Foundations of Software

Martin Odersky, EPFL

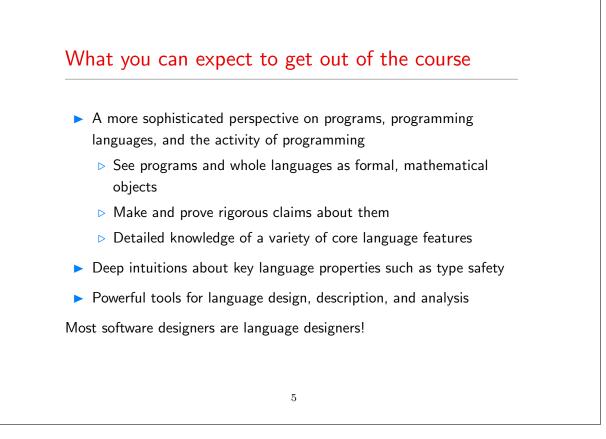
Slides in part adapted from: University of Pennsylvania CIS 500: Software Foundations - Fall 2006 by Benjamin Pierce

1

Course Overview

What is "software foundations"?

Software foundations (or "theory of programming languages") is the mathematical study of the meaning of programs.


The goal is finding ways to describe program behaviors that are both precise and abstract.

- precise so that we can use mathematical tools to formalize and check interesting properties
- abstract so that properties of interest can be discussed clearly, without getting bogged down in low-level details

Why study software foundations?

- To prove specific properties of particular programs (i.e., program verification)
 - Important in some domains (safety-critical systems, hardware design, security protocols, inner loops of key algorithms, ...), but still quite difficult and expensive
- ▶ To develop intuitions for *informal* reasoning about programs
- To prove general facts about all the programs in a given programming language (e.g., safety or isolation properties)
- To understand language features (and their interactions) deeply and develop principles for better language design (PL is the "materials science" of computer science...)

Greenspun's Tenth Rule Of Programming

Any sufficiently complicated C or Fortran program contains an ad-hoc, informally-specified, bug-ridden, slow implementation of half of CommonLisp.

- Philip Greenspun

What this course is not

- An introduction to programming
- A course on functional programming (though we'll be doing some functional programming along the way)
- A course on compilers (you should already have basic concepts such as lexical analysis, parsing, abstract syntax, and scope under your belt)
- A comparative survey of many different programming languages and styles

 $\overline{7}$

- Denotational semantics and domain theory view programs as simple mathematical objects, abstracting away their flow of control and concentrating on their input-output behavior.
- Program logics such as Hoare logic and dependent type theories focus on logical rules for reasoning about programs.
- Operational semantics describes program behaviors by means of abstract machines. This approach is somewhat lower-level than the others, but is extremely flexible.
- Process calculi focus on the communication and synchronization behaviors of complex concurrent systems.
- Type systems describe approximations of program behaviors, concentrating on the shapes of the values passed between different parts of the program.

Overview

This course will concentrate on operational techniques and type systems.

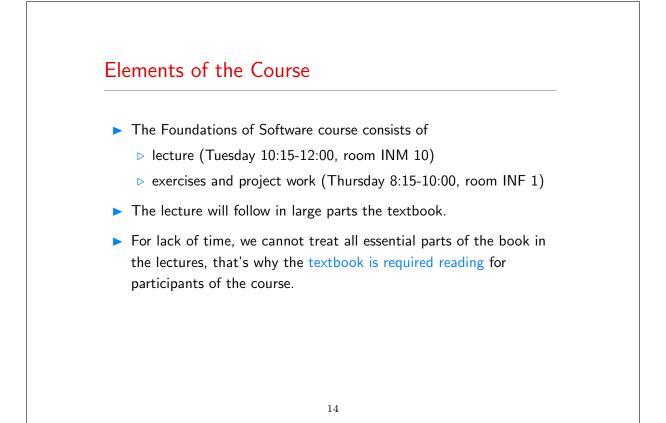
- Part I: Modeling programming languages
 - ▶ Syntax and parsing
 - Operational semantics
 - Inductive proof techniques
 - The lambda-calculus
 - Syntactic sugar; fully abstract translations
- ► Part II: Type systems
 - Simple types
 - Type safety
 - References
 - Subtyping

