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Type Checking and Type Reconstruction

We now come to the question of type checking and type
reconstruction.

Type checking: Given I', t and T', check whether I" + ¢: T

Type reconstruction: Given I' and ¢, find a type T such that
'kt¢:T

Type checking and reconstruction seem difficult since parameters in
lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can
have many types.

Idea: : We construct all type derivations in parallel, reducing type
reconstruction to a unification problem.

From Judgements to Equations

TP : Judgement — FEquations
TP F t:T) =
caset of
x : {l(z) =T}
Mzt . let a,b fresh in
{(a—=b=T} U
TPT,z:a bk t':b)
tt : let a fresh in
TP+ t:a—T) U
TP + ¢ :a)

Constants

Constants are treated as variables in the initial environment.

However, we have to make sure we create a new instance of their type
as follows:

newlnstance(Vay, ..., a,.S) =
let by, ..., b, fresh in
[b1/ai, ..., bn/as)S

TPT - t:T) =
caset of

x  : {newlnstance(T'(z)) =T}




Soundness and Completeness |

Definition: In general, a type reconstruction algorithm A assigns to
an environment I'and a term ¢ a set of types A(T, ¢).

The algorithm is sound if for every type T' € A(T',t) we can prove the
judgement I' + ¢:T.

The algorithm is complete if for every provable judgement I' - ¢ : T
we have that T € A(T, ).

Theorem: TP is sound and complete. Specifically:

L' ¢:7T iff 3b.[T/a)EQNS
where
a is a new type variable
EQNS=TP(T F t:a)
b= tv(EQNS)\tv(I')

Here, tv denotes the set of free type varibales (of a term, and
environment, an equation set).

Type Reconstruction and Unification

Problem: : Transform set of equations

{T; =Ui}ti=1,...m
into equivalent substitution

{a; =T }j=1, ..n

where type variables do not appear recursively on their right hand sides
(directly or indirectly). That is:

a; €tv(Ty) forj=1,....,nk=j, ...,n

Substitutions

A substitution s is an idempotent mapping from type variables to types

which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a = T" with a
not in tv(T).

Substitutions can be generalized to mappings from types to types by
definining

s(T' = U) sT — sU
sS(K[Ty, ..., T,)) = Kl[sTy, ..., sT,]

Substitutions are idempotent mappings from types to types, i.e.
s(s(T)) = s(T). (why?)

The ooperator denotes composition of substitutions (or other
functions): (fog)x = f(gz).




A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

mgu
mgu(T =U) s
mgu'(a = a) s
mgu'(a=T) s
mgu' (T = a) s
mgu' (T - T =U —=U') s

(T'ype = Type) — Subst — Subst
= mgu'(sT = sU) s

sU{a=T} ifa & tv(T)
= sU{a=T} ifa & tv(T)

(mgu(T' =U") omgu(T =U)) s

mgu' (K[Ty, ..., T,) = K[Uy, ..., Uy)) s

mgu' (T =U) s

= (mgu(T,, =U,)o...omgu(Ty =Uy)) s

= error in all other cases

Soundness and Completeness of Unification

Definition: A substitution w is a unifier of a set of equations

{T; = Ui}iz1, .. m if uT; = ulj;, for all 4. It is a most general unifier if

for every other unifier u’ of the same equations there exists a
substitution s such that v’ = sou.

Theorem: Given a set of equations EQNS. If EQNS has a unifier
then mgu EQNS {} computes the most general unifier of EQNS. If

EQNS has no unifier then mgu EQNS {} fails.
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From Judgements to

Substitutions

TP : Judgement — Subst — Subst

TP F t:T)=
caset of
T

Azt

tt

mgu(newInstance(Tz) =T)
let t,u fresh in

mgu((t > u)=T) o
TP(T,x:t F t':u)

let t fresh in

TP Ft:a—T) o
TP F t':a)
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Soundness and Completeness Il

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

Lk t:T iff T=r(s)
where
t is a new type variable
s=TP (' F ¢t:t){}
r is a substitution on tv(s ¢)\tv(s I')
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Strong Normalization

Question: Can (2 be given a type?

Q = (Azaz)(lz.axz) :?

What about Y7
Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If & ¢: T, then there is a value
V such that ¢t =* V.

Corollary: Simply typed lambda calculus is not Turing complete.

13

Polymorphism

In the simply typed lambda calculus, a term can have many types.
But a variable or parameter has only one type.

Example:
(Az.zz)(Ay.y)

is untypable. But if we substitute actual parameter for formal, we
obtain

Ayy)(Ayy) ta—a
Functions which can be applied to arguments of many types are called

polymorphic.
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Polymorphism in Programming

Polymorphism is essential for many program patterns.
Example: map

def map f xs =
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

names: List[String]
nums : List[Int]

map toUpperCase names

map increment nums

Without a polymorphic type for map one of the last two lines is always
illegal!

