Type Reconstruction and Polymorphism

Week 9
Martin Odersky

Type Checking and Type Reconstruction

We now come to the question of type checking and type
reconstruction.

Type checking: Given I', t and T', check whether I" + ¢: T

Type reconstruction: Given I' and ¢, find a type T such that
'kt¢:T

Type checking and reconstruction seem difficult since parameters in
lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can
have many types.

Idea: : We construct all type derivations in parallel, reducing type
reconstruction to a unification problem.

From Judgements to Equations

TP : Judgement — FEquations
TP F t:T) =
caset of
x : {l(z) =T}
Mzt . let a,b fresh in
{(a—=b=T} U
TPT,z:a bk t':b)
tt : let a fresh in
TP+ t:a—T) U
TP + ¢ :a)

Constants

Constants are treated as variables in the initial environment.

However, we have to make sure we create a new instance of their type
as follows:

newlnstance(Vay, ..., a,.S) =
let by, ..., b, fresh in
[b1/ai, ..., bn/as)S

TPT - t:T) =
caset of

x : {newlnstance(T'(z)) =T}

Soundness and Completeness |

Definition: In general, a type reconstruction algorithm A assigns to
an environment I'and a term ¢ a set of types A(T, ¢).

The algorithm is sound if for every type T' € A(T',t) we can prove the
judgement I' + ¢:T.

The algorithm is complete if for every provable judgement I' - ¢ : T
we have that T € A(T,).

Theorem: TP is sound and complete. Specifically:

L' ¢:7T iff 3b.[T/a)EQNS
where
a is a new type variable
EQNS=TP(T F t:a)
b= tv(EQNS)\tv(I')

Here, tv denotes the set of free type varibales (of a term, and
environment, an equation set).

Type Reconstruction and Unification

Problem: : Transform set of equations

{T; =Ui}ti=1,...m
into equivalent substitution

{a; =T }j=1, ..n

where type variables do not appear recursively on their right hand sides
(directly or indirectly). That is:

a; €tv(Ty) forj=1,....,nk=j, ...,n

Substitutions

A substitution s is an idempotent mapping from type variables to types

which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a = T" with a
not in tv(T).

Substitutions can be generalized to mappings from types to types by
definining

s(T' = U) sT — sU
sS(K[Ty, ..., T,)) = Kl[sTy, ..., sT,]

Substitutions are idempotent mappings from types to types, i.e.
s(s(T)) = s(T). (why?)

The ooperator denotes composition of substitutions (or other
functions): (fog)x = f(gz).

A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

mgu
mgu(T =U) s
mgu'(a = a) s
mgu'(a=T) s
mgu' (T = a) s
mgu' (T - T =U —=U') s

(T'ype = Type) — Subst — Subst
= mgu'(sT = sU) s

sU{a=T} ifa & tv(T)
= sU{a=T} ifa & tv(T)

(mgu(T' =U") omgu(T =U)) s

mgu' (K[Ty, ..., T,) = K[Uy, ..., Uy)) s

mgu' (T =U) s

= (mgu(T,, =U,)o...omgu(Ty =Uy)) s

= error in all other cases

Soundness and Completeness of Unification

Definition: A substitution w is a unifier of a set of equations

{T; = Ui}iz1, .. m if uT; = ulj;, for all 4. It is a most general unifier if

for every other unifier u’ of the same equations there exists a
substitution s such that v’ = sou.

Theorem: Given a set of equations EQNS. If EQNS has a unifier
then mgu EQNS {} computes the most general unifier of EQNS. If

EQNS has no unifier then mgu EQNS {} fails.

10

From Judgements to

Substitutions

TP : Judgement — Subst — Subst

TP F t:T)=
caset of
T

Azt

tt

mgu(newInstance(Tz) =T)
let t,u fresh in

mgu((t > u)=T) o
TP(T,x:t F t':u)

let t fresh in

TP Ft:a—T) o
TP F t':a)

11

Soundness and Completeness Il

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

Lk t:T iff T=r(s)
where
t is a new type variable
s=TP (' F ¢t:t){}
r is a substitution on tv(s ¢)\tv(s I')

12

Strong Normalization

Question: Can (2 be given a type?

Q = (Azaz)(lz.axz) :?

What about Y7
Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If & ¢: T, then there is a value
V such that ¢t =* V.

Corollary: Simply typed lambda calculus is not Turing complete.

13

Polymorphism

In the simply typed lambda calculus, a term can have many types.
But a variable or parameter has only one type.

Example:
(Az.zz)(Ay.y)

is untypable. But if we substitute actual parameter for formal, we
obtain

Ayy)(Ayy) ta—a
Functions which can be applied to arguments of many types are called

polymorphic.