9

Overview

- Part III: Object-oriented features (case study)
 - ▷ A simple imperative object model
 - ▷ An analysis of core Java
 - ▷ An analysis of core Scala

Organization of the Course


11

People	
Instructor:	Adriaan Moors (filling in for prof. Martin Odersk INR 316
	<adriaan.moors@epfl.ch></adriaan.moors@epfl.ch>
Teaching Assistant:	Ingo Maier
	INR 320
	Contact him about pairing up for the exercises!
	<ingo.maier@epfl.ch></ingo.maier@epfl.ch>
	12

Information

Textbook:	Types and Programming Languages, Benjamin C. Pierce, MIT Press, 2002
Webpage:	http://lampwww.epfl.ch/teaching/foundations_of_software/

13

Homework and Projects

You will be asked to

- solve and hand in some written exercise sheets,
- do a number of programming assignments, including
 - ▷ parsers,
 - ▷ interpreters and reduction engines,
 - ▷ type checkers

for a variety of small languages.

 The recommended implementation language for these assignments is Scala.

15

Scala

- Scala is a functional and object-oriented language that is closely interoperable with Java.
- It is very well suited as an implementation language for type-checkers, in particular because it supports:
 - ▶ pattern matching,
 - ▶ higher-order functions,
 - ▷ inheritance and mixins.

Learning Scala

If you don't know Scala yet, there's help:

The Scala web site:

www.scala-lang.org

- ► On this site, the documents:
 - ▷ A Brief Scala Tutorial an introduction to Scala for Java programmers. (short and basic).
 - ▷ An Introduction to Scala (longer and more comprehensive).
 - ▷ An Overview of the Scala Programming Language (high-level).
 - ▷ Scala By Example (long, comprehensive, tutorial style).
- The assistants.

17

Grading and Exams

Final course grades will be computed as follows:

- ▶ Homework and project: 30%
- ▶ Mid-term exam: 30%
- ► Final exam: 40%

Exams:

- 1. Mid-term: mid November 2010 (exact date TBA)
- 2. Final exam: to be announced

(dates are provisional)

- Collaboration on homework is strongly encouraged.
- Studying with other people is the best way to internalize the material
- Form pair programming and study groups!
 2-3 people is a good size. 4 is too many for all to have equal input.

"You never really misunderstand something until you try to teach it... " – Anon.

19

Plagiarism

- ► A single group will of course share code.
- But plagiarizing code by other groups as part of a project is unethical and will not be tolerated, whatever the source.

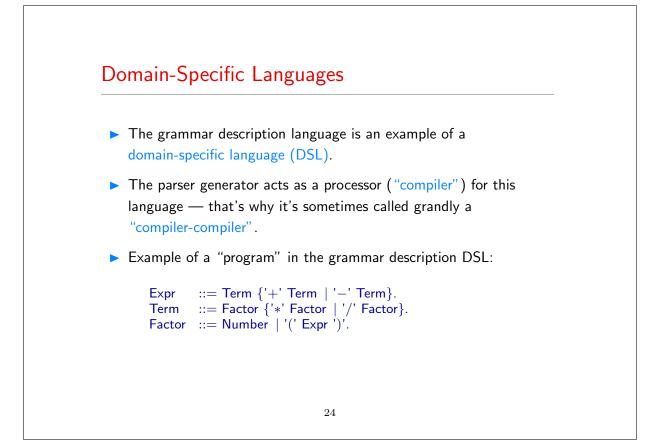
Part I

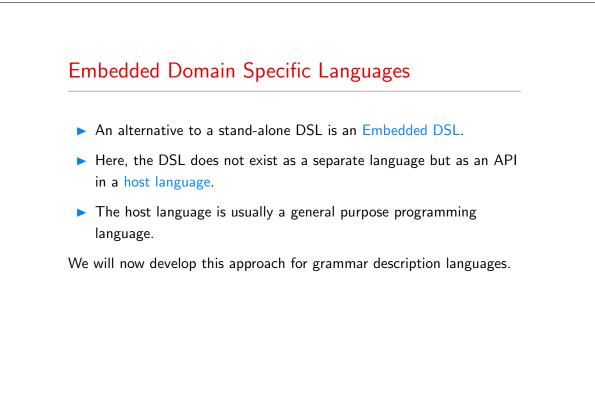
Modelling programming languages

21

Syntax and Parsing

- The first-level of modeling a programming language concerns its context-free syntax.
- Context free syntax determines a set of legal phrases and determines the (tree-)structure of each of them.
- ▶ It is often given on two levels:
 - concrete: determines the exact (character-by-character) set of legal phrases
 - ▷ abstract: concentrates on the tree-structure of legal phrases.
- ▶ We will be mostly concerned with abstract syntax in this course.
- But to be able to write complete programming tools, we need a convenient way to map character sequences to trees.


