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Review (and more details)



Recall: Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Recall: Inference Rule Notation

More explicitly: The set T is the smallest set closed under the
following rules.

true ∈ T false ∈ T 0 ∈ T
t1 ∈ T

succ t1 ∈ T
t1 ∈ T

pred t1 ∈ T
t1 ∈ T

iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T



Generating Functions

Each of these rules can be thought of as a generating function
that, given some elements from T , generates some other element
of T . Saying that T is closed under these rules means that T
cannot be made any bigger using these generating functions — it
already contains everything “justified by its members.”

true ∈ T false ∈ T 0 ∈ T
t1 ∈ T

succ t1 ∈ T
t1 ∈ T

pred t1 ∈ T
t1 ∈ T

iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

Let’s write these generating functions explicitly.

F1(U) = {true}
F2(U) = {false}
F3(U) = {0}
F4(U) = {succ t1 | t1 ∈ U}
F5(U) = {pred t1 | t1 ∈ U}
F6(U) = {iszero t1 | t1 ∈ U}
F7(U) = {if t1 then t2 else t3 | t1, t2, t3 ∈ U}

Each one takes a set of terms U as input and produces a set of
“terms justified by U” as output.



If we now define a generating function for the whole set of
inference rules (by combining the generating functions for the
individual rules),

F (U) = F1(U)∪F2(U)∪F3(U)∪F4(U)∪F5(U)∪F6(U)∪F7(U)

then we can restate the previous definition of the set of terms T
like this:

Definition:

I A set U is said to be “closed under F ” (or “F-closed”) if
F (U) ⊆ U.

I The set of terms T is the smallest F -closed set.
(I.e., if O is another set such that F (O) ⊆ O, then T ⊆ O.)

Our alternate definition of the set of terms can also be stated
using the generating function F :

S0 = ∅
Si+1 = F (Si )

S =
⋃

i Si
Compare this definition of S with the one we saw last time:

S0 = ∅
Si+1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

S =
⋃

i Si
We have “pulled out” F and given it a name.



Note that our two definitions of terms characterize the same set
from different directions:

I “from above,” as the intersection of all F -closed sets;

I “from below,” as the limit (union) of a series of sets that start
from ∅ and get “closer and closer to being F -closed.”

Proposition 3.2.6 in the book shows that these two definitions
actually define the same set.

Warning: Hard hats on for the next slide!



Structural Induction

The principle of structural induction on terms can also be re-stated
using generating functions:

Suppose T is the smallest F -closed set.

If, for each set U,
from the assumption “P(u) holds for every u ∈ U”
we can show “P(v) holds for any v ∈ F (U),”

then P(t) holds for all t ∈ T .

Why?
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Structural Induction

Why? Because:

I We assumed that T was the smallest F -closed set, i.e., that
T ⊆ O for any other F -closed set O.

I But showing

for each set U,
given P(u) for all u ∈ U
we can show P(v) for all v ∈ F (U)

amounts to showing that “the set of all terms satisfying P”
(call it O) is itself an F -closed set.

I Since T ⊆ O, every element of T satisfies P.

Structural Induction

Compare this with the structural induction principle for terms from
last lecture:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.



Recall, from the definition of S, it is clear that, if a term t is in Si ,
then all of its immediate subterms must be in Si−1, i.e., they must
have strictly smaller depths. Therefore:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.

Slightly more explicit proof:

I Assume that for each term s, given P(r) for all immediate
subterms of s, we can show P(s).

I Then show, by induction on i , that P(t) holds for all terms t

with depth i .

I Therefore, P(t) holds for all t.

Operational Semantics and
Reasoning



Recall: Abstract Machines

An abstract machine consists of:

I a set of states

I a transition relation on states, written −→

For the simple languages we are considering at the moment, the
term being evaluated is the whole state of the abstract machine.

Recall: Syntax for Booleans

Terms and values
t ::= terms

true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value



Recall: Operational Semantics for Booleans

The evaluation relation t −→ t′ is the smallest relation closed
under the following rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

Derivations

We can record the “justification” for a particular pair of terms that
are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

I These trees are called derivation trees (or just derivations).

I The final statement in a derivation is its conclusion.

I We say that the derivation is a witness for its conclusion (or a
proof of its conclusion) — it records all the reasoning steps
that justify the conclusion.



Observation

Lemma: Suppose we are given a derivation tree D witnessing the
pair (t, t′) in the evaluation relation. Then either

1. the final rule used in D is E-IfTrue and we have
t = if true then t2 else t3 and t′ = t2, for some t2
and t3, or

2. the final rule used in D is E-IfFalse and we have
t = if false then t2 else t3 and t′ = t3, for some t2
and t3, or

3. the final rule used in D is E-If and we have
t = if t1 then t2 else t3 and
t′ = if t′1 then t2 else t3, for some t1, t′1, t2, and t3;
moreover, the immediate subderivation of D witnesses
(t1, t

′
1) ∈−→.

Induction on Derivations

We can now write proofs about evaluation “by induction on
derivation trees.”

Given an arbitrary derivation D with conclusion t −→ t′, we
assume the desired result for its immediate sub-derivation (if any)
and proceed by a case analysis (using the previous lemma) of the
final evaluation rule used in constructing the derivation tree.

E.g....



Induction on Derivations — Example

Theorem: If t −→ t′, i.e., if (t, t′) ∈−→, then size(t) > size(t′).
Proof: By induction on a derivation D of t −→ t′.

1. Suppose the final rule used in D is E-IfTrue, with
t = if true then t2 else t3 and t′ = t2. Then the
result is immediate from the definition of size.

2. Suppose the final rule used in D is E-IfFalse, with
t = if false then t2 else t3 and t′ = t3. Then the
result is again immediate from the definition of size.

3. Suppose the final rule used in D is E-If, with
t = if t1 then t2 else t3 and
t′ = if t′1 then t2 else t3, where (t1, t

′
1) ∈−→ is

witnessed by a derivation D1. By the induction hypothesis,
size(t1) > size(t′1). But then, by the definition of size, we
have size(t) > size(t′).

Normal forms

A normal form is a term that cannot be evaluated any further —
i.e., a term t is a normal form (or “is in normal form”) if there is
no t′ such that t −→ t′.

A normal form is a state where the abstract machine is halted —
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants
true and false) to be exactly the possible “results of evaluation.”
Did we get this definition right?



Normal forms

A normal form is a term that cannot be evaluated any further —
i.e., a term t is a normal form (or “is in normal form”) if there is
no t′ such that t −→ t′.

A normal form is a state where the abstract machine is halted —
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants
true and false) to be exactly the possible “results of evaluation.”
Did we get this definition right?

Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.

For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.
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Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.
For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.

Numbers

New syntactic forms

t ::= ... terms
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= ... values
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value



New evaluation rules t −→ t′

t1 −→ t′1
succ t1 −→ succ t′1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1
pred t1 −→ pred t′1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-IsZero)

Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.



Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?
No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.

Multi-step evaluation.

The multi-step evaluation relation, −→∗, is the reflexive, transitive
closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t −→ t′

t −→∗ t′

t −→∗ t

t −→∗ t′ t′ −→∗ t′′

t −→∗ t′′



Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof:

I First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t′, then size(t) > size(t′)

I Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .

I But such a sequence cannot exist — contradiction!

Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof:

I First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t′, then size(t) > size(t′)

I Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .

I But such a sequence cannot exist — contradiction!



Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R ⊆ X × X is terminating —
i.e., there are no infinite sequences x0, x1, x2, etc. such
that (xi , xi+1) ∈ R for each i .
Proof:

1. Choose
I a well-founded set (W , <) — i.e., a set W with a

partial order < such that there are no infinite
descending chains w0 > w1 > w2 > . . . in W

I a function f from X to W

2. Show f (x) > f (y) for all (x , y) ∈ R
3. Conclude that there are no infinite sequences x0, x1,

x2, etc. such that (xi , xi+1) ∈ R for each i , since, if
there were, we could construct an infinite descending
chain in W .

The Lambda Calculus



The lambda-calculus

I If our previous language of arithmetic expressions was the
simplest nontrivial programming language, then the
lambda-calculus is the simplest interesting programming
language...

I Turing complete
I higher order (functions as data)

I Indeed, in the lambda-calculus, all computation happens by
means of function abstraction and application.

I The e. coli of programming language research

I The foundation of many real-world programming language
designs (including ML, Haskell, Scheme, Lisp, ...)

Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.
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Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.

So plus3 (succ 0) is just a convenient shorthand for “the
function that, given x, yields succ (succ (succ x)), applied to
succ 0.”

plus3 (succ 0)

=
(λx. succ (succ (succ x))) (succ 0)



Abstractions over Functions

Consider the λ-abstraction

g = λf. f (f (succ 0))

Note that the parameter variable f is used in the function position
in the body of g. Terms like g are called higher-order functions.
If we apply g to an argument like plus3, the “substitution rule”
yields a nontrivial computation:

g plus3

= (λf. f (f (succ 0))) (λx. succ (succ (succ x)))

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) (succ 0))

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ (succ 0))))

i .e. succ (succ (succ (succ (succ (succ (succ 0))))))

Abstractions Returning Functions

Consider the following variant of g:

double = λf. λy. f (f y)

I.e., double is the function that, when applied to a function f,
yields a function that, when applied to an argument y, yields
f (f y).



Example

double plus3 0

= (λf. λy. f (f y))

(λx. succ (succ (succ x)))

0

i .e. (λy. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) y))

0

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) 0)

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ 0)))

i .e. succ (succ (succ (succ (succ (succ 0)))))

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and
application, we can throw away all the other language primitives
and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a
function.

I Variables always denote functions

I Functions always take other functions as parameters

I The result of a function is always a function



Formalities

Syntax

t ::= terms
x variable
λx.t abstraction
t t application

Terminology:

I terms in the pure λ-calculus are often called λ-terms

I terms of the form λx. t are called λ-abstractions or just
abstractions



Syntactic conventions

Since λ-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

I Application associates to the left

E.g., t u v means (t u) v, not t (u v)

I Bodies of λ- abstractions extend as far to the right as possible

E.g., λx. λy. x y means λx. (λy. x y), not
λx. (λy. x) y

Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

Test:

λx. λy. x y z

λx. (λy. z y) y



Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

Test:

λx. λy. x y z

λx. (λy. z y) y

Values

v ::= values
λx.t abstraction value



Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Notation: [x 7→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v2.”

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)
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Terminology

A term of the form (λx.t) v — that is, a λ-abstraction applied
to a value — is called a redex (short for “reducible expression”).

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.

Some other common ones:

I Call by name (cf. Haskell)

I Normal order (leftmost/outermost)

I Full (non-deterministic) beta-reduction



Classical Lambda Calculus

Full beta reduction

The classical lambda calculus allows full beta reduction.
I The argument of a β-reduction to be an arbitrary term, not

just a value.
I Reduction may appear anywhere in a term.

Computation rule:

(λx.t12) t2 −→ [x 7→ t2]t12 (E-AppAbs)

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
t1 t2 −→ t1 t′2

(E-App2)

t −→ t′

λx.t −→ λx.t′
(E-Abs)
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Substitution revisited

Remember: [x 7→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v2.”

This is trickier than it looks!
For example:

(λx. (λy. x)) y

−→ [x 7→ y]λy. x

= ???

Solution:
need to rename bound variables before performing the substitution.

(λx. (λy. x)) y

= (λx. (λz. x)) y

−→ [x 7→ y]λz. x

= λz. y
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Alpha conversion

Renaming bound variables is formalized as α-conversion.
Conversion rule:

y 6∈ fv(t)

λx. t =α λy.[x 7→ y]t
(α)

Equivalence rules:

t1 =α t2

t2 =α t1
(α-Symm)

t1 =α t2 t2 =α t3

t1 =α t3
(α-Trans)

Congruence rules: the usual ones.

Confluence

Full β-reduction makes it possible to have different reduction
paths.

Q: Can a term evaluate to more than one normal form?

The answer is no; this is a consequence of the following

Theorem [Church-Rosser]
Let t, t1, t2 be terms such that t −→∗ t1 and t −→∗ t2. Then
there exists a term t3 such that t1 −→∗ t3 and t2 −→∗ t3.



Confluence

Full β-reduction makes it possible to have different reduction
paths.

Q: Can a term evaluate to more than one normal form?

The answer is no; this is a consequence of the following

Theorem [Church-Rosser]
Let t, t1, t2 be terms such that t −→∗ t1 and t −→∗ t2. Then
there exists a term t3 such that t1 −→∗ t3 and t2 −→∗ t3.

Programming in the
Lambda-Calculus



Multiple arguments

Consider the function double, which returns a function as an
argument.

double = λf. λy. f (f y)

This idiom — a λ-abstraction that does nothing but immediately
yield another abstraction — is very common in the λ-calculus.

In general, λx. λy. t is a function that, given a value v for x,
yields a function that, given a value u for y, yields t with v in
place of x and u in place of y.

That is, λx. λy. t is a two-argument function.

(Recall the discussion of currying in OCaml.)

The “Church Booleans”

tru = λt. λf. t

fls = λt. λf. f

tru v w

= (λt.λf.t) v w by definition
−→ (λf. v) w reducing the underlined redex
−→ v reducing the underlined redex

fls v w

= (λt.λf.f) v w by definition
−→ (λf. f) w reducing the underlined redex
−→ w reducing the underlined redex



Functions on Booleans

not = λb. b fls tru

That is, not is a function that, given a boolean value v, returns
fls if v is tru and tru if v is fls.

Functions on Booleans

and = λb. λc. b c fls

That is, and is a function that, given two boolean values v and w,
returns w if v is tru and fls if v is fls

Thus and v w yields tru if both v and w are tru and fls if either
v or w is fls.



Pairs

pair = λf.λs.λb. b f s

fst = λp. p tru

snd = λp. p fls

That is, pair v w is a function that, when applied to a boolean
value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru

and w if b is fls, so the first and second projection functions fst

and snd can be implemented simply by supplying the appropriate
boolean.

Example

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition
−→ fst ((λs. λb. b v s) w) reducing
−→ fst (λb. b v w) reducing
= (λp. p tru) (λb. b v w) by definition

−→ (λb. b v w) tru reducing
−→ tru v w reducing
−→∗ v as before.



Church numerals

Idea: represent the number n by a function that “repeats some
action n times.”

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

That is, each number n is represented by a term cn that takes two
arguments, s and z (for “successor” and “zero”), and applies s, n
times, to z.

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

iszro = λm. m (λx. fls) tru

What about predecessor?
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Predecessor

zz = pair c0 c0

ss = λp. pair (snd p) (scc (snd p))

prd = λm. fst (m ss zz)

Recursion in the
Lambda-Calculus



Recursion and divergence

Recursion and divergence are intertwined, so we need to consider
divergent terms.

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very
useful...
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Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?
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Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following
variant of omega:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(λx. f (x x)) (λx. f (x x))

−→
f ((λx. f (x x)) (λx. f (x x)))

−→
f (f ((λx. f (x x)) (λx. f (x x))))

−→
f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→
· · ·
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Yf is still not very useful, since (like omega), all it does is diverge.

Is there any way we could “slow it down”?

Delaying divergence

poisonpill = λy. omega

Note that poisonpill is a value — it it will only diverge when we
actually apply it to an argument. This means that we can safely
pass it as an argument to other functions, return it as a result from
functions, etc.

(λp. fst (pair p fls) tru) poisonpill

−→
fst (pair poisonpill fls) tru

−→∗

poisonpill tru

−→
omega

−→
· · ·



A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a
bit more tightly intertwined:

omegav =
λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y

Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

omegav v

=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

−→
(λx. (λy. x x y)) (λx. (λy. x x y)) v

−→
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

=
omegav v

Another delayed variant

Suppose f is a function. Define

zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

This term combines the “added f” from Yf with the “delayed
divergence” of omegav.



If we now apply zf to an argument v, something interesting
happens:

zf v

=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

−→
(λx. f (λy. x x y)) (λx. f (λy. x x y)) v

−→
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f zf v

Since zf and v are both values, the next computation step will be
the reduction of f zf — that is, before we “diverge,” f gets to do
some computation.
Now we are getting somewhere.

Recursion

Let

f = λfct.
λn.
if n=0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of
a recursive call in the last time, it calls the function fct, which is
passed as a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans,
infix syntax, etc. It can easily be translated into the pure
lambda-calculus (using Church numerals, etc.).



We can use z to “tie the knot” in the definition of f and obtain a
real recursive factorial function:

zf 3

−→∗

f zf 3

=
(λfct. λn. ...) zf 3

−→ −→
if 3=0 then 1 else 3 * (zf (pred 3))

−→∗

3 * (zf (pred 3)))

−→
3 * (zf 2)

−→∗

3 * (f zf 2)

· · ·

A Generic z

If we define

z = λf. zf

i.e.,

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of zf for any f we like, simply by
applying z to f.

z f −→ zf



For example:

fact = z ( λfct.
λn.
if n=0 then 1

else n * (fct (pred n)) )

Technical Note

The term z here is essentially the same as the fix discussed the
book.

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

fix =
λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

z is hopefully slightly easier to understand, since it has the property
that z f v −→∗ f (z f) v, which fix does not (quite) share.