Forms of Polymorphism

Polymorphism means “having many forms”.
Polymorphism also comes in several forms.

e Universal polymorphism, sometimes also called generic types: The
ability to instantiate type variables.

e Inclusion polymorphism, sometimes also called subtyping: The
ability to treat a value of a subtype as a value of one of its
supertypes.

e Ad-hoc polymorphism, sometimes also called overloading: The
ability to define several versions of the same function name, with
different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.
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Explicit Polymorphism

We introduce a polymorphic type Va.T', which can be used just as any
other type.

We then need to make introduction and elimination of ¥'s explicit.
Typing rules:
I' - t:VaT r'+t¢:T

(VE) (V1)
' = tU]: [U/a]T I' F Aat:VaT
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We also need to give all parameter types, so programs become verbose.
Example:

def map [a][b] (f: a -> b) (xs: List[a]) =
if (isEmpty [al (xs)) nil [a]
else cons [b] (f (head [a] xs)) (map [al[b] (f, tail [a] xs))

names: List[String]
nums : List[Int]

map [String] [String] toUpperCase names
map [Int] [Int] increment nums
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Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter
types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we
have a new syntactic category of type schemes. Syntax:

Type Scheme S == T | Va.S

Type schemes are not fully general types; they are used only to type
named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its
inventors. (The original treatment uses let ... in ... rather than
val ... ; ...).
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Hindley/Milner Typing rules

(VAR) Iz : S,IV + x: S (x & dom(I'"))

' - t:YaT r+t¢:T a & tv(T)
(VE) ——— M (VI)
'k t:[U/dT 'tk t:VaT

r+-¢:8 Lz:S++¢:T
'k letz=tint' : T

(LET)

The other two rules are as in simply typed lambda calculus:

Tx:TkFt:U r- mMm:T—U I'N:T
(—=1) (—=E)
' Xedt:T—U I'EMN:U
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Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner
system.
let map = Af.Axs in
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

/.)'names: List [String]
// nums : List[Int]
// map : Va.Vb.(a — b) — List[a] — List][b]

map toUpperCase names

map increment nums
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Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic.
le.

(Az.zz)(A\y.y)

is still ill-typed, even though the following is well-typed:
let id = \y.y inid id

With explicit polymorphism the expression could be completed to a
well-typed term:

(Aa Xz : (Va:a — a).xla — a](z[a]))(Ab.Ay.y)
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The Essence of let

We regard
letz =tint

as a shorthand for
[t/x]t’

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM’ be the type system that results if we replace
rule (LET) from the Hindley/Milner system HM by:

'et¢:T I b [t/a]t’ U
T'kFletz=t int' :U

(LET”)
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Theorem: T Fgyp t:SIffT Fgyr t:8S

The theorem establishes the following connection between the
Hindley/Milner system and the simply typed lambda calculus F;:

Corollary: Let t* be the result of expanding all let's in ¢ according
to the rule

letz=tint' — [t/x]t/
Then
'ty t:T = T bFp t°:T
Furthermore, if every let-bound name is used at least once, we also

have the reverse:

r |_F1 t": T = T '_H]\/I t:T
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Principal Types

Definition: A type T is a generic instance of a type scheme
S =Vai...Va,.T' if there is a substitution s on ay, ..., a,, such
that 7' = sT”. We write in this case S < T.

Definition: A type scheme S’ is a generic instance of a type
scheme S iff for all types T'
S'<T = S<T

We write in this case S < §'.
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Definition: A type scheme S is principal (or: most general) for T'
and t iff

eIk 1t:S
e I' - t:5 implies S <5’
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Definition: A type system T'S has the principal typing property iff,
whenever I' g t: .S then there exists a principal type scheme for I’
and ¢t.

Theorem:
1. HM' without let has the p.t.p.
2. HM’ with let has the p.t.p.
3. HM has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed
lambda calculus. (2.): Expand all let’s and apply (1.). (3.): Use
equivalence between HM and HM'.

These observations could be used to come up with a type
reconstruction algorithm for H M. But in practice one takes a more
direct approach.
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Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply
typed lambda calculus. We only have to add a clause for let
expressions:
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, €d. J.-L. Lassez and G.D. PIotkin, MIT Press, IY9YI, pages 444-

TP : Judgement — Subst — Subst

TPIT F t:T)s=

caset of

let x =ty inty : leta,bfresh in
lets;=TP (' - ty:a)in
TP (I',z:gen(s1 ',s1a) b ta:b) 51

where gen(I',T) = Vtv(T)\tv([).T.
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