
Chapter 31

Combinator Parsing

1

Ocassionally, you may need to process a small, special-purpose lan-
guage. For example, you may need to read configuration files for your soft-
ware, and you want to make them easier to modify by hand than XML. Al-
ternatively, maybe you want to support an input language in your program,
such as search terms with boolean operators (computer, find me a movie
“with ‘space ships’ and without ‘love stories”’). Whatever the reason, you
are going to need a parser. You need a way to convert the input language
into some data structure your software can process.

Essentially, you have only a few choices. One choice is to roll your own
parser (and lexical analyzer). If you are not an expert this is hard. If you are
an expert, it is still time consuming.

An alternative choice is to use a parser generator. There exist quite a few
of these generators. Some of the better known are Yacc and Bison for parsers
written in C and ANTLR for parsers written in Java. You’ll probably also
need a scanner generator such as Lex, Flex, or JFlex to go with it. This might
be the best solution, except for a couple of inconveniences. You need to learn
new tools, including their—sometimes obscure—error messages. You also
need to figure out how to connect the output of these tools to your program.
This might limit the choice of your programming language, and complicate
your tool chain.

This chapter presents a third alternative. Instead of using the standalone
domain specific language of a parser generator, you will use an internal do-

1From: Martin Odersky, Lex Spoon, Bill Venners: Programming in Scala, Artima Press,
2008

613

CHAPTER 31 · Combinator Parsing

main specific language, or internal DSL for short. The internal DSL will
consist of a library of parser combinators—functions and operators defined
in Scala that will serve as building blocks for parsers. These building blocks
will map one to one to the constructions of a context-free grammar, to make
them easy to understand.

This chapter introduces only one language feature that was not explained
before: this aliasing, in Section 31.6. The chapter does, however, heavily
use several other features that were explained in previous chapters. Among
others, parameterized types, abstract types, functions as objects, operator
overloading, by-name parameters, and implicit conversions all play impor-
tant roles. The chapter shows how these language elements can be combined
in the design of a very high-level library.

The concepts explained in this chapter tend to be a bit more advanced
than previous chapters. If you have a good grounding in compiler construc-
tion, you’ll profit from it reading this chapter, because it will help you put
things better in perspective. However, the only prerequisite for understand-
ing this chapter is that you know about regular and context-free grammars.
If you don’t, the material in this chapter can also safely be skipped.

31.1 Example: Arithmetic expressions

We’ll start with an example. Say you want to construct a parser for arith-
metic expressions consisting of integer numbers, parentheses, and the binary
operators +, -, *, and /. The first step is always to write down a grammar for
the language to be parsed. Here’s the grammar for arithmetic expressions:

expr ::= term {"+" term | "-" term}.
term ::= factor {"*" factor | "/" factor}.

factor ::= floatingPointNumber | "(" expr ")".

Here, | denotes alternative productions, and { . . . } denotes repetition (zero
or more times). And although there’s no use of it in this example, [. . .]
denotes an optional occurrence.

This context-free grammar defines formally a language of arithmetic ex-
pressions. Every expression (represented by expr) is a term, which can be
followed by a sequence of + or - operators and further terms. A term is a
factor, possibly followed by a sequence of * or / operators and further fac-
tors. A factor is either a numeric literal or an expression in parentheses.

614

SECTION 31.1 · Example: Arithmetic expressions

Note that the grammar already encodes the relative precedence of operators.
For instance, * binds more tightly than +, because a * operation gives a term,
whereas a + operation gives an expr, and exprs can contain terms but a term
can contain an expr only when the latter is enclosed in parentheses.

Now that you have defined the grammar, what’s next? If you use Scala’s
combinator parsers, you are basically done! You only need to perform some
systematic text replacements and wrap the parser in a class, as shown in
Listing 31.1:

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {

def expr: Parser[Any] = term~rep("+"~term | "-"~term)
def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
def factor: Parser[Any] = floatingPointNumber | "("~expr~")"

}

Listing 31.1 · An arithmetic expression parser.

The parsers for arithmetic expressions are contained in a class that inherits
from the class JavaTokenParsers. This class provides the basic machinery
for writing a parser and also provides some primitive parsers that recognize
some word classes: identifiers, string literals and numbers. In the example
in Listing 31.1 you need only the primitive floatingPointNumber parser,
which is inherited from this class.

