Final Exam

Foundations of Software
January 21, 2008

Last Name :
First Name :
Section :
Exercise | Points | Achieved Points
1 12
2 10
3 14
Total 36




Exercise 1 : Equivalences (12 points)

Several different equivalence relations can be defined on the terms of a language. The equivalence
relations that we consider in this exercise are

1. structural equivalence wrt. a-renaming, denoted =,
2. behavioral equivalence, denoted =, and

3. the smallest equivalence relation containing (-reduction, denoted =g.
Since a relation is a set of pairs, the above relations are ordered as follows: = C =3 C =
In each part of this exercise you are given two terms in the call-by-value lambda-calculus, unless
specified otherwise. Indicate the smallest equivalence relation (that is, =, =g, or =) that relates
the two terms, or indicate with “NONE” that the two terms are not related wrt. any of the
above relations.
Note that to test for behavioral equivalence a term can be put into an arbitrary evaluation
context. In particular if the language contains more expression forms than just pure lambda-
terms, the context is not restricted to applications!

1. Ax. Ay. Az. x (y 2)  and M. Ag. Ax. £ (g x)
2. In Scheme, consider the following terms:
(lambda x

(lambda y
(lambda z. (x (y z)))))

and

(lambda f
(lambda g
(lambda x. (f (g x)))))

Hint: Scheme, and Lisp in general, allows to treat programs as data.

3. Ay. Xx.y x and Ay.y

4. In the untyped call-by-value lambda-calculus with numbers and arithmetic expressions
(succ t etc.), consider the following terms:

Ay. Ax.y x and  Ay.y

5. (twice £) x and (compose £ ) x
where
twice = f. Ax. £ (£ %)
compose = A\f. A\g. Ax. £ (g x)

6. (Ab. Af. As. b £ s) (Ax. Ay. x) and (Ab. Af. As. b s f) (Ax. Ay. y)

0.1 Solution
=; NONE; =; NONE; =3; =3.



Exercise 2 : Type Reconstruction (10 points)

Consider the language of lambda calculus with type reconstruction, described in Chapter 22 of
the TAPL book. Extend the language with sum types, following the usual syntax for types and
terms:

T == ...
T+ T sum type

t = ...
inl t inject left
inrt inject right

case t of inl x — ¢1 | inr x — to  pattern match

Notice that the injection functions don’t require a type ascription, since we rely on type inference
to find a suitable type. Extend the constraint typing relation to the new terms in such a way
that the language remains sound, using the typical evaluation rules (no need to prove progress
and preservation). Recall that the constraint typing relation gives a type and a set of constraints
for a term and an environment. You can find the original typing rules at page 322 in the TAPL
book.

0.2 Solution
'kt : Ty|C

T-1
M T Finl 6 T+ To[C

Ty fresh

Fl—tl : T2|C

T-INR
I'kinrt; : 1Ty +T2’C

T1 fresh

I'kHt: T|C I‘,x: XlFtli T1|01 F,$: Xgl—tgi TQ|CQ
I'+ case t of inl x => t1|inr X => t21T1|CU01UCQU{T1 ZTQ,TZXl—l-XQ}

T-CASE X1, X5 fresh



Exercise 3 : Featherweight Java (14 points)

Consider extending Featherweight Java (FJ) with a new field extraction construct. Field ex-
traction allows programmers to easily extract the values of an object’s fields without using field
accessors.

We formalize this extension by adding one new expression form to the syntax of FJ:

t =
‘ to extract C(x1,...,x,) => t1 else to field extraction

The semantics of this construct is supposed to resemble that of the following pattern matching
expression in Scala:

t0 match {
case C(x1, ..., xn) => t1
case _ => t2

3

For example, given the following FJ class table

class A extends Object {
Object x;
A(Object x) {
super (); this.x = x;

}

}

class B extends A {
Object y;

B(Object x, Object y) {
super(x); this.y = y;
}
}
class C extends Object { }

evaluating the following term

(new B(new A(new C()), new Object())
extract A(u) => u else new A(new Object()).x

should yield new C().

1. Extend the operational semantics of FJ with additional computation and congruence rules
that formalize the semantics of the new field extraction construct.

2. Fill in the preconditions of the typing rule for field extraction so that the above example
type checks and the preservation and progress theorems of FJ still hold. Furthermore, the
type E must be the minimal type for the expression. (You do not need to do any proofs of
these properties.)

T-EXTRACT —
( ) 't ty extract C(xy,...,x,) => t1 else ty : E



