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Review (and more details)



Recall: Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test



Recall: Inference Rule Notation

More explicitly: The set T is the smallest set closed under the
following rules.

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T



Generating Functions

Each of these rules can be thought of as a generating function
that, given some elements from T , generates some other element
of T . Saying that T is closed under these rules means that T
cannot be made any bigger using these generating functions — it
already contains everything “justified by its members.”

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T



Let’s write these generating functions explicitly.

F1(U) = {true}
F2(U) = {false}
F3(U) = {0}
F4(U) = {succ t1 | t1 ∈ U}
F5(U) = {pred t1 | t1 ∈ U}
F6(U) = {iszero t1 | t1 ∈ U}
F7(U) = {if t1 then t2 else t3 | t1, t2, t3 ∈ U}

Each one takes a set of terms U as input and produces a set of
“terms justified by U” as output.



If we now define a generating function for the whole set of
inference rules (by combining the generating functions for the
individual rules),

F (U) = F1(U)∪F2(U)∪F3(U)∪F4(U)∪F5(U)∪F6(U)∪F7(U)

then we can restate the previous definition of the set of terms T
like this:

Definition:

I A set U is said to be “closed under F ” (or “F-closed”) if
F (U) ⊆ U.

I The set of terms T is the smallest F -closed set.
(I.e., if O is another set such that F (O) ⊆ O, then T ⊆ O.)



Our alternate definition of the set of terms can also be stated
using the generating function F :

S0 = ∅
Si+1 = F (Si )

S =
⋃

i Si
Compare this definition of S with the one we saw last time:

S0 = ∅
Si+1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

S =
⋃

i Si

We have “pulled out” F and given it a name.



Note that our two definitions of terms characterize the same set
from different directions:

I “from above,” as the intersection of all F -closed sets;

I “from below,” as the limit (union) of a series of sets that start
from ∅ and get “closer and closer to being F -closed.”

Proposition 3.2.6 in the book shows that these two definitions
actually define the same set.



Warning: Hard hats on for the next slide!



Structural Induction

The principle of structural induction on terms can also be re-stated
using generating functions:

Suppose T is the smallest F -closed set.

If, for each set U,
from the assumption “P(u) holds for every u ∈ U”
we can show “P(v) holds for any v ∈ F (U),”

then P(t) holds for all t ∈ T .

Why?
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Structural Induction

Why? Because:

I We assumed that T was the smallest F -closed set, i.e., that
T ⊆ O for any other F -closed set O.

I But showing

for each set U,
given P(u) for all u ∈ U
we can show P(v) for all v ∈ F (U)

amounts to showing that “the set of all terms satisfying P”
(call it O) is itself an F -closed set.

I Since T ⊆ O, every element of T satisfies P.



Structural Induction

Compare this with the structural induction principle for terms from
last lecture:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.



Recall, from the definition of S, it is clear that, if a term t is in Si ,
then all of its immediate subterms must be in Si−1, i.e., they must
have strictly smaller depths. Therefore:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.

Slightly more explicit proof:

I Assume that for each term s, given P(r) for all immediate
subterms of s, we can show P(s).

I Then show, by induction on i , that P(t) holds for all terms t

with depth i .

I Therefore, P(t) holds for all t.



Operational Semantics and
Reasoning



Recall: Abstract Machines

An abstract machine consists of:

I a set of states

I a transition relation on states, written −→

For the simple languages we are considering at the moment, the
term being evaluated is the whole state of the abstract machine.



Recall: Syntax for Booleans

Terms and values
t ::= terms

true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value



Recall: Operational Semantics for Booleans

The evaluation relation t −→ t′ is the smallest relation closed
under the following rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)



Derivations

We can record the “justification” for a particular pair of terms that
are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

I These trees are called derivation trees (or just derivations).

I The final statement in a derivation is its conclusion.

I We say that the derivation is a witness for its conclusion (or a
proof of its conclusion) — it records all the reasoning steps
that justify the conclusion.



