
Foundations of Software

Martin Odersky, EPFL

Slides in part adapted from:

University of Pennsylvania CIS 500: Software Foundations - Fall 2006

by Benjamin Pierce

1

Course Overview

2

What is “software foundations”?

Software foundations (or ”theory of programming languages”) is the

mathematical study of the meaning of programs.

The goal is finding ways to describe program behaviors that are both

precise and abstract.

� precise so that we can use mathematical tools to formalize and

check interesting properties

� abstract so that properties of interest can be discussed clearly,

without getting bogged down in low-level details

3

Why study software foundations?

� To prove specific properties of particular programs (i.e., program

verification)

. Important in some domains (safety-critical systems, hardware

design, security protocols, inner loops of key algorithms, ...),

but still quite difficult and expensive

� To develop intuitions for informal reasoning about programs

� To prove general facts about all the programs in a given

programming language (e.g., safety or isolation properties)

� To understand language features (and their interactions) deeply and

develop principles for better language design

(PL is the ”materials science” of computer science...)

4

What you can expect to get out of the course

� A more sophisticated perspective on programs, programming

languages, and the activity of programming

. See programs and whole languages as formal, mathematical

objects

. Make and prove rigorous claims about them

. Detailed knowledge of a variety of core language features

� Deep intuitions about key language properties such as type safety

� Powerful tools for language design, description, and analysis

Most software designers are language designers!

5

Greenspun’s Tenth Rule Of Programming

Any sufficiently complicated C or Fortran program contains an

ad-hoc, informally-specified, bug-ridden, slow implementation of

half of CommonLisp.

– Philip Greenspun

6

What this course is not

� An introduction to programming

� A course on functional programming (though we’ll be doing some

functional programming along the way)

� A course on compilers (you should already have basic concepts such

as lexical analysis, parsing, abstract syntax, and scope under your

belt)

� A comparative survey of many different programming languages and

styles

7

Approaches to Program Meaning

� Denotational semantics and domain theory view programs as simple

mathematical objects, abstracting away their flow of control and

concentrating on their input-output behavior.

� Program logics such as Hoare logic and dependent type theories

focus on logical rules for reasoning about programs.

� Operational semantics describes program behaviors by means of

abstract machines. This approach is somewhat lower-level than the

others, but is extremely flexible.

� Process calculi focus on the communication and synchronization

behaviors of complex concurrent systems.

� Type systems describe approximations of program behaviors,

concentrating on the shapes of the values passed between different

parts of the program.

8

Overview

This course will concentrate on operational techniques and type systems.

� Part I: Modeling programming languages

. Syntax and parsing

. Operational semantics

. Inductive proof techniques

. The lambda-calculus

. Syntactic sugar; fully abstract translations

� Part II: Type systems

. Simple types

. Type safety

. References

. Subtyping

9

Overview

� Part III: Object-oriented features (case study)

. A simple imperative object model

. An analysis of core Java

. An analysis of core Scala

10

Organization of the Course

11

People

Instructor: Adriaan Moors (filling in for prof. Martin Odersky)

INR 316

<adriaan.moors@epfl.ch>

Teaching Assistant: Ingo Maier

INR 320

Contact him about pairing up for the exercises!

<ingo.maier@epfl.ch>

12

Information

Textbook: Types and Programming Languages,

Benjamin C. Pierce, MIT Press, 2002

Webpage: http://lampwww.epfl.ch/teaching/foundations of software/

13

Elements of the Course

� The Foundations of Software course consists of

. lecture (Tuesday 10:15-12:00, room INM 10)

. exercises and project work (Thursday 8:15-10:00, room INF 1)

� The lecture will follow in large parts the textbook.

� For lack of time, we cannot treat all essential parts of the book in

the lectures, that’s why the textbook is required reading for

participants of the course.

14

Homework and Projects

You will be asked to

� solve and hand in some written exercise sheets,

� do a number of programming assignments, including

. parsers,

. interpreters and reduction engines,

. type checkers

for a variety of small languages.

� The recommended implementation language for these assignments is

Scala.

15

Scala

� Scala is a functional and object-oriented language that is closely

interoperable with Java.

� It is very well suited as an implementation language for

type-checkers, in particular because it supports:

. pattern matching,

. higher-order functions,

. inheritance and mixins.