The three definitions in class Arith represent the productions for arith-
metic expressions. As you can see, they follow very closely the productions
of the context-free grammar. In fact, you could generate this part automati-
cally from the context-free grammar, by performing a number of simple text
replacements:

1. Every production becomes a method, so you need to prefix it with def.

2. The result type of each method is Parser[Any], so you need to change
the ::= symbol to “: Parser[Any] =”. You’ll find out later in this
chapter what the type Parser[Any] signifies, and also how to make it
more precise.

3. In the grammar, sequential composition was implicit, but in the pro-
gram it is expressed by an explicit operator: ~. So you need to insert

615

CHAPTER 31 · Combinator Parsing

a ~ between every two consecutive symbols of a production. In the
example in Listing 31.1 we chose not to write any spaces around the ~
operator. That way, the parser code keeps closely to the visual appear-
ance of the grammar—it just replaces spaces by ~ characters.

4. Repetition is expressed rep(. . .) instead of { . . . }. Analogously
(though not shown in the example), option is expressed opt(. . .)
instead of [. . .].

5. The period (.) at the end of each production is omitted—you can, how-
ever, write a semicolon (;) if you prefer.

That’s all there is to it. The resulting class Arith defines three parsers,
expr, term and factor, which can be used to parse arithmetic expressions
and their parts.

31.2 Running your parser

You can exercise your parser with the following small program:

object ParseExpr extends Arith {

def main(args: Array[String]) {

println("input : "+ args(0))

println(parseAll(expr, args(0)))

}

}

The ParseExpr object defines a main method that parses the first command-
line argument passed to it. It prints the original input argument, and then
prints its parsed version. Parsing is done by the expression

parseAll(expr, input)

This expression applies the parser, expr, to the given input. It expects that
all of the input matches, i.e., that there are no characters trailing a parsed
expression. There’s also a method parse which allows to parse an input
prefix, leaving some remainder unread.

You can run the arithmetic parser with the following command:

616

SECTION 31.3 · Basic regular expression parsers

$ scala ParseExpr "2 * (3 + 7)"

input: 2 * (3 + 7)

[1.12] parsed: ((2~List((*~(((~((3~List())~List((+
~(7~List())))))~)))))~List())

The output tells you that the parser successfully analyzed the input string up
to position [1.12]. That means the first line and the twelfth column—in other
words, the whole input string—was parsed. Disregard for the moment the
result after “parsed:”. It is not very useful, and you will find out later how
to get more specific parser results.

You can also try to introduce some input string that is not a legal expres-
sion. For instance, you could write one closing parenthesis too many:

$ scala ParseExpr "2 * (3 + 7))"

input: 2 * (3 + 7))

[1.12] failure: `-' expected but `)' found

2 * (3 + 7))

ˆ

Here, the expr parser parsed everything until the final closing parenthe-
sis, which does not form part of the arithmetic expression. The parseAll
method then issued an error message, which said that it expected a - opera-
tor at the point of the closing parenthesis. You’ll find out later in this chapter
why it produced this particular error message, and how you can improve it.

31.3 Basic regular expression parsers

The parser for arithmetic expressions made use of another parser, named
floatingPointNumber. This parser, which was inherited from Arith’s su-
perclass, JavaTokenParsers, recognizes a floating point number in the for-
mat of Java. But what do you do if you need to parse numbers in a format
that’s a bit different from Java’s? In this situation, you can use a regular
expression parser.

The idea is that you can use any regular expression as a parser. The
regular expression parses all strings that it can match. Its result is the parsed
string. For instance, the regular expression parser shown in Listing 31.2
describes Java’s identifiers:

617

CHAPTER 31 · Combinator Parsing

object MyParsers extends RegexParsers {

val ident: Parser[String] = """[a-zA-Z_]\w*""".r

}

Listing 31.2 · A regular expression parser for Java identifiers.

The MyParsers object of Listing 31.2 inherits from class RegexParsers,
whereas Arith inherited from JavaTokenParsers. Scala’s parsing combi-
nators are arranged in a hierarchy of classes, which are all contained in pack-
age scala.util.parsing.combinator. The top-level class is Parsers,
which defines a very general parsing framework for all sorts of input. One
level below is class RegexParsers, which requires that the input is a se-
quence of characters and provides for regular expression parsing. Even more
specialized is class JavaTokenParsers, which implements parsers for basic
classes of words (or tokens) as they are defined in Java.

31.4 Another example: JSON

JSON, the JavaScript Object Notation, is a popular data interchange format.
In this section, we’ll show you how to write a parser for it. Here’s a grammar
that describes the syntax of JSON:

value ::= obj | arr | stringLiteral |
floatingPointNumber |
"null" | "true" | "false".

obj ::= "{" [members] "}".
arr ::= "[" [values] "]".

members ::= member {"," member}.
member ::= stringLiteral ":" value.

values ::= value {"," value}.

A JSON value is an object, array, string, number, or one of the three re-
served words null, true, or false. A JSON object is a (possibly empty)
sequence of members separated by commas and enclosed in braces. Each
member is a string/value pair where the string and the value are separated by
a colon. Finally, a JSON array is a sequence of values separated by commas
and enclosed in square brackets. As an example, Listing 31.3 contains an
address-book formatted as a JSON object.

618

SECTION 31.4 · Another example: JSON

{

"address book": {

"name": "John Smith",

"address": {

"street": "10 Market Street",

"city" : "San Francisco, CA",

"zip" : 94111

},

"phone numbers": [

"408 338-4238",

"408 111-6892"

]

}

}

Listing 31.3 · Data in JSON format.

Parsing such data is straightforward when using Scala’s parser combi-
nators. The complete parser is shown in Listing 31.4. This parser follows
the same structure as the arithmetic expression parser. It is again a straight-
forward mapping of the productions of the JSON grammar. The productions
use one shortcut that simplifies the grammar: The repsep combinator parses
a (possibly empty) sequence of terms that are separated by a given separator
string. For instance, in the example in Listing 31.4, repsep(member, ",")
parses a comma-separated sequence of member terms. Otherwise, the pro-
ductions in the parser correspond exactly to the productions in the grammar,
as was the case for the arithmetic expression parsers.

To try out the JSON parsers, we’ll change the framework a bit, so that
the parser operates on a file instead of on the command line:

import java.io.FileReader

object ParseJSON extends JSON {

def main(args: Array[String]) {

val reader = new FileReader(args(0))

println(parseAll(value, reader))

}

}

619

CHAPTER 31 · Combinator Parsing

The main method in this program first creates a FileReader object. It
then parses the characters returned by that reader according to the value
production of the JSON grammar. Note that parseAll and parse exist in
overloaded variants: both can take a character sequence or alternatively an
input reader as second argument.

If you store the “address book” object shown in Listing 31.3 into a file
named address-book.json and run the ParseJSON program on it, you
should get:

$ scala ParseJSON address-book.json

[13.4] parsed: (({~List((("address book"~:)~(({~List(((
"name"~:)~"John Smith"), (("address"~:)~(({~List(((
"street"~:)~"10 Market Street"), (("city"~:)~"San Francisco

,CA"), (("zip"~:)~94111)))~})), (("phone numbers"~:)~(([~
List("408 338-4238", "408 111-6892"))~]))))~}))))~})

31.5 Parser output

The ParseJSON program successfully parsed the JSON address book. How-
ever, the parser output looks strange. It seems to be a sequence composed
of bits and pieces of the input glued together with lists and ~ combinations.
This output is not very useful. It is less readable for humans than the input,

import scala.util.parsing.combinator._

class JSON extends JavaTokenParsers {

def value : Parser[Any] = obj | arr |

stringLiteral |

floatingPointNumber |

"null" | "true" | "false"

def obj : Parser[Any] = "{"~repsep(member, ",")~"}"

def arr : Parser[Any] = "["~repsep(value, ",")~"]"

def member: Parser[Any] = stringLiteral~":"~value
}

Listing 31.4 · A simple JSON parser.

620

SECTION 31.5 · Parser output

but it is also too disorganized to be easily analyzable by a computer. It’s time
to do something about this.

To figure out what to do, you need to know first what the individual
parsers in the combinator frameworks return as a result (provided they suc-
ceed in parsing the input). Here are the rules:

1. Each parser written as a string (such as: "{" or ":" or "null") returns
the parsed string itself.

2. Regular expression parsers such as """[a-zA-Z_]\w*""".r also re-
turn the parsed string itself. The same holds for regular expression
parsers such as stringLiteral or floatingPointNumber, which are
inherited from class JavaTokenParsers.

3. A sequential composition P~Q returns the results of both P and of Q.
These results are returned in an instance of a case class that is also
written ~. So if P returns "true" and Q returns "?", then the sequential
composition P~Q returns ~("true", "?"), which prints as (true~?).

4. An alternative composition P | Q returns the result of either P or Q,
whichever one succeeds.

5. A repetition rep(P) or repsep(P, separator) returns a list of the
results of all runs of P.

6. An option opt(P) returns an instance of Scala’s Option type. It re-
turns Some(R) if P succeeds with result R and None if P fails.

With these rules you can now deduce why the parser output appeared as it did
in the previous examples. However, the output is still not very convenient.
It would be much better to map a JSON object into an internal Scala rep-
resentation that represents the meaning of the JSON value. A more natural
representation would be as follows:

• A JSON object is represented as a Scala map of type Map[String,
Any]. Every member is represented as a key/value binding in the map.

• A JSON array is represented as a Scala list of type List[Any].

• A JSON string is represented as a Scala String.

• A JSON numeric literal is represented as a Scala Int.

621

CHAPTER 31 · Combinator Parsing

• The values true, false, and null are represented in as the Scala
values with the same names.

To produce to this representation, you need to make use of one more combi-
nation form for parsers: ˆˆ.

The ˆˆ operator transforms the result of a parser. Expressions using this
operator have the form P ˆˆ f where P is a parser and f is a function. P ˆˆ f
parses the same sentences as just P. Whenever P returns with some result R,
the result of P ˆˆ f is f(R).

As an example, here is a parser that parses a floating point number and
converts it to a Scala value of type Double.

floatingPointNumber ˆˆ (_.toDouble)

And here is a parser that parses the string "true" and returns Scala’s boolean
true value:

"true" ˆˆ (x => true)

Now for more advanced transformations. Here’s a new version of a parser
for JSON objects that returns a Scala Map:

def obj: Parser[Map[String, Any]] = // Can be improved

"{"~repsep(member, ",")~"}" ˆˆ

{ case "{"~ms~"}" => Map() ++ ms }

Remember that the ~ operator produces as its result an instance of a case
class with the same name: ~. Here’s a definition of that class—it’s an inner
class of class Parsers:

case class ~[+A, +B](x: A, y: B) {

override def toString = "("+ x +"~"+ y +")"

}

The name of the class is intentionally the same as the name of the sequence
combinator method, ~. That way, you can match parser results with pat-
terns that follow the same structure as the parsers themselves. For instance,
the pattern "{"~ms~"}" matches a result string "{" followed by a result
variable ms, which is followed in turn by a result string "}". This pattern
corresponds exactly to what is returned by the parser on the left of the ˆˆ.
In its desugared versions where the ~ operator comes first, the same pattern
reads ~(~("{", ms), "}"), but this is much less legible.

622

SECTION 31.5 · Parser output

The purpose of the "{"~ms~"}" pattern is to strip off the braces so that
you can get at the list of members resulting from the repsep(member, ",")
parser. In cases like these there is also an alternative that avoids produc-
ing unnecessary parser results that are immediately discarded by the pattern
match. The alternative makes use of the ~> and <~ parser combinators. Both
express sequential composition like ~, but ~> keeps only the result of its right
operand, whereas <~ keeps only the result of its left operand. Using these
combinators, the JSON object parser can be expressed more succinctly:

def obj: Parser[Map[String, Any]] =

"{"~> repsep(member, ",") <~"}" ˆˆ (Map() ++ _)

Listing 31.5 shows a full JSON parser that returns meaningful results. If
you run this parser on the address-book.json file, you will get the follow-
ing result (after adding some newlines and indentation):

$ scala JSON1Test address-book.json

[14.1] parsed: Map(

address book -> Map(

name -> John Smith,

address -> Map(

street -> 10 Market Street,

city -> San Francisco, CA,

zip -> 94111),

phone numbers -> List(408 338-4238, 408 111-6892)

)

)

This is all you need to know in order to get started writing your own
parsers. As an aide to memory, Table 31.1 lists the parser combinators that
were discussed so far.

Symbolic versus alphanumeric names

Many of the parser combinators in Table 31.1 use symbolic names. This
has both advantages and disadvantages. On the minus side, symbolic names
take time to learn. Users who are unfamiliar with Scala’s combinator parsing
libraries are probably mystified what ~, ~>, or ˆˆ mean. On the plus side,
symbolic names are short, and can be chosen to have the “right” precedences
and associativities. For instance, the parser combinators ~, ˆˆ, and | are

623

CHAPTER 31 · Combinator Parsing

import scala.util.parsing.combinator._

class JSON1 extends JavaTokenParsers {

def obj: Parser[Map[String, Any]] =

"{"~> repsep(member, ",") <~"}" ˆˆ (Map() ++ _)

def arr: Parser[List[Any]] =

"["~> repsep(value, ",") <~"]"

def member: Parser[(String, Any)] =

stringLiteral~":"~value ˆˆ

{ case name~":"~value => (name, value) }

def value: Parser[Any] = (

obj

| arr

| stringLiteral

| floatingPointNumber ˆˆ (_.toInt)

| "null" ˆˆ (x => null)
| "true" ˆˆ (x => true)
| "false" ˆˆ (x => false)
)

}

Listing 31.5 · A full JSON parser that returns meaningful results.

Table 31.1 · Summary of parser combinators

"..." literal
"...".r regular expression
P~Q sequential composition
P <~ Q, P ~> Q sequential composition; keep left/right only
P | Q alternative
opt(P) option
rep(P) repetition
repsep(P, Q) interleaved repetition
P ˆˆ f result conversion

624

SECTION 31.5 · Parser output

Turning off semicolon inference

Note that the body of the value parser in Listing 31.5 is enclosed in
parentheses. This is a little trick to disable semicolon inference in
parser expressions. You saw in Section 4.2 that Scala assumes there’s
a semicolon between any two lines that can be separate statements
syntactically, unless the first line ends in an infix operator, or the two
lines are enclosed in parentheses or square brackets. Now, you could
have written the | operator at the end of the each alternative instead of
at the beginning of the following one, like this:

def value: Parser[Any] =

obj |

arr |

stringLiteral |

...

In that case, no parentheses around the body of the value parser would
have been required. However, some people prefer to see the | operator
at the beginning of the second alternative rather than at the end of the
first. Normally, this would lead to an unwanted semicolon between the
two lines, like this:

obj; // semicolon implicitly inserted

| arr

The semicolon changes the structure of the code, causing it to fail
compilation. Putting the whole expression in parentheses avoids the
semicolon and makes the code compile correctly.

chosen intentionally in decreasing order of precedence. A typical grammar
production is composed of alternatives that have a parsing part and a trans-
formation part. The parsing part usually contains several sequential items
separated by ~ operators. With the chosen precedences of ~, ˆˆ, and | you
can write such a grammar production without needing any parentheses.

Furthermore, symbolic operators take less visual real estate than alpha-
betic ones. That’s important for a parser because it lets you concentrate on

625

CHAPTER 31 · Combinator Parsing

the grammar at hand, instead of the combinators themselves. To see the dif-
ference, imagine for a moment that sequential composition (~) was called
andThen and alternative (|) was called orElse. The arithmetic expression
parsers in Listing 31.1 on page 615 would look as follows:

class ArithHypothetical extends JavaTokenParsers {

def expr: Parser[Any] =

term andThen rep(("+" andThen term) orElse

("-" andThen term))

def term: Parser[Any] =

factor andThen rep(("*" andThen factor) orElse

("/" andthen factor))

def factor: Parser[Any] =

floatingPointNumber orElse

("(" andThen expr andThen ")")

}

You notice that the code becomes much longer, and that it’s hard to “see”
the grammar among all those operators and parentheses. On the other hand,
somebody new to combinator parsing could probably figure out better what
the code is supposed to do.

31.6 Implementing combinator parsers

The previous sections have shown that Scala’s combinator parsers provide a
convenient means for constructing your own parsers. Since they are nothing
more than a Scala library, they fit seamlessly into your Scala programs. So
it’s very easy to combine a parser with some code that processes the results it
delivers, or to rig a parser so that it takes its input from some specific source
(say, a file, a string, or a character array).

How is this achieved? In the rest of this chapter you’ll take a look “under
the hood” of the combinator parser library. You’ll see what a parser is, and
how the primitive parsers and parser combinators encountered in previous
sections are implemented. You can safely skip these parts if all you want to
do is write some simple combinator parsers. On the other hand, reading the
rest of this chapter should give you a deeper understanding of combinator
parsers in particular, and of the design principles of a combinator domain-
specific language in general.

626

SECTION 31.6 · Implementing combinator parsers

Choosing between symbolic and alphabetic names
As guidelines for choosing between symbolic and alphabetic names we
recommend the following:

• Use symbolic names in cases where they already have a univer-
sally established meaning. For instance, nobody would recom-
mend to write add instead of + for numeric addition.

• Otherwise, give preference to alphabetic names if you want your
code to be understandable to casual readers.

• You can still choose symbolic names for domain-specific li-
braries, if this gives clear advantages in legibility and you do not
expect anyway that a casual reader without a firm grounding in
the domain would be able understand the code immediately.

In the case of parser combinators we are looking at a highly domain-
specific language, which casual readers may have trouble understanding
even with alphabetic names. Furthermore, symbolic names give clear
advantages in legibility for the expert. So we believe their use is war-
ranted in this application.

The core of Scala’s combinator parsing framework is contained in the
class scala.util.parsing.combinator.Parsers. This class defines the
Parser type as well as all fundamental combinators. Except where stated
explicitly otherwise, the definitions explained in the following two subsec-
tions all reside in this class. That is they are assumed to be contained in a
class definition that starts as follows:

package scala.util.parsing.combinator

class Parsers {

... // code goes here unless otherwise stated

}

A Parser is in essence just a function from some input type to a parse result.
As a first approximation, the type could be written as follows:

type Parser[T] = Input => ParseResult[T]

627

CHAPTER 31 · Combinator Parsing

Parser input

Sometimes, a parser reads a stream of tokens instead of a raw sequence of
characters. A separate lexical analyzer is then used to convert a stream of
raw characters into a stream of tokens. The type of parser inputs is defined
as follows:

type Input = Reader[Elem]

The class Reader comes from the package scala.util.parsing.input. It
is similar to a Stream, but also keeps track of the positions of all the elements
it reads. The type Elem represents individual input elements. It is an abstract
type member of the Parsers class:

type Elem

This means that subclasses of Parsers need to instantiate class Elem to the
type of input elements that are being parsed. For instance, RegexParsers
and JavaTokenParsers fix Elem to be equal to Char. But it would also be
possible to set Elem to some other type, such as the type of tokens returned
from a separate lexer.

Parser results

A parser might either succeed or fail on some given input. Consequently
class ParseResult has two subclasses for representing success and failure:

sealed abstract class ParseResult[+T]

case class Success[T](result: T, in: Input)

extends ParseResult[T]

case class Failure(msg: String, in: Input)

extends ParseResult[Nothing]

The Success case carries the result returned from the parser in its result
parameter. The type of parser results is arbitrary; that’s why ParseResult,
Success, and Parser are all parameterized with a type parameter T. The
type parameter represents the kinds of results returned by a given parser.
Success also takes a second parameter, in, which refers to the input imme-
diately following the part that the parser consumed. This field is needed for
chaining parsers, so that one parser can operate after another. Note that this
is a purely functional approach to parsing. Input is not read as a side effect,

628

SECTION 31.6 · Implementing combinator parsers

but it is kept in a stream. A parser analyzes some part of the input stream,
and then returns the remaining part in its result.

The other subclass of ParseResult is Failure. This class takes as a
parameter a message that describes why the parser failed. Like Success,
Failure also takes the remaining input stream as a second parameter. This
is needed not for chaining (the parser won’t continue after a failure), but to
position the error message at the correct place in the input stream.

Note that parse results are defined to be covariant in the type parameter
T. That is, a parser returning Strings as result, say, is compatible with a
parser returning AnyRefs.

The Parser class

The previous characterization of parsers as functions from inputs to parse
results was a bit oversimplified. The previous examples showed that parsers
also implement methods such as ~ for sequential composition of two parsers
and | for their alternative composition. So Parser is in reality a class that
inherits from the function type Input => ParseResult[T] and additionally
defines these methods:

abstract class Parser[+T] extends (Input => ParseResult[T])

{ p =>

// An unspecified method that defines

// the behavior of this parser.

def apply(in: Input): ParseResult[T]

def ~ ...

def | ...

...

}

Since parsers are (i.e., inherit from) functions, they need to define an apply
method. You see an abstract apply method in class Parser, but this is just
for documentation, as the same method is in any case inherited from the
parent type Input => ParseResult[T] (recall that this type is an abbrevia-
tion for scala.Function1[Input, ParseResult[T]]). The apply method
still needs to be implemented in the individual parsers that inherit from the
abstract Parser class. These parsers will be discussed after the following
section on this aliasing.

629

CHAPTER 31 · Combinator Parsing

Aliasing this

The body of the Parser class starts with a curious expression:

abstract class Parser[+T] extends ... { p =>

A clause such as id => immediately after the opening brace of a class tem-
plate defines the identifier id as an alias for this in the class. It’s as if you
had written:

val id = this

in the class body, except that the Scala compiler knows that id is an alias
for this. For instance, you could access an object-private member m of the
class using either id.m or this.m; the two are completely equivalent. The
first expression would not compile if id were just defined as a val with this
as its right hand side, because in that case the Scala compiler would treat id
as a normal identifier.

You saw syntax like this in Section 27.4, where it was used to give a self
type to a trait. Aliasing can also be a good abbreviation when you need to
access the this of an outer class. Here’s an example:

class Outer { outer =>

class Inner {

println(Outer.this eq outer) // prints: true

}

}

The example defines two nested classes, Outer and Inner. Inside Inner
the this value of the Outer class is referred to twice, using different ex-
pressions. The first expression shows the Java way of doing things: You can
prefix the reserved word this with the name of an outer class and a period;
such an expression then refers to the this of the outer class. The second ex-
pression shows the alternative that Scala gives you. By introducing an alias
named outer for this in class Outer, you can refer to this alias directly
also in inner classes. The Scala way is more concise, and can also improve
clarity, if you choose the name of the alias well. You’ll see examples of this
in pages 631 and 632.

630

SECTION 31.6 · Implementing combinator parsers

Single-token parsers

Class Parsers defines a generic parser elem that can be used to parse any
single token:

def elem(kind: String, p: Elem => Boolean) =

new Parser[Elem] {

def apply(in: Input) =

if (p(in.first)) Success(in.first, in.rest)

else Failure(kind +" expected", in)

}

This parser takes two parameters: a kind string describing what kind of
token should be parsed and a predicate p on Elems, which indicates whether
an element fits the class of tokens to be parsed.

When applying the parser elem(kind, p) to some input in, the first
element of the input stream is tested with predicate p. If p returns true, the
parser succeeds. Its result is the element itself, and its remaining input is
the input stream starting just after the element that was parsed. On the other
hand, if p returns false, the parser fails with an error message that indicates
what kind of token was expected.

Sequential composition

The elem parser only consumes a single element. To parse more interest-
ing phrases, you can string parsers together with the sequential composition
operator ~. As you have seen before, P~Q is a parser that applies first the P
parser to a given input string. Then, if P succeeds, the Q parser is applied to
the input that’s left after P has done its job.

The ~ combinator is implemented as a method in class Parser. Its def-
inition is shown in Listing 31.6. The method is a member of the Parser
class. Inside this class, p is specified by the “p =>” part as an alias of this,
so p designates the left operand (or: receiver) of ~. Its right operand is rep-
resented by parameter q. Now, if p~q is run on some input in, first p is run
on in and the result is analyzed in a pattern match. If p succeeds, q is run on
the remaining input in1. If q also succeeds, the parser as a whole succeeds.
Its result is a ~ object containing both the result of p (i.e., x) and the result
of q (i.e., y). On the other hand, if either p or q fails the result of p~q is the
Failure object returned by p or q.

631

CHAPTER 31 · Combinator Parsing

abstract class Parser[+T] ... { p =>

...

def ~ [U](q: => Parser[U]) = new Parser[T~U] {

def apply(in: Input) = p(in) match {

case Success(x, in1) =>

q(in1) match {

case Success(y, in2) => Success(new ~(x, y), in2)

case failure => failure

}

case failure => failure

}

}

Listing 31.6 · The ~ combinator method.

The result type of ~ is a parser that returns an instance of the case class ~
with elements of types T and U. The type expression T~U is just a more leg-
ible shorthand for the parameterized type ~[T, U]. Generally, Scala always
interprets a binary type operation such as A op B, as the parameterized type
op[A, B]. This is analogous to the situation for patterns, where an binary
pattern P op Q is also interpreted as an application, i.e., op(P, Q).

The other two sequential composition operators, <~ and ~>, could be
defined just like ~, only with some small adjustment in how the result is
computed. A more elegant technique, though, is to define them in terms of ~
as follows:

def <~ [U](q: => Parser[U]): Parser[T] =

(p~q) ˆˆ { case x~y => x }

def ~> [U](q: => Parser[U]): Parser[U] =

(p~q) ˆˆ { case x~y => y }

Alternative composition

An alternative composition P | Q applies either P or Q to a given input. It
first tries P. If P succeeds, the whole parser succeeds with the result of P.
Otherwise, Q is tried on the same input as P. The result of Q is then the result
of the whole parser.

Here is a definition of | as a method of class Parser:

632

SECTION 31.6 · Implementing combinator parsers

def | (q: => Parser[T]) = new Parser[T] {

def apply(in: Input) = p(in) match {

case s1 @ Success(_, _) => s1

case failure => q(in)

}

}

Note that if P and Q both fail, then the failure message is determined by Q.
This subtle choice is discussed later, in Section 31.9.

Dealing with recursion

Note that the q parameter in methods ~ and | is by-name—its type is pre-
ceded by =>. This means that the actual parser argument will be evaluated
only when q is needed, which should only be the case after p has run. This
makes it possible to write recursive parsers like the following one which
parses a number enclosed by arbitrarily many parentheses:

def parens = floatingPointNumber | "("~parens~")"

If | and ~ took by-value parameters, this definition would immediately cause
a stack overflow without reading anything, because the value of parens oc-
curs in the middle of its right-hand side.

Result conversion

The last method of class Parser converts a parser’s result. The parser P ˆˆ f
succeeds exactly when P succeeds. In that case it returns P’s result converted
using the function f. Here is the implementation of this method:

def ˆˆ [U](f: T => U): Parser[U] = new Parser[U] {

def apply(in: Input) = p(in) match {

case Success(x, in1) => Success(f(x), in1)

case failure => failure

}

}

} // end Parser

633

CHAPTER 31 · Combinator Parsing

Parsers that don’t read any input

There are also two parsers that do not consume any input: success and
failure. The parser success(result) always succeeds with the given
result. The parser failure(msg) always fails with error message msg.
Both are implemented as methods in class Parsers, the outer class that also
contains class Parser:

def success[T](v: T) = new Parser[T] {

def apply(in: Input) = Success(v, in)

}

def failure(msg: String) = new Parser[Nothing] {

def apply(in: Input) = Failure(msg, in)

}

Option and repetition

Also defined in class Parsers are the option and repetition combinators opt,
rep, and repsep. They are all implemented in terms of sequential composi-
tion, alternative, and result conversion:

def opt[T](p: => Parser[T]): Parser[Option[T]] = (

p ˆˆ Some(_)

| success(None)

)

def rep[T](p: Parser[T]): Parser[List[T]] = (

p~rep(p) ˆˆ { case x~xs => x :: xs }

| success(List())

)

def repsep[T, U](p: Parser[T],

q: Parser[U]): Parser[List[T]] = (

p~rep(q~> p) ˆˆ { case r~rs => r :: rs }

| success(List())

)

} // end Parsers

634

SECTION 31.7 · String literals and regular expressions

31.7 String literals and regular expressions

The parsers you saw so far made use of string literals and regular expressions
to parse single words. The support for these comes from RegexParsers, a
subclass of Parsers:

class RegexParsers extends Parsers {

This class is more specialized than class Parsers in that it only works for
inputs that are sequences of characters:

type Elem = Char

It defines two methods, literal and regex, with the following signatures:

implicit def literal(s: String): Parser[String] = ...

implicit def regex(r: Regex): Parser[String] = ...

Note that both methods have an implicit modifier, so they are automat-
ically applied whenever a String or Regex is given but a Parser is ex-
pected. That’s why you can write string literals and regular expressions di-
rectly in a grammar, without having to wrap them with one of these methods.
For instance, the parser "("~expr~")" will be automatically expanded to
literal("(")~expr~literal(")").

The RegexParsers class also takes care of handling white space be-
tween symbols. To do this, it calls a method named handleWhiteