
Exercise 1 : Typing (10 points)

For each of the following lambda terms,

• give a possible type and indicate whether this type is the only possible type, or

• indicate that the term is not typable.

We consider the typing rules of the simply typed lambda calculus (fig. 9-1) with arithmetic
expressions including base types Nat and Bool, sums (11-9) and pairs (11-5), references (13-1)
and recursion (11-12).

1. λx.λy. λz. x (y z)

2. λx.λy. (x y) (y x)

3. λx.λy. (case x of inl a => !a | inr b => b) !y

4. λx. if x.1 then x.2 else succ x.2

5. λx. fix (fix x)
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Exercise 2 : Adding call-by-name to the call-by-value simply-
typed lambda calculus. (10 points)

Instead of emulating call-by-name evaluation using thunks, we extend the simply typed lambda
calculus (call-by-value, no extensions) to provide direct support for call-by-name terms. We
introduce two new syntactic forms and a new type:

t ::= . . . terms
| delay t a thunk that delays the evaluation of t
| force t force the evaluation of the thunk t

v ::= . . . values
| delay t

T ::= . . . types
| Delayed T type of a term that can be forced to a term of type T

Your task for this assignment is two-fold:

1. Introduce the new evaluation rules and typing rules that follow from the given syntactic
extension and the notion of call-by-name evaluation so that the resulting system is sound
(and useful).

2. Prove soundness of your system by detailing the new cases of the inductive proofs of
preservation and progress. You need only discuss the cases that result from the evaluation
and typing rules that you introduced, and, if needed, you may use (without proving them)
the standard lemmas of inversion of typing, canonical forms, and uniqueness of types.

HINT: For both proofs you can use induction on the derivation of t : T.
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Exercise 3 : Hacking in the untyped call-by-value lambda calcu-
lus. (10 points)

Pierce describes encoding lists using fold on p. 63 and pp. 350-352. Let’s use a slightly different
encoding: we represent a list by what it means to pattern match on it.

More precisely, a list is encoded as a function that takes two functions as its arguments. It
applies the first argument (let’s call it fNil) to some unspecified value if the list is empty, else
it applies the second function (fCons) to the head and the (encoding of the) tail of the list. In
Scala notation, where xs is the list to be encoded, the corresponding function is:

fNil => fCons => xs match {

case Nil => fNil()

case a :: as => fCons(a)(as)

}

Formally, the encoding from a Scala list to the corresponding function in lambda calculus is
given by the function [| xs |] that takes a Scala list xs to its lambda term:

[| List() |] = λfNil. λfCons. fNil unit

[| x :: xs |] = λfNil. λfCons. fCons x [| xs |]

As an example, assuming the constants A, B, and C are defined (only for the purpose of this
example):

[| List(A, B, C)|] = λfNil. λfCons. fCons A (λfNil. λfCons. fCons B (

λfNil. λfCons. fCons C (λfNil. λfCons. fNil unit)))

Your task is to program the following functions in the untyped call-by-value lambda calculus
(as described on the lectures and in Chapter 5 of the book) using the above encoding. More
specifically, your answer should consist of 4 lambda terms (one for each of the functions described
below):

NOTE: You may assume unit, zero, succ, and fix are defined for you.

• head: return the first element of a given list

• tail: returns the tail of a given list (i.e., the list without its first element)

• len: return the length of a given list (where the length is a Church-encoded natural)

• rev: return the reverse of a given list.

HINT: here’s how you could do this in Scala for a list of integers

def rev(xs: List[Int]): List[Int] = {

def rev0(xs: List[Int], acc: List[Int]): List[Int] = xs match {

case Nil => acc

case y :: ys => rev0(ys, y :: acc)

}

rev0(xs, List())

}
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