16

Learning Scala

If you don’t know Scala yet, there’s help:

� The Scala web site:

www.scala-lang.org

� On this site, the documents:

. A Brief Scala Tutorial - an introduction to Scala for Java

programmers. (short and basic).

. An Introduction to Scala (longer and more comprehensive).

. An Overview of the Scala Programming Language (high-level).

. Scala By Example (long, comprehensive, tutorial style).

� The assistants.

17

Grading and Exams

Final course grades will be computed as follows:

� Homework and project: 30%

� Mid-term exam: 30%

� Final exam: 40%

Exams:

1. Mid-term: mid November 2010 (exact date TBA)

2. Final exam: to be announced

(dates are provisional)

18

Collaboration

� Collaboration on homework is strongly encouraged.

� Studying with other people is the best way to internalize the material

� Form pair programming and study groups!

2-3 people is a good size. 4 is too many for all to have equal input.

”You never really misunderstand something

until you try to teach it...

” – Anon.

19

Plagiarism

� A single group will of course share code.

� But plagiarizing code by other groups as part of a project is

unethical and will not be tolerated, whatever the source.

20

Part I

Modelling programming languages

21

Syntax and Parsing

� The first-level of modeling a programming language concerns its

context-free syntax.

� Context free syntax determines a set of legal phrases and determines

the (tree-)structure of each of them.

� It is often given on two levels:

. concrete: determines the exact (character-by-character) set of

legal phrases

. abstract: concentrates on the tree-structure of legal phrases.

� We will be mostly concerned with abstract syntax in this course.

� But to be able to write complete programming tools, we need a

convenient way to map character sequences to trees.

22

Approaches to Parsing

There are two ways to construct a parser:

� By hand Derive a parser program from a grammar.

� Automatic Submit a grammar to a tool which generates the parser

program.

In the second approach, one uses a special grammar description language

to describe the input grammar.

23

Domain-Specific Languages

� The grammar description language is an example of a

domain-specific language (DSL).

� The parser generator acts as a processor (“compiler”) for this

language — that’s why it’s sometimes called grandly a

“compiler-compiler”.

� Example of a “program” in the grammar description DSL:

Expr ::= Term {’+’ Term | ’−’ Term}.
Term ::= Factor {’∗’ Factor | ’/’ Factor}.
Factor ::= Number | ’(’ Expr ’)’.

24

Embedded Domain Specific Languages

� An alternative to a stand-alone DSL is an Embedded DSL.

� Here, the DSL does not exist as a separate language but as an API

in a host language.

� The host language is usually a general purpose programming

language.

We will now develop this approach for grammar description languages.

25

An EDSL for Parsing in Scala

We will develop a framework so that parsers can be described like this:

def expr : Parser[Any] = term ˜ rep(”+” ˜ term | ”−” ˜ term)
def term : Parser[Any] = factor ˜ rep(”∗” ˜ factor | ”/” ˜ factor)
def factor : Parser[Any] = ”(” ˜ expr ˜ ”)” | numericLit

A small Perl hack could derive the above code from the informal

grammar definition above:

� Insert a def at the beginning of each production.

� The “::=” becomes “: Parser[Any] =”.

� Sequential composition is now expressed by a ˜.

� Repetition {...} is now expressed by rep(...).

26

� Option [...] is now expressed by opt(...).

27

Parser Combinators

� The differences between Grammar A and Grammar B are fairly

minor.

(Note in particular that existing DSLs for grammar

descriptions also tend to add syntactic complications to the

idealized Grammar A we have seen).

� The important difference is that Grammar B is a valid Scala

program, when combined with an API that defines the necessary

primitives.

� These primitives are called parser combinators.

28

The Basic Idea

For each language (identified by grammar symbol S), define a

function fS that, given an input stream i,

� if a prefix of i is in S, return Success(Pair(x, i′)) where x is

a result for S and i′ is the rest of the input.

� otherwise, return Failure(msg, i) where msg is an error

message string.

The first behavior is called success, the second failure.

