methods to perform computations

as explicit and named elements in our programming language.

• This week, we've seen that these abstractions can be combined with

higher-order functions to create new abstractions.

• As a programmer, one must look for opportunities to abstract and

reuse.

• The highest level of abstraction is not always the best, but it is

important to know the techniques of abstraction, so as to use them

when appropriate.

26

Language Elements Seen So Far

• We have seen the language elements to express types, expressions and

de�nitions.

• Below, we give their context-free syntax in Extended Backus-Naur

form (EBNF), where ` |' denotes an alternative, [...] an option (0 or 1),

an {...} a repitition (0 or more).

27

Types :

Type = SimpleType | FunctionType
FunctionType = SimpleType `⇒' Type | `(' [Types] `)' `⇒' Type
SimpleType = Byte | Short | Char | Int | Long | Double | Float

| Boolean | String
Types = Type {`,' Type}

A type can be:

• A numeric type: Int, Double (and Byte, Short, Char, Long, Float),

• The Boolean type with the values true and false,

• The String type,

• A functional type: Int ⇒ Int, (Int, Int) ⇒ Int.

28

Expressions:

Expr = In�xExpr | FunctionExpr | if `(' Expr `)' Expr else Expr
In�xExpr = Pre�xExpr | In�xExpr Operator In�xExpr
Operator = ident
Pre�xExpr = [`+' | `−' | ` !' | `�'] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr `.' ident | Block
FunctionExpr = Bindings `⇒` Expr
Bindings = ident [`:' SimpleType] | `(' [Binding {`,' Binding}] `)'
Binding = ident [`:' Type]
Block = `{' {Def `;'} Expr `}'

29

An expression can be:

• An identi�er such as x, isGoodEnough,

• A literal, like 0, 1.0, "abc",

• A function application, like sqrt(x),

• An operator application, like −x, y + x,

• A selection, like Console.println,

• A conditional expression, like if (x < 0) −x else x,

• A block, like { val x = abs(y) ; x ∗ 2 }

• An anonymous function, like (x ⇒ x + 1).

30

De�nitions:

Def = FunDef | ValDef
FunDef = def ident [`(' [Parameters] `)'] [`:' Type] `=' Expr
ValDef = val ident [`:' Type] `=' Expr
Parameter = ident `:' [`⇒'] Type
Parameters = Parameter {`,' Parameter}

A de�nition can be:

• A function de�nition like def square(x : Int) = x ∗ x
• A value de�nition like val y = square(2)

31

