
Week 2 : Evaluating a Function Application

(Review)

A simple rule : One evaluates a function application f(e1, ..., en)

• by evaluating the expressions e1, ..., en resulting in the values

v1, ..., vn, then

• by replacing the application with the body of the function f, in which

• the actual parameters v1, ..., vn replace the formal parameters of f.

This can be formalized as a rewriting of the program itself:

def f (x1, ..., xn) = B ; ... f (v1, ..., vn)
→

def f (x1, ..., xn) = B ; ... [v1/x1, ..., vn/xn] B

Here, [v1/x1, ..., vn/xn] B denotes the expression B in which all occurences

of xi have been replaced by vi.

[v1/x1, ..., vn/xn] is called a substitution.
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Example of rewriting:

Consider gcd:

def gcd(a : Int, b : Int): Int = if (b == 0) a else gcd(b, a % b)

gcd(14, 21) Evaluated as follows :

gcd(14, 21)
→ if (21 == 0) 14 else gcd(21, 14 % 21)
→ if (false) 14 else gcd(21, 14 % 21)
→ gcd(21, 14 % 21)
→ gcd(21, 14)
→ if (14 == 0) 21 else gcd(14, 21 % 14)
→ → gcd(14, 21 % 14)
→ gcd(14, 7)
→ if (7 == 0) 14 else gcd(7, 14 % 7)
→ → gcd(7, 14 % 7)
→ gcd(7, 0)
→ if (0 == 0) 7 else gcd(0, 7 % 0)
→ → 7
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Another example of rewriting:

Consider factorial:

def factorial(n : Int): Int = if (n == 0) 1 else n ∗ factorial(n − 1)

factorial(5) can then be rewritten as follows:

factorial(5)
→ if (5 == 0) 1 else 5 ∗ factorial(5 − 1)
→ 5 ∗ factorial(5 − 1)
→ 5 ∗ factorial(4)
→ ... → 5 ∗ (4 ∗ factorial(3))
→ ... → 5 ∗ (4 ∗ (3 ∗ factorial(2)))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ factorial(1))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ factorial(0))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ 1))))
→ ... → 120

What are the di�erences between the two rewritten sequences?
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Tail Recursion

Implementation Detail : If a function calls itself as its last action, the

function's stack frame can be reused. This is called tail recursion.

⇒ Tail recursive functions are iterative processes.

In general, if the last action of a function consists of calling a function

(which may be the same), one stack frame is su�cient for both functions.

Such calls are called, tail-calls.

Exercise: Design a tail recursive version of factorial.

4



Value De�nitions

• A de�nition

def f = expr

introduces f as a name for the expression expr.

• expr will be evaluated each time that f is used.

• In other words, def f introduces a function without parameters.

• By comparison, a value de�nition

val x = expr

introduces x as a name for the value of an expression expr.

• expr will be evaluated once, at the point of de�nition of the value.
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Example:

scala> val x = 2
x : Int = 2
scala> val y = square(x)
y : Int = 4
scala> y
res0 : Int = 4

Example:

scala> def loop : Int = loop
loop : Int
scala> val x : Int = loop (in�nite loop)
�C
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Higher-Order Functions

Functional languages treat functions as �rst-class values.

This means that, like any other value, a function can be passed as a

parameter and returned as a result.

This provides a �exible way to compose programs.

Functions that take other functions as parameters or that return functions

as results are called higher order functions.

7



Example:

Take the sum of the integers between a and b:

def sumInts(a : Int, b : Int): Double =
if (a > b) 0 else a + sumInts(a + 1, b)

Take the sum of the cubes of all the integers between a and b :

def cube(x : Int): Double = x ∗ x ∗ x
def sumCubes(a : Int, b : Int): Double =

if (a > b) 0 else cube(a) + sumCubes(a + 1, b)

Take the sum of the reciprocals of the integers between a and b:

def sumReciprocals(a : Int, b : Int): Double =
if (a > b) 0 else 1.0 / a + sumReciprocals(a + 1, b)

These are special cases of
∑b

n=a f(n) for di�erent values of f .

Can we factor out the common pattern?
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Summing with Higher-Order Functions

We de�ne:

def sum(f : Int ⇒ Double, a : Int, b : Int): Double = {
if (a > b) 0
else f(a) + sum(f, a + 1, b)

}

We can then write:

def sumInts(a : Int, b : Int): Double = sum(id, a, b)
def sumCubes(a : Int, b : Int): Double = sum(cube, a, b)
def sumReciprocals(a : Int, b : Int): Double = sum(reciprocal, a, b)

where

def id(x : Int): Double = x
def cube(x : Int): Double = x ∗ x ∗ x
def reciprocal(x : Int): Double = 1.0/x

The type Int ⇒ Double is the type of a function that takes one argument

of type Int and returns a result of type Double.
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Anonymous Functions

• Passing functions as parameters leads to the creation of many small

functions.