29

The Basic Idea in Code

Assume:

class StandardTokenParsers {
type Parser = Input ⇒ ParseResult

where

type Input = Reader[Token] // a stream of Tokens with positions.

and we assume a class Token with subclasses

. case class Keyword(chars : String) for keywords,

. case class NumericLit(chars : String) for numbers,

. case class StringLit(chars : String) for strings,

. case class Identifier(chars : String) for identifiers.

30

In each case, chars represents the characters making up the token.

31

Also assume a class ParseResult[T] with subclasses

case class Success[T](result : T, in : Input)
extends ParseResult[T]

case class Failure(msg : String, in : Input)
extends ParseResult[Nothing]

32

Object-Oriented Parser Combinators

� In fact, we will also need to express | and ˜ as methods of parsers.

� That’s why we extend the function type of parsers as follows:

abstract class Parser[T] extends (Input ⇒ ParseResult[T]) {
// An unspecified method that defines the parser function.
def apply(in : Input): ParseResult

// A parser combinator for sequential composition
def ˜ ...

// A parser combinator for alternative composition
def | ...

}

It remains to define concrete combinators that implement this class (see

below).

33

A Generic Single-Token Parser

� The following parser succeeds if the first token in the input satisfies

a given predicate p.

� If it succeeds, it reads the token string and returns it as a result.

def token(kind : String)(p : Token ⇒ boolean) = new Parser[String] {
def apply(in : Input) =

if (p(in.head)) Success(in.head.chars, in.tail)
else Failure(kind+” expected”, in)

}

34

Specific Single-Token Parsers

� The following parser succeeds if the first token in the input is the

given keyword chars:

� If it succeeds, it returns a keyword token as a result.

implicit def keyword(chars : String) = token(”’”+chars+”’”) {
case Keyword(chars1) ⇒ chars == chars1
case ⇒ false

}

� Note that keyword is marked implicit, so that you can usually write ”if”

instead of keyword(”if”).

35

� The following parsers succeed if, respectively, the first token in the

input is a numeric or string literal, or an identifier.

def numericLit = token(”number”)(.isInstanceOf[NumericLit])
def stringLit = token(”string literal”)(.isInstanceOf[StringLit])
def ident = token(”identifier”)(.isInstanceOf[Identifier])

36

The Sequence Combinator

� The sequence combinator P ˜ Q succeeds if P and Q succeed

sequentially, and returns the concatenation of their results.

� ˜ is implemented as a method of class Parser.

abstract class Parser[T] {
def ˜ [U](q : Parser[U]) = new Parser[T ˜ U] {

def apply(in : Input) = Parser.this(in) match {
case Success(x, in1) ⇒

q(in1) match {
case Success(y, in2) ⇒ Success(new ˜(x, y), in2)
case failure ⇒ failure

}
case failure ⇒ failure

}
}

37

Concatenating Results

Normally, the ˜ combinator returns a the results of the two parsers that

are run sequentially wrapped in a ˜-object.

The case class ˜ is similar to Pair (but ˜ turns out to be nicer – see

below).

case class ˜[T, U](1 : T, 2 : U) {
override def toString = ”(”+ 1 +” ˜ ”+ 2 +”)”

}

There are also two variants of ˜ which return only the left or only the right

operand:

P <˜ Q // returns only P’s result
P ˜> Q // returns only Q’s result

38

The Alternative Combinator

� The alternative combinator P | Q succeeds if either P or Q

succeeds.

� It returns the result of P if P succeeds, or the result of Q, if Q

succeeds.

� The alternative combinator is implemented as a method of class

Parser.

def | (q : ⇒ Parser[T]) = new Parser[T] {
def apply(in : Input) = Parser.this(in) match {

case s1 @ Success(,) ⇒ s1
case failure ⇒ q(in)

}
}

39

Failure And Success Parsers

� The parser failure(msg) always fails with the given error message. It

is implemented as follows:

def failure(msg : String) = new Parser[Nothing] {
def apply(in : Input) = Failure(msg, in)

}

� The parser success(result) always succeeds with the given result. It does

not consume any input. It is implemented as follows:

def success[T](result : T) = new Parser[T] {
def apply(in : Input) = Success(result, in)

}

40

Result Conversion

The parser P ˆˆ f succeeds iff P succeeds. In that case it returns the

result of applying f to the result of P .

def ˆˆ [U](f : T ⇒ U) = new Parser[U] {
def apply(in : Input) = Parser.this(in) match {

case Success(x, in1) ⇒ Success(f(x), in1)
case f ⇒ f

}
}

A variant ˆˆˆ takes a value V as right hand side argument.

It returns V if the left hand parser succeeds:

def ˆˆˆ [U](r : U): Parser[U] = ˆˆ (x ⇒ r)

41

Option and Repetition Combinators

� The opt(P) combinator always succeeds and returns an Option

result.

It returns Some(R) iff P succeeds with R. In case of failure, the

result is None.

� The rep(P) combinator applies P zero or more times until it fails,

the result is a list of P ’s results.

The two combinators are implemented as follows:

def opt[T](p : Parser[T]): Parser[Option[T]] =
p ˆˆ Some | success(None)

def rep[T](p : Parser[T]): Parser[List[T]] =
p ˜ rep(p) ˆˆ { case x ˜ xs ⇒ x :: xs } | success(List())

Note that neither of these combinators can fail!

42

The Interleaved Repetition Combinator

The repsep(P , Q) parser parses a (possibly empty) sequence

P Q P ... Q P

It returns a list of all results returned by P .

Example: repsep(ident, ”,”) parses a list of identifiers separated by

commas.

The repsep combinator is implemented as follows:

def repsep[T, U](p : Parser[T], q : Parser[U]): Parser[List[T]] =
p ˜ rep(q ˜> p) ˆˆ { case r ˜ rs ⇒ r :: rs } | success(List())

43

Other Combinators

More combinators can be defined if necessary.

Exercise: Implement the rep1(P) parser combinator, which applies P

one or more times.

Exercise: Define opt and rep directly, without making use of ˜, |, and

empty.

44

An Example: JSON

JSON, or JavaScript Object Notation, is a popular data interchange

format.

JSON data essentially consists of objects {...}, arrays [...], numbers, and

strings.

Here is an example of a JSON value:

{ ”address book”: {
”name”: ”John Smith”,
”address”: { ”street”: ”10 Market Street”,

”city” : ”San Francisco, CA”,
”zip” : 94111 },

”phone numbers”: [”408 338−4238”, ”408 111−6892”]
}

}

45

A JSON parser

package examples.parsing

// import the standard parser class
import scala.util.parsing.combinator.syntactical.StandardTokenParsers

object JSON extends StandardTokenParsers {
// fix some delimiter symbols ...
lexical.delimiters += (”{”, ”}”, ”[”, ”]”, ”:”)
// ... and some reserved words
lexical.reserved += (”null”, ”true”, ”false”)

// here are the four productions making up the JSON grammar
def obj : Parser[Any] = ”{” ˜ repsep(member, ”,”) ˜ ”}”
def arr : Parser[Any] = ”[” ˜ repsep(value, ”,”) ˜ ”]”
def member : Parser[Any] = stringLit ˜ ”:” ˜ value
def value : Parser[Any] = stringLit | numericLit | obj | arr |

”null” | ”true” | ”false”

46

Testing the JSON Parser

Add a method main that can be used to test the parser.

def main(args : Array[String]) {
val tokens = new lexical.Scanner(args(0))
println(args(0))
println(phrase(value)(tokens))

}

Here are two test runs:

>java examples.parsing.JSON ”{ ”x”: true, ”y”: [1, 2, 3] }”
{ x : true, y : [1, 2, 3] }
[1.26] parsed : (({ ˜ List(((x ˜ :) ˜ true), ((y ˜ :) ˜ (([˜ List(1,
2, 3)) ˜])))) ˜ })

47

>java examples.parsing.JSON ”{ ”x”: true ”y”: [1, 2] }”
{ x : true y : [1, 2] }
[1.13] failure : unexpected token string literal y

{ ”x”: true ”y”: [1, 2] }
ˆ

48

Getting Better Output

� The result of the previous JSON parser was a tree containing all

input tokens (slightly chaotically).

� We transform the productions using the ˆˆ combinator to get more

structured output:

def obj : Parser[Any] = // return a Map
”{” ˜> rep(member) <˜ ”}” ˆˆ (ms ⇒ Map() ++ ms)

def arr : Parser[Any] = // return a List
”[” ˜> rep{value} <˜ ”]”

def member : Parser[Any] = // return a name/value pair
stringLit ˜ ”:” ˜ value ˆˆ
{ case name ˜ ”:” ˜ value ⇒ (name, value) }

Question: What are more precise types for obj, arr, and member?

49

def value : Parser[Any] = (
obj

| arr
| stringLit
| numericLit ˆˆ (.toInt) // return an Int
| ”null” ˆˆˆ null // return ‘null’
| ”true” ˆˆˆ true // return ‘true’
| ”false” ˆˆˆ false // return ‘false’
)

If we run the test now, we get:

>java examples.parsing.JSON1 ”{ ”x”: true, ”y”: [1, 2, 3] }”
{ x : true, y : [1, 2, 3] }
[1.30] parsed : Map(x → true, y → List(1, 2, 3))

50

Table of Parser Combinators

ident identifier

keyword(...) keyword or special symbol (implicit)

numericLit integer number

stringLit string literal

P ˜ Q sequential composition

P <˜ Q, P ˜> Q sequential composition; keep left/right only

P | Q alternative

opt(P) option

rep(P) repetition

repsep(P, Q) interleaved repetition

P ˆˆ f result conversion

P ˆˆˆ v constant result

51

Arithmetic Expressions Again

Here is the full parser for arithmetic expressions:

object Arithmetic extends StandardTokenParsers {
lexical.delimiters ++= List(”(”, ”)”, ”+”, ”−”, ”∗”, ”/”)

def expr : Parser[Any] = term ˜ rep(”+” ˜ term | ”−” ˜ term)
def term = factor ˜ rep(”∗” ˜ factor | ”/” ˜ factor)
def factor : Parser[Any] = ”(” ˜ expr ˜ ”)” | numericLit

Question: How can we make it evaluate the parsed expression?

52

A Problem with Top-Down Parsing

As parser combinators work top-down, they don’t allow left-recursion.

A production like

def expr = expr ˜ ”−” ˜ term

would go into an infinite recursion when executed.

The alternative:

def expr = term ˜ rep(”−” ˜ term)

produces a “right-leaning” tree: X − Y − Z parses

X ˜ List(”−” ˜ Y, ”−” ˜ Z)

But the correct reduction/evaluation of +,−,∗,/ is left-leaning!

53

Evaluate by FoldLeft

We can solve this problem by delaying reduction until all elements of a

repetition have been parsed and then performing a fold left on the list:

def expr : Parser[Int] =
term ˜ rep (”+” ˜ term | ”−” ˜ term) ˆˆ reduceList

def term : Parser[Int] =
factor ˜ rep (”∗” ˜ factor | ”/” ˜ factor) ˆˆ reduceList

def factor : Parser[Int] =
”(” ˜> expr <˜ ”)” | numericLit ˆˆ (.toInt)

Here, reduceList is defined in terms of the fold-left operation /: ...

val reduceList : Expr ˜ List[String ˜ Expr] ⇒ Expr = {
case i ˜ ps ⇒ (i /: ps)(reduce)

}

54

... and reduce is defined as follows:

def reduce(x : Int, r : String ˜ Int) = r match {
case ”+” ˜ y ⇒ x + y
case ”−” ˜ y ⇒ x − y
case ”∗” ˜ y ⇒ x ∗ y
case ”/” ˜ y ⇒ x / y
case ⇒ throw new MatchError(”illegal case : ”+r)

}

With this, we get:

java examples.parsing.ArithmeticParsers1 ”2 ∗ (3 + 7)”
2 ∗ (3 + 7)
[1.12] parsed : 20

(Note: the chainl combinator in the standard library does this for you.)

55

Conclusion

� Combinator parsers give a provide a concise, flexible, and high-level

way to construct parsers.

� The token classes of a context free grammar are modeled as

primitive parsers.

� The combination forms are modeled as higher-order parsers.

� Combinator parsers are an example of an embedded DSL.

� By contrast, classical parser generators are stand-alone DSLs.

� Advantage of an embedded DSL over a parser generator: It’s easier

to connect the results of combinator parsers with the environment.

� Disadvantage: lower efficiency – but this can be overcome (using

packrat parsing)

56