Approaches to Parsing


There are two ways to construct a parser:

- **b** By hand Derive a parser program from a grammar.
- Automatic Submit a grammar to a tool which generates the parser program.

In the second approach, one uses a special grammar description language to describe the input grammar.

25

An EDSL for Parsing in Scala

We will develop a framework so that parsers can be described like this:

```
\begin{array}{l} \mbox{def expr} : \mbox{Parser}[\mbox{Any}] = \mbox{term} ~ \mbox{rep}("+" ~ \mbox{term} | "-" ~ \mbox{term}) \\ \mbox{def term} : \mbox{Parser}[\mbox{Any}] = \mbox{factor} ~ \mbox{rep}("*" ~ \mbox{factor} | "/" ~ \mbox{factor}) \\ \mbox{def factor} : \mbox{Parser}[\mbox{Any}] = "(" ~ \mbox{expr} ~ ")" | \mbox{numericLit} \end{array}
```

A small Perl hack could derive the above code from the informal grammar definition above:

- Insert a def at the beginning of each production.
- ► The "::=" becomes ": Parser[Any] =".
- Sequential composition is now expressed by a ~.
- ▶ Repetition {...} is now expressed by rep(...).

▶ Option [...] is now expressed by opt(...).

27

The differences between Grammar A and Grammar B are fairly minor.

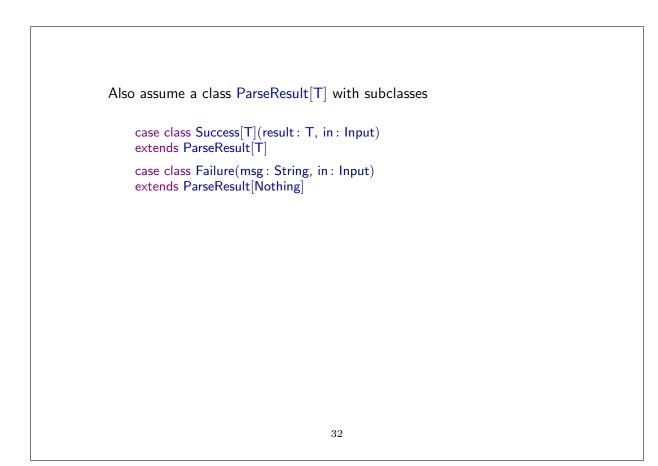
(Note in particular that existing DSLs for grammar descriptions also tend to add syntactic complications to the idealized Grammar A we have seen).

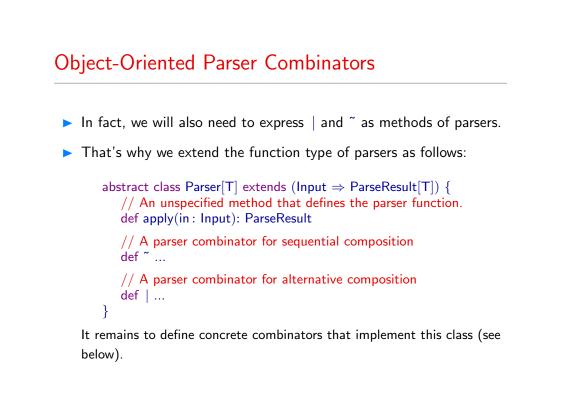
- The important difference is that Grammar B is a valid Scala program, when combined with an API that defines the necessary primitives.
- ► These primitives are called parser combinators.