• Sometimes it is cumbersome to have to de�ne (and name) these

functions using def.

• A shorter notation makes use of anonymous functions.

• Example: A function that raises its argument to a cube is written,

(x : Int) ⇒ x ∗ x ∗ x

Here, x : Int is the parameter of the function, and x ∗ x ∗ x is it's body.

• The type of the parameter can be omitted if it can be inferred (by the

compiler) from the context.
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Anonymous Functions are Syntactic Sugar

• In general, (x1 : T1, ..., xn : Tn) ⇒ E is a function that relates the

result of the expression E to the parameters x1, ..., xn (such that E

can refer to x1, ..., xn).

• An anonymous function (x1 : T1, ..., xn : Tn) ⇒ E can always be

expressed by using def as follows:

{ def f (x1 : T1, ..., xn : Tn) = E ; f }

where f is a fresh name (not yet used in the program).

• We say that anonymous functions are syntactic sugar.
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Summation with Anonymous Functions

We can now write it in a shorter way:

def sumInts(a : Int, b : Int): Double = sum(x ⇒ x, a, b)
def sumCubes(a : Int, b : Int): Double = sum(x ⇒ x ∗ x ∗ x, a, b)
def sumReciprocals(a : Int, b : Int): Double = sum(x ⇒ 1.0/x, a, b)

Can we still do better by getting rid of a and b since we only pass them to

the sum function without actually using them?
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Currying

We rewrite sum as follows.

def sum(f : Int ⇒ Double): (Int, Int) ⇒ Double = {
def sumF(a : Int, b : Int): Double =

if (a > b) 0
else f(a) + sumF(a + 1, b)

sumF
}

• sum is now a function that returns another function. More precisely,

the specialized sum function sumF applies the function and sums the

results. We can then de�ne:
def sumInts = sum(x ⇒ x)
def sumCubes = sum(x ⇒ x ∗ x ∗ x)
def sumReciprocals = sum(x ⇒ 1.0/x)

• These functions can be applied like the other functions:

scala> sumCubes(1, 10) + sumReciprocals(10, 20)

13



Curried Application

How do we apply a function that returns a function?

Example:

scala> sum (cube) (1, 10)
3025.0

• sum (cube) applies sum to cube and returns the sum of cubes function

(sum(cube) is therefore equivalent to sumCubes).

• This function is next applied to the arguments (1, 10).

• Consequently, function application associates to the left:

sum(cube)(1, 10) == (sum (cube)) (1, 10)
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De�nition of Currying

The de�nition of functions that return functions is so useful in functional

programming (FP) that there is a special syntax for it in Scala.

For example, the following de�nition of sum is equivalent to what we saw

before, but shorter:

def sum(f : Int ⇒ Double)(a : Int, b : Int): Double =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

In general, a de�nition of a curried function

def f (args1) ... (argsn) = E

where n > 1, is equivalent to

def f (args1) ... (argsn−1) = ( def g (argsn) = E ; g )

where g is a fresh identi�er.
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Or for short:

def f (args1) ... (argsn−1) = ( argsn ⇒ E )

By repeating the process n times

def f (args1) ... (argsn−1) (argsn) = E

becomes equivalent to

def f = (args1 ⇒ ( args2 ⇒ ... ( argsn ⇒ E ) ... ))

This style of de�nition and function application is called currying, named

for its instigator, Haskell Brooks Curry (1900-1982), a twentieth century

logician.

In fact, the idea goes back to Moses Schön�nkel, but the word �currying"

has won (perhaps because �schön�nkeling" is more di�cult to pronounce).
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Function Types

Question : Given,

def sum(f : Int ⇒ Double)(a : Int, b : Int): Double = ...

What is the type of sum ?

Note that functional types associate to the right. That is to say that

Int ⇒ Int ⇒ Int

is equivalent to

Int ⇒ (Int ⇒ Int)
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Exercises:

1. The sum function uses linear recursion. Can you write a tail-recursive

version by replacing the ???

def sum(f : Int ⇒ Double)(a : Int, b : Int): Double = {
def iter(a : Int, result : Double): Double = {

if (??) ??
else iter(??, ??)

}
iter(??, ??)

}

2. Write a product function that calculates the product of the values of a

function for the points on a given interval.

3. Write factorial in terms of product.

4. Can you write a more general function, which generalizes both sum and

product ?
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Find the �xed points of a function

• A number x is called a �xed point of a function f if

f(x) = x

• For some functions, f we can locate the �xed points by starting with

an initial estimate and then by applying f in a repetitive way.

x, f(x), f(f(x)), f(f(f(x))), ...

until the value does not vary anymore (or the change is su�ciently

small).
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This leads to the following function for �nding a �xed point:

val tolerance = 0.0001
def isCloseEnough(x : Double, y : Double) = abs((x − y) / x) < tolerance
def �xedPoint(f : Double ⇒ Double)(�rstGuess : Double) = {

def iterate(guess : Double): Double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(�rstGuess)

}
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Return to Square Roots

Here is a speci�cation of the function, sqrt.

sqrt(x) = the number y such that y ∗ y = x
= the number y such that y = x / y

Consequently, sqrt(x) is a �xed point function (y ⇒ x / y).

This suggests to calculate sqrt(x) by iteration towards a �xed point:

def sqrt(x : Double) =
�xedPoint(y ⇒ x / y)(1.0)

Unfortunately it does not converge. If we add a print instruction to the

function �xedPoint so we can follow the current value of guess, we get:
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def �xedPoint(f : Double ⇒ Double)(�rstGuess : Double) = {
def iterate(guess : Double): Double = {

val next = f(guess)
println(next)
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(�rstGuess)

}

sqrt(2) then produces:

2.0
1.0
2.0
1.0
2.0
...
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One way to control such oscillations is to prevent the estimation from

varying too much. This is done by averaging successive values of the

original sequence:

scala> def sqrt(x : Double) = �xedPoint(y ⇒ (y + x / y) / 2)(1.0)
scala> sqrt(2.0)

1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, if we fold the �xed point function �xedPoint we �nd the same

square root function that we found last week.
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Functions as Return Values

• The previous examples have shown that the expressive power of a

language is greatly increased if we can pass function arguments.

• The following example shows that functions that return functions can

also be very useful.

• Consider again iteration towards a �xed point.

• We begin by observing that
√

(x) is a �xed point of the function.

y ⇒ x / y.

• Then, the iteration converges by averaging successive values.

• This technique of stabilizing by averaging is general enough to merit

being in an abstract function.

def averageDamp(f : Double ⇒ Double)(x : Double) = (x + f(x)) / 2
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• using averageDamp, we can reformulate the square root function as

follows.

def sqrt(x : Double) = �xedPoint(averageDamp(y ⇒ x/y))(1.0)

• This expresses the elements of the algorithm as clearly as possible.

Exercise: Write a square root function by using �xedPoint and

averageDamp.
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Résumé

• We saw last week that the functions are essential abstractions because

they allow us to introduce general methods to perform computations

as explicit and named elements in our programming language.

• This week, we've seen that these abstractions can be combined with

higher-order functions to create new abstractions.

• As a programmer, one must look for opportunities to abstract and

reuse.

• The highest level of abstraction is not always the best, but it is

important to know the techniques of abstraction, so as to use them

when appropriate.
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Language Elements Seen So Far

• We have seen the language elements to express types, expressions and

de�nitions.

• Below, we give their context-free syntax in Extended Backus-Naur

form (EBNF), where ` |' denotes an alternative, [...] an option (0 or 1),

an {...} a repitition (0 or more).
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Types :

Type = SimpleType | FunctionType
FunctionType = SimpleType `⇒' Type | `(' [Types] `)' `⇒' Type
SimpleType = Byte | Short | Char | Int | Long | Double | Float

| Boolean | String
Types = Type {`,' Type}

A type can be:

• A numeric type: Int, Double (and Byte, Short, Char, Long, Float),

• The Boolean type with the values true and false,

• The String type,

• A functional type: Int ⇒ Int, (Int, Int) ⇒ Int.
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Expressions:

Expr = In�xExpr | FunctionExpr | if `(' Expr `)' Expr else Expr
In�xExpr = Pre�xExpr | In�xExpr Operator In�xExpr
Operator = ident
Pre�xExpr = [`+' | `−' | ` !' | `�' ] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr `.' ident | Block
FunctionExpr = Bindings `⇒` Expr
Bindings = ident [`:' SimpleType] | `(' [Binding {`,' Binding}] `)'
Binding = ident [`:' Type]
Block = `{' {Def `;'} Expr `}'
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An expression can be:

• An identi�er such as x, isGoodEnough,

• A literal, like 0, 1.0, "abc",

• A function application, like sqrt(x),

• An operator application, like −x, y + x,

• A selection, like Console.println,

• A conditional expression, like if (x < 0) −x else x,

• A block, like { val x = abs(y) ; x ∗ 2 }

• An anonymous function, like (x ⇒ x + 1).
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De�nitions:

Def = FunDef | ValDef
FunDef = def ident [`(' [Parameters] `)'] [`:' Type] `=' Expr
ValDef = val ident [`:' Type] `=' Expr
Parameter = ident `:' [ `⇒' ] Type
Parameters = Parameter {`,' Parameter}

A de�nition can be:

• A function de�nition like def square(x : Int) = x ∗ x
• A value de�nition like val y = square(2)
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