Observation

Lemma: Suppose we are given a derivation tree D witnessing the
pair (t, t′) in the evaluation relation. Then either

1. the final rule used in D is E-IfTrue and we have
t = if true then t2 else t3 and t′ = t2, for some t2
and t3, or

2. the final rule used in D is E-IfFalse and we have
t = if false then t2 else t3 and t′ = t3, for some t2
and t3, or

3. the final rule used in D is E-If and we have
t = if t1 then t2 else t3 and
t′ = if t′1 then t2 else t3, for some t1, t′1, t2, and t3;
moreover, the immediate subderivation of D witnesses
(t1, t

′
1) ∈−→.



Induction on Derivations

We can now write proofs about evaluation “by induction on
derivation trees.”

Given an arbitrary derivation D with conclusion t −→ t′, we
assume the desired result for its immediate sub-derivation (if any)
and proceed by a case analysis (using the previous lemma) of the
final evaluation rule used in constructing the derivation tree.

E.g....



Induction on Derivations — Example

Theorem: If t −→ t′, i.e., if (t, t′) ∈−→, then size(t) > size(t′).
Proof: By induction on a derivation D of t −→ t′.

1. Suppose the final rule used in D is E-IfTrue, with
t = if true then t2 else t3 and t′ = t2. Then the
result is immediate from the definition of size.

2. Suppose the final rule used in D is E-IfFalse, with
t = if false then t2 else t3 and t′ = t3. Then the
result is again immediate from the definition of size.

3. Suppose the final rule used in D is E-If, with
t = if t1 then t2 else t3 and
t′ = if t′1 then t2 else t3, where (t1, t

′
1) ∈−→ is

witnessed by a derivation D1. By the induction hypothesis,
size(t1) > size(t′1). But then, by the definition of size, we
have size(t) > size(t′).



Normal forms

A normal form is a term that cannot be evaluated any further —
i.e., a term t is a normal form (or “is in normal form”) if there is
no t′ such that t −→ t′.

A normal form is a state where the abstract machine is halted —
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants
true and false) to be exactly the possible “results of evaluation.”
Did we get this definition right?
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Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.

For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.
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Numbers

New syntactic forms

t ::= ... terms
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= ... values
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value



New evaluation rules t −→ t′

t1 −→ t′1
succ t1 −→ succ t′1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1
pred t1 −→ pred t′1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-IsZero)



Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.



Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?
No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.



Multi-step evaluation.

The multi-step evaluation relation, −→∗, is the reflexive, transitive
closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t −→ t′

t −→∗ t′

t −→∗ t

t −→∗ t′ t′ −→∗ t′′

t −→∗ t′′



Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof:

I First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t′, then size(t) > size(t′)

I Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .

I But such a sequence cannot exist — contradiction!



Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof:

I First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t′, then size(t) > size(t′)

I Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .

I But such a sequence cannot exist — contradiction!



Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R ⊆ X × X is terminating —
i.e., there are no infinite sequences x0, x1, x2, etc. such
that (xi , xi+1) ∈ R for each i .
Proof:

1. Choose
I a well-founded set (W , <) — i.e., a set W with a

partial order < such that there are no infinite
descending chains w0 > w1 > w2 > . . . in W

I a function f from X to W

2. Show f (x) > f (y) for all (x , y) ∈ R
3. Conclude that there are no infinite sequences x0, x1,

x2, etc. such that (xi , xi+1) ∈ R for each i , since, if
there were, we could construct an infinite descending
chain in W .



The Lambda Calculus



The lambda-calculus

I If our previous language of arithmetic expressions was the
simplest nontrivial programming language, then the
lambda-calculus is the simplest interesting programming
language...

I Turing complete
I higher order (functions as data)

I Indeed, in the lambda-calculus, all computation happens by
means of function abstraction and application.

I The e. coli of programming language research

I The foundation of many real-world programming language
designs (including ML, Haskell, Scheme, Lisp, ...)



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.



So plus3 (succ 0) is just a convenient shorthand for “the
function that, given x, yields succ (succ (succ x)), applied to
succ 0.”

plus3 (succ 0)

=
(λx. succ (succ (succ x))) (succ 0)



Abstractions over Functions

Consider the λ-abstraction

g = λf. f (f (succ 0))

Note that the parameter variable f is used in the function position
in the body of g. Terms like g are called higher-order functions.
If we apply g to an argument like plus3, the “substitution rule”
yields a nontrivial computation:

g plus3

= (λf. f (f (succ 0))) (λx. succ (succ (succ x)))

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) (succ 0))

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ (succ 0))))

i .e. succ (succ (succ (succ (succ (succ (succ 0))))))



Abstractions Returning Functions

Consider the following variant of g:

double = λf. λy. f (f y)

I.e., double is the function that, when applied to a function f,
yields a function that, when applied to an argument y, yields
f (f y).