The Basic Idea

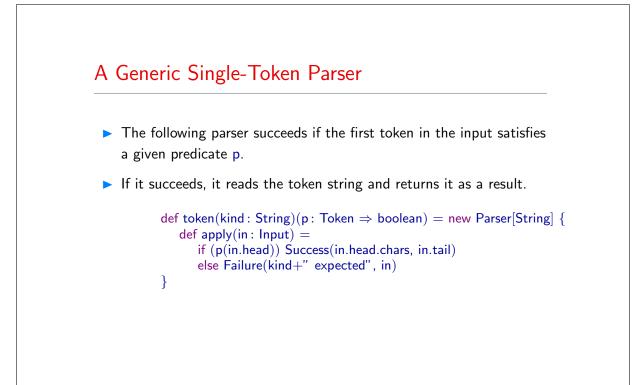
For each language (identified by grammar symbol S), define a function f_S that, given an input stream i,

- ▶ if a prefix of i is in S, return Success(Pair(x, i')) where x is a result for S and i' is the rest of the input.
- otherwise, return Failure(msg, i) where msg is an error message string.


The first behavior is called success, the second failure.

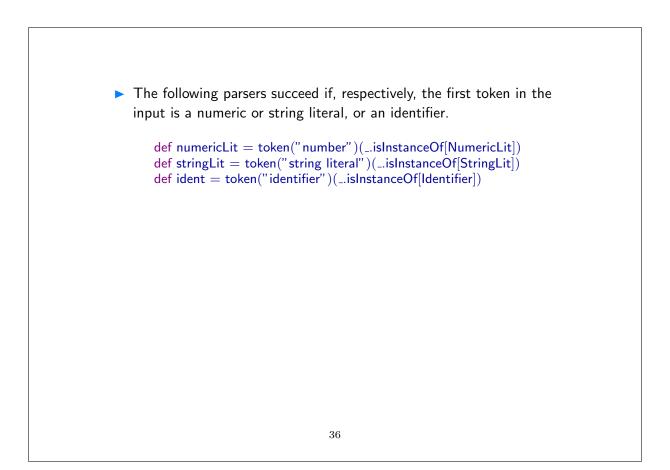

29

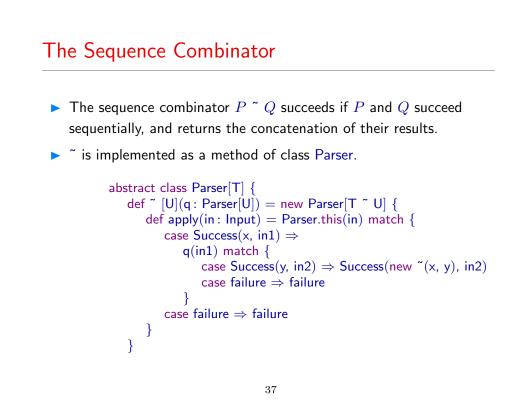
Description of the provide of t


In each case, chars represents the characters making up the token.

31


```
33
```

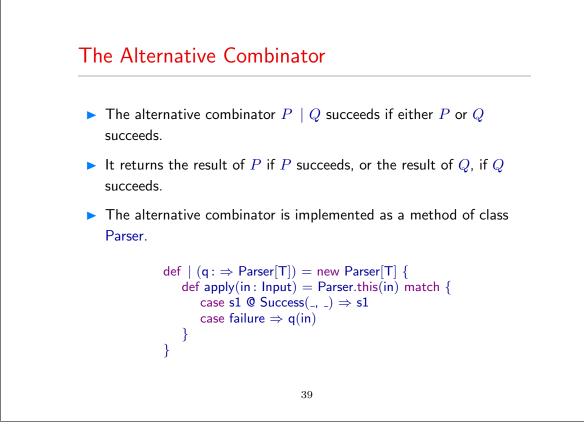

- The following parser succeeds if the first token in the input is the given keyword chars:
- ▶ If it succeeds, it returns a keyword token as a result.

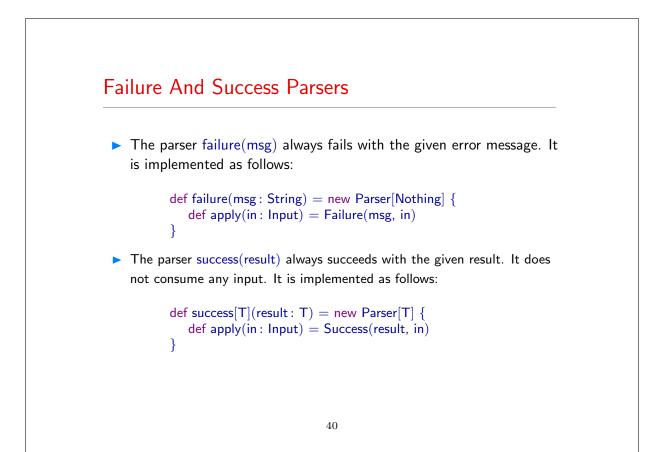
```
implicit def keyword(chars: String) = token("'"+chars+"'") {
    case Keyword(chars1) ⇒ chars == chars1
    case _ ⇒ false
}
```

Note that keyword is marked implicit, so that you can usually write "if" instead of keyword("if").

```
35
```


Concatenating Results


Normally, the ~ combinator returns a the results of the two parsers that are run sequentially wrapped in a ~-object.


The case class $\tilde{}$ is similar to Pair (but $\tilde{}$ turns out to be nicer – see below).

```
case class ~[T, U](_1: T, _2: U) { override def toString = "("+ _1 +" ~ "+ _2 +")" }
```

There are also two variants of $\tilde{}$ which return only the left or only the right operand:

 $\begin{array}{ll} P < \tilde{\quad} Q & \quad // \mbox{ returns only } P's \mbox{ result} \\ P \ \tilde{\quad} > Q & \quad // \mbox{ returns only } Q's \mbox{ result} \end{array}$

Result Conversion

The parser $P \uparrow f$ succeeds iff P succeeds. In that case it returns the result of applying f to the result of P.

```
\begin{array}{l} def \ \widehat{} \ [U](f\colon T \Rightarrow U) = new \ Parser[U] \ \{ \\ def \ apply(in: \ Input) = \ Parser.this(in) \ match \ \{ \\ \ case \ Success(x, \ in1) \Rightarrow \ Success(f(x), \ in1) \\ \ case \ f \Rightarrow \ f \\ \ \} \end{array}
```

A variant $^{\circ}$ takes a value V as right hand side argument. It returns V if the left hand parser succeeds:

```
def ^^^ [U](r: U): Parser[U] = ^{ (x \Rightarrow r) }
```

```
41
```


The Interleaved Repetition Combinator

The repsep(P, Q) parser parses a (possibly empty) sequence

 $P \ Q \ P \ \dots \ Q \ P$

It returns a list of all results returned by P.

Example: repsep(ident, ",") parses a list of identifiers separated by commas.

The repsep combinator is implemented as follows:

43

Other Combinators

More combinators can be defined if necessary.

Exercise: Implement the rep1(P) parser combinator, which applies P one or more times.

Exercise: Define opt and rep directly, without making use of ~, |, and empty.

An Example: JSON

JSON, or JavaScript Object Notation, is a popular data interchange format.

JSON data essentially consists of objects $\{...\}$, arrays [...], numbers, and strings.

Here is an example of a JSON value:

```
45
```

A JSON parser

package examples.parsing

// import the standard parser class
import scala.util.parsing.combinator.syntactical.StandardTokenParsers

object JSON extends StandardTokenParsers {

Testing the JSON Parser

Add a method main that can be used to test the parser.

```
def main(args: Array[String]) {
   val tokens = new lexical.Scanner(args(0))
   println(args(0))
   println(phrase(value)(tokens))
}
```

Here are two test runs:

```
47
```

```
>java examples.parsing.JSON " { "x": true "y": [1, 2] }"
{ x: true y: [1, 2] }
[1.13] failure : unexpected token string literal y
{ "x": true "y": [1, 2] }
```


- The result of the previous JSON parser was a tree containing all input tokens (slightly chaotically).
- We transform the productions using the ^^ combinator to get more structured output:

```
def obj : Parser[Any] = // return a Map
  "{" ~> rep(member) <~ "}" ^^ (ms ⇒ Map() ++ ms)
def arr : Parser[Any] = // return a List
  "[" ~> rep{value} <~ "]"
def member: Parser[Any] = // return a name/value pair
  stringLit ~ ":" ~ value ^^
  { case name ~ ":" ~ value ⇒ (name, value) }</pre>
```

Question: What are more precise types for obj, arr, and member?

49

```
def value : Parser[Any] = (
obj
arr
stringLit
numericLit ^^ (..tolnt) // return an Int
"null" ^^ null // return 'null'
"true" ^^^ true // return 'null'
"true" ^^^ false // return 'false'
]
If we run the test now, we get:
>java examples.parsing.JSON1 " { "x": true, "y": [1, 2, 3] }"
{ x: true, y: [1, 2, 3] }
[1.30] parsed : Map(x \rightarrow true, y \rightarrow List(1, 2, 3))
```

Table of Parser Combinators

ident	identifier
keyword()	keyword or special symbol (implicit)
numericLit	integer number
stringLit	string literal
P~Q	sequential composition
P < ~ Q, P ~> Q	sequential composition; keep left/right only
P Q	alternative
opt(P)	option
rep(P)	repetition
repsep(P, Q)	interleaved repetition
P ^^ f	result conversion
P ^^^ v	constant result

51

Arithmetic Expressions Again

Here is the full parser for arithmetic expressions:

object Arithmetic extends StandardTokenParsers {
 lexical.delimiters ++= List("(", ")", "+", "-", "*", "/")
 def expr: Parser[Any] = term ~ rep("+" ~ term | "-" ~ term)
 def term = factor ~ rep("*" ~ factor | "/" ~ factor)
 def factor: Parser[Any] = "(" ~ expr ~ ")" | numericLit

Question: How can we make it evaluate the parsed expression?

A Problem with Top-Down Parsing

As parser combinators work top-down, they don't allow left-recursion.

A production like

def expr = expr ~ "-" ~ term

would go into an infinite recursion when executed.

The alternative:

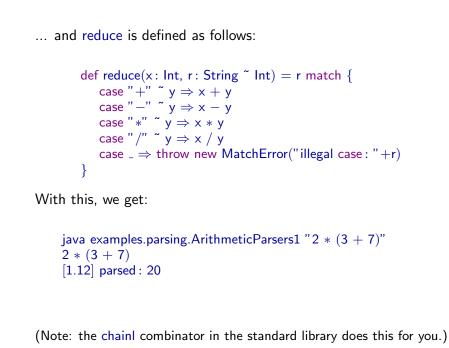
def expr = term $\ \ rep("-" \ \ term)$

produces a "right-leaning" tree: X - Y - Z parses

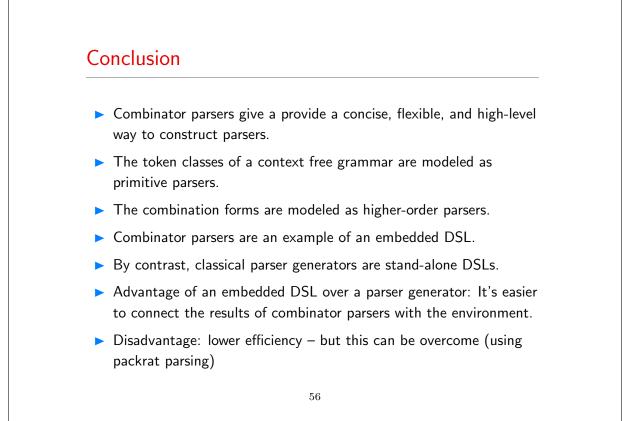
X ~ List("-" ~ Y, "-" ~ Z)

But the correct reduction/evaluation of +, -, *, / is left-leaning!

53


Evaluate by FoldLeft

We can solve this problem by delaying reduction until all elements of a repetition have been parsed and then performing a fold left on the list:


```
def expr : Parser[Int] =
   term ~ rep ("+" ~ term | "-" ~ term) ^^ reduceList
def term : Parser[Int] =
   factor ~ rep ("*" ~ factor | "/" ~ factor) ^^ reduceList
def factor: Parser[Int] =
    "(" ~> expr <~ ")" | numericLit ^^ (_.toInt)</pre>
```

Here, reduceList is defined in terms of the fold-left operation /: ...

```
val reduceList : Expr ~ List[String ~ Expr] \Rightarrow Expr = { case i ~ ps \Rightarrow (i /: ps)(reduce) }
```



```
55
```

