
Foundations of Software
Fall Semester 2009

Week 4

Programming in the
Lambda-Calculus, Continued

Recall: Church Booleans

tru = λt. λf. t

fls = λt. λf. f

We showed last time that, if b is a boolean (i.e., it behaves like
either tru or fls), then, for any values v and w, either

b v w −→∗
v

(if b behaves like tru) or

b v w −→∗
w

(if b behaves like fls).

Booleans with “bad” arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!

Booleans with “bad” arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!

A better way

Wrap the branches in an abstraction, and use a dummy “unit
value,” to force evaluation of thunks:

unit = λx. x

Use a “conditional function”:

test = λb. λt. λf. b t f unit

If tru′ is or behaves like tru, fls′ is or behaves like fls, and s

and t are arbitrary terms then

test tru′ (λdummy. s) (λdummy. t) −→∗ s

test fls′ (λdummy. s) (λdummy. t) −→∗ t

Recall: The z Operator

In the last lecture, we defined an operator z that calculates the
“fixed point” of a function it is applied to:

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

That is, if zf = z f then zf v −→∗ f zf v.

Recall: Factorial

As an example, we defined the factorial function as follows:

fact =
z (λfct.

λn.
if n=0 then 1

else n * (fct (pred n)))

For simplicity, we used primitive values from the calculus of
numbers and booleans presented in week 2, and even used
shortcuts like 1 and *.

As mentioned, this can be translated “straightforwardly” into the
pure lambda-calculus. Let’s do that.

Lambda calculus version of Factorial (not!)

Here is the naive translation:

badfact =
z (λfct.

λn.
iszro n

c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)

Lambda calculus version of Factorial (not!)

Here is the naive translation:

badfact =
z (λfct.

λn.
iszro n

c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)

Lambda calculus version of Factorial

A better version:

fact =
z (λfct.

λn.
test (iszro n)

(λdummy. c1)

(λdummy. (times n (fct (prd n)))))

Displaying numbers

fact c3 −→∗

(λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz. z)

s z))

s z))

s z))

s z))

s z))

s z))

Ugh!

Displaying numbers

fact c3 −→∗ (λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz. z)

s z))

s z))

s z))

s z))

s z))

s z))

Ugh!

Displaying numbers

If we enrich the pure lambda-calculus with “regular numbers,” we
can display church numerals by converting them to regular
numbers:

realnat = λn. n (λm. succ m) 0

Now:

realnat (times c2 c2)

−→∗

succ (succ (succ (succ zero))).

Displaying numbers

Alternatively, we can convert a few specific numbers:

whack =
λn. (equal n c0) c0

((equal n c1) c1
((equal n c2) c2
((equal n c3) c3
((equal n c4) c4
((equal n c5) c5
((equal n c6) c6
n))))))

Now:

whack (fact c3)

−→∗

λs. λz. s (s (s (s (s (s z)))))

Equivalence of Lambda Terms

Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

6= λs. λz. s (s (s z))

= c3

The naive approach... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

6= λs. λz. s (s (s z))

= c3

A better approach

Recall the intuition behind the church numeral representation:

I a number n is represented as a term that “does something n
times to something else”

I scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.

scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w

−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w

−→(λz. v ((λs. λz. s (s z)) v z)) w

−→v ((λs. λz. s (s z)) v w)

−→v ((λz. v (v z)) w)

−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w

−→(λz. v (v (v z))) w

−→v (v (v w)))

A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

Examples

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

fls = λt. λf. f

omega = (λx. x x) (λx. x x)

poisonpill = λx. omega

placebo = λx. tru

Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent

Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent

Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f

poisonpill = λx. omega

placebo = λx. tru

Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?

Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.

Proving behavioral inequivalence

Example:

I the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit

= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit

diverges

Proving behavioral inequivalence

Example:

I the argument sequence (λx. x) poisonpill (λx. x)

demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)

−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)

−→∗ poisonpill (λx. x), which diverges

Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?

Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

I For the case where the sequence has up to one element (i.e.,
n ≤ 1), note that both tru / tru v1 and tru′ / tru′ v1
reach normal forms after zero / one reduction steps.

I For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce to v1 v3 ... vn. So either
both normalize or both diverge.

Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.

Inductive Proofs about the
Lambda Calculus

Two induction principles

Like before, we have two ways to prove that properties are true of
the untyped lambda calculus.

I Structural induction on terms

I Induction on a derivation of t −→ t′.

Let’s look at an example of each.

Structural induction on terms

To show that a property P holds for all lambda-terms t, it suffices
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction λx. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)

Structural induction on terms

To show that a property P holds for all lambda-terms t, it suffices
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction λx. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)

An example of structural induction on terms

Define the set of free variables in a lambda-term as follows:

FV (x) = {x}
FV (λx.t1) = FV (t1) \ {x}
FV (t1 t2) = FV (t1) ∪ FV (t2)

Define the size of a lambda-term as follows:

size(x) = 1
size(λx.t1) = size(t1) + 1
size(t1 t2) = size(t1) + size(t2) + 1

Theorem: |FV (t)| ≤ size(t).

An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

I If t is a variable, then |FV (t)| = 1 = size(t).

I If t is an abstraction λx. t1, then

|FV (t)|
= |FV (t1) \ {x}| by defn
≤ |FV (t1)| by arithmetic
≤ size(t1) by induction hypothesis
< size(t1) + 1 by arithmetic
= size(t) by defn.

An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

I If t is an application t1 t2, then

|FV (t)|
= |FV (t1) ∪ FV (t2)| by defn
≤ |FV (t1)|+ |FV (t2)| by arithmetic
≤ size(t1) + size(t2) by IH and arithmetic
< size(t1) + size(t2) + 1 by arithmetic
= size(t) by defn.

Induction on derivations

Recall that the reduction relation is defined as the smallest binary
relation on terms satisfying the following rules:

(λx.t1) v2 −→ [x 7→ v2]t1 (E-AppAbs)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)

Induction on derivations

Induction principle for the small-step evaluation relation.

To show that a property P holds for all derivations of t −→ t′, it
suffices to show that

I P holds for all derivations that use the rule E-AppAbs;

I P holds for all derivations that end with a use of E-App1
assuming that P holds for all subderivations; and

I P holds for all derivations that end with a use of E-App2
assuming that P holds for all subderivations.

An example of induction on derivations

Theorem: if t −→ t′ then FV (t) ⊇ FV (t′).

We must prove, for all derivations of t −→ t′, that
FV (t) ⊇ FV (t′).

An example of induction on derivations

Theorem: if t −→ t′ then FV (t) ⊇ FV (t′).

Proof: by induction on the derivation of t −→ t′. There are three
cases:

I If the derivation of t −→ t′ is just a use of E-AppAbs, then t

is (λx.t1)v and t′ is [x 7→ v]t1. Reason as follows:

FV (t) = FV ((λx.t1)v)
= FV (t1) \ {x} ∪ FV (v)
⊇ FV ([x 7→ v]t1)
= FV (t′)

An example of induction on derivations

Theorem: if t −→ t′ then FV (t) ⊇ FV (t′).

Proof: by induction on the derivation of t −→ t′. There are three
cases:

I If the derivation of t −→ t′ is just a use of E-AppAbs, then t

is (λx.t1)v and t′ is [x 7→ v]t1. Reason as follows:

FV (t) = FV ((λx.t1)v)
= FV (t1) \ {x} ∪ FV (v)
⊇ FV ([x 7→ v]t1)
= FV (t′)

An example of induction on derivations

Theorem: if t −→ t′ then FV (t) ⊇ FV (t′).

Proof: by induction on the derivation of t −→ t′. There are three
cases:

I If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t′ has the form t′1 t2, and we have a
subderivation of t1 −→ t′1

By the induction hypothesis, FV (t1) ⊇ FV (t′1). Now
calculate:

FV (t) = FV (t1 t2)
= FV (t1) ∪ FV (t2)
⊇ FV (t′1) ∪ FV (t2)
= FV (t′1 t2)
= FV (t′)

I E-App2 is treated similarly.

	Programming in the Lambda-Calculus, Continued
	Equivalence of Lambda Terms
	Inductive Proofs about the Lambda Calculus