14

Polymorphism in Programming

Polymorphism is essential for many program patterns.
Example: map

def map f xs =
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

names: List[String]
nums : List[Int]

map toUpperCase names

map increment nums

Without a polymorphic type for map one of the last two lines is always
illegal!

Forms of Polymorphism

Polymorphism means “having many forms”.
Polymorphism also comes in several forms.

e Universal polymorphism, sometimes also called generic types: The
ability to instantiate type variables.

e Inclusion polymorphism, sometimes also called subtyping: The
ability to treat a value of a subtype as a value of one of its
supertypes.

e Ad-hoc polymorphism, sometimes also called overloading: The
ability to define several versions of the same function name, with
different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

16

Explicit Polymorphism

We introduce a polymorphic type Va.T', which can be used just as any
other type.

We then need to make introduction and elimination of ¥'s explicit.
Typing rules:
I' - t:VaT r'+t¢:T

(VE) (V1)
' = tU]: [U/a]T I' F Aat:VaT

17

We also need to give all parameter types, so programs become verbose.
Example:

def map [a][b] (f: a -> b) (xs: List[a]) =
if (isEmpty [al (xs)) nil [a]
else cons [b] (f (head [a] xs)) (map [al[b] (f, tail [a] xs))

names: List[String]
nums : List[Int]

map [String] [String] toUpperCase names
map [Int] [Int] increment nums

18

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter
types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we
have a new syntactic category of type schemes. Syntax:

Type Scheme S == T | Va.S

Type schemes are not fully general types; they are used only to type
named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its
inventors. (The original treatment uses let ... in ... rather than
val ... ; ...).

19

Hindley/Milner Typing rules

(VAR) Iz : S,IV + x: S (x & dom(I'"))

' - t:YaT r+t¢:T a & tv(T)
(VE) ——— M (VI)
'k t:[U/dT 'tk t:VaT

r+-¢:8 Lz:S++¢:T
'k letz=tint' : T

(LET)

The other two rules are as in simply typed lambda calculus:

Tx:TkFt:U r- mMm:T—U I'N:T
(—=1) (—=E)
' Xedt:T—U I'EMN:U

20

Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner
system.
let map = Af.Axs in
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

/.)'names: List [String]
// nums : List[Int]
// map : Va.Vb.(a — b) — List[a] — List][b]

map toUpperCase names

map increment nums

21

Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic.
le.

(Az.zz)(A\y.y)

is still ill-typed, even though the following is well-typed:
let id = \y.y inid id

With explicit polymorphism the expression could be completed to a
well-typed term:

(Aa Xz : (Va:a — a).xla — a](z[a]))(Ab.Ay.y)

22

The Essence of let

We regard
letz =tint

as a shorthand for
[t/x]t’

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM’ be the type system that results if we replace
rule (LET) from the Hindley/Milner system HM by:

'et¢:T I b [t/a]t’ U
T'kFletz=t int' :U

(LET”)

23

Theorem: T Fgyp t:SIffT Fgyr t:8S

The theorem establishes the following connection between the
Hindley/Milner system and the simply typed lambda calculus F;:

Corollary: Let t* be the result of expanding all let's in ¢ according
to the rule

letz=tint' — [t/x]t/
Then
'ty t:T = T bFp t°:T
Furthermore, if every let-bound name is used at least once, we also

have the reverse:

r |_F1 t": T = T '_H]\/I t:T

24

Principal Types

Definition: A type T is a generic instance of a type scheme
S =Vai...Va,.T' if there is a substitution s on ay, ..., a,, such
that 7' = sT”. We write in this case S < T.

Definition: A type scheme S’ is a generic instance of a type
scheme S iff for all types T'
S'<T = S<T

We write in this case S < §'.

25

Definition: A type scheme S is principal (or: most general) for T'
and t iff

eIk 1t:S
e I' - t:5 implies S <5’

26

Definition: A type system T'S has the principal typing property iff,
whenever I' g t: .S then there exists a principal type scheme for I’
and ¢t.

Theorem:
1. HM' without let has the p.t.p.
2. HM’ with let has the p.t.p.
3. HM has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed
lambda calculus. (2.): Expand all let’s and apply (1.). (3.): Use
equivalence between HM and HM'.

These observations could be used to come up with a type
reconstruction algorithm for H M. But in practice one takes a more
direct approach.

27

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply
typed lambda calculus. We only have to add a clause for let
expressions:

28

, €d. J.-L. Lassez and G.D. PIotkin, MIT Press, IY9YI, pages 444-

TP : Judgement — Subst — Subst

TPIT F t:T)s=

caset of

let x =ty inty : leta,bfresh in
lets;=TP (' - ty:a)in
TP (I',z:gen(s1 ',s1a) b ta:b) 51

where gen(I',T) = Vtv(T)\tv([).T.

29-1

29