Example

double plus3 0

= (λf. λy. f (f y))

(λx. succ (succ (succ x)))

0

i .e. (λy. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) y))

0

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) 0)

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ 0)))

i .e. succ (succ (succ (succ (succ (succ 0)))))



The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and
application, we can throw away all the other language primitives
and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a
function.

I Variables always denote functions

I Functions always take other functions as parameters

I The result of a function is always a function



Formalities



Syntax

t ::= terms
x variable
λx.t abstraction
t t application

Terminology:

I terms in the pure λ-calculus are often called λ-terms

I terms of the form λx. t are called λ-abstractions or just
abstractions



Syntactic conventions

Since λ-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

I Application associates to the left

E.g., t u v means (t u) v, not t (u v)

I Bodies of λ- abstractions extend as far to the right as possible

E.g., λx. λy. x y means λx. (λy. x y), not
λx. (λy. x) y



Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

Test:

λx. λy. x y z

λx. (λy. z y) y
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Values

v ::= values
λx.t abstraction value



Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Notation: [x 7→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v2.”

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)
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Terminology

A term of the form (λx.t) v — that is, a λ-abstraction applied
to a value — is called a redex (short for “reducible expression”).



Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.

Some other common ones:

I Call by name (cf. Haskell)

I Normal order (leftmost/outermost)

I Full (non-deterministic) beta-reduction



Classical Lambda Calculus



Full beta reduction

The classical lambda calculus allows full beta reduction.
I The argument of a β-reduction to be an arbitrary term, not

just a value.
I Reduction may appear anywhere in a term.

Computation rule:

(λx.t12) t2 −→ [x 7→ t2]t12 (E-AppAbs)

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
t1 t2 −→ t1 t′2

(E-App2)

t −→ t′

λx.t −→ λx.t′
(E-Abs)
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Substitution revisited

Remember: [x 7→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v2.”

This is trickier than it looks!
For example:

(λx. (λy. x)) y

−→ [x 7→ y]λy. x

= ???

Solution:
need to rename bound variables before performing the substitution.

(λx. (λy. x)) y

= (λx. (λz. x)) y

−→ [x 7→ y]λz. x

= λz. y
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Alpha conversion

Renaming bound variables is formalized as α-conversion.
Conversion rule:

y 6∈ fv(t)

λx. t =α λy.[x 7→ y]t
(α)

Equivalence rules:

t1 =α t2

t2 =α t1
(α-Symm)

t1 =α t2 t2 =α t3

t1 =α t3
(α-Trans)

Congruence rules: the usual ones.



Confluence

Full β-reduction makes it possible to have different reduction
paths.

Q: Can a term evaluate to more than one normal form?

The answer is no; this is a consequence of the following

Theorem [Church-Rosser]
Let t, t1, t2 be terms such that t −→∗ t1 and t −→∗ t2. Then
there exists a term t3 such that t1 −→∗ t3 and t2 −→∗ t3.
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Programming in the
Lambda-Calculus



Multiple arguments

Consider the function double, which returns a function as an
argument.

double = λf. λy. f (f y)

This idiom — a λ-abstraction that does nothing but immediately
yield another abstraction — is very common in the λ-calculus.

In general, λx. λy. t is a function that, given a value v for x,
yields a function that, given a value u for y, yields t with v in
place of x and u in place of y.

That is, λx. λy. t is a two-argument function.

(Recall the discussion of currying in OCaml.)



The “Church Booleans”

tru = λt. λf. t

fls = λt. λf. f

tru v w

= (λt.λf.t) v w by definition
−→ (λf. v) w reducing the underlined redex
−→ v reducing the underlined redex

fls v w

= (λt.λf.f) v w by definition
−→ (λf. f) w reducing the underlined redex
−→ w reducing the underlined redex



Functions on Booleans

not = λb. b fls tru

That is, not is a function that, given a boolean value v, returns
fls if v is tru and tru if v is fls.



Functions on Booleans

and = λb. λc. b c fls

That is, and is a function that, given two boolean values v and w,
returns w if v is tru and fls if v is fls

Thus and v w yields tru if both v and w are tru and fls if either
v or w is fls.



Pairs

pair = λf.λs.λb. b f s

fst = λp. p tru

snd = λp. p fls

That is, pair v w is a function that, when applied to a boolean
value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru

and w if b is fls, so the first and second projection functions fst

and snd can be implemented simply by supplying the appropriate
boolean.



Example

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition
−→ fst ((λs. λb. b v s) w) reducing
−→ fst (λb. b v w) reducing
= (λp. p tru) (λb. b v w) by definition

−→ (λb. b v w) tru reducing
−→ tru v w reducing
−→∗ v as before.



Church numerals

Idea: represent the number n by a function that “repeats some
action n times.”

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

That is, each number n is represented by a term cn that takes two
arguments, s and z (for “successor” and “zero”), and applies s, n
times, to z.



Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

iszro = λm. m (λx. fls) tru

What about predecessor?
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Predecessor

zz = pair c0 c0

ss = λp. pair (snd p) (scc (snd p))

prd = λm. fst (m ss zz)



Recursion in the
Lambda-Calculus



Recursion and divergence

Recursion and divergence are intertwined, so we need to consider
divergent terms.

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very
useful...



Recursion and divergence

Recursion and divergence are intertwined, so we need to consider
divergent terms.

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very
useful...



Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?
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Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following
variant of omega:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(λx. f (x x)) (λx. f (x x))

−→
f ((λx. f (x x)) (λx. f (x x)))

−→
f (f ((λx. f (x x)) (λx. f (x x))))

−→
f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→
· · ·



Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following
variant of omega:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(λx. f (x x)) (λx. f (x x))

−→
f ((λx. f (x x)) (λx. f (x x)))

−→
f (f ((λx. f (x x)) (λx. f (x x))))

−→
f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→
· · ·



Yf is still not very useful, since (like omega), all it does is diverge.

Is there any way we could “slow it down”?



Delaying divergence

poisonpill = λy. omega

Note that poisonpill is a value — it it will only diverge when we
actually apply it to an argument. This means that we can safely
pass it as an argument to other functions, return it as a result from
functions, etc.

(λp. fst (pair p fls) tru) poisonpill

−→
fst (pair poisonpill fls) tru

−→∗

poisonpill tru

−→
omega

−→
· · ·



A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a
bit more tightly intertwined:

omegav =
λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y

Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

omegav v

=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

−→
(λx. (λy. x x y)) (λx. (λy. x x y)) v

−→
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

=
omegav v



Another delayed variant

Suppose f is a function. Define

zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

This term combines the “added f” from Yf with the “delayed
divergence” of omegav.



If we now apply zf to an argument v, something interesting
happens:

zf v

=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

−→
(λx. f (λy. x x y)) (λx. f (λy. x x y)) v

−→
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f zf v

Since zf and v are both values, the next computation step will be
the reduction of f zf — that is, before we “diverge,” f gets to do
some computation.
Now we are getting somewhere.



Recursion

Let

f = λfct.
λn.
if n=0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of
a recursive call in the last time, it calls the function fct, which is
passed as a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans,
infix syntax, etc. It can easily be translated into the pure
lambda-calculus (using Church numerals, etc.).



We can use z to “tie the knot” in the definition of f and obtain a
real recursive factorial function:

zf 3

−→∗

f zf 3

=
(λfct. λn. ...) zf 3

−→ −→
if 3=0 then 1 else 3 * (zf (pred 3))

−→∗

3 * (zf (pred 3)))

−→
3 * (zf 2)

−→∗

3 * (f zf 2)

· · ·



A Generic z

If we define

z = λf. zf

i.e.,

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of zf for any f we like, simply by
applying z to f.

z f −→ zf



For example:

fact = z ( λfct.
λn.
if n=0 then 1

else n * (fct (pred n)) )



Technical Note

The term z here is essentially the same as the fix discussed the
book.

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

fix =
λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

z is hopefully slightly easier to understand, since it has the property
that z f v −→∗ f (z f) v, which fix does not (quite) share.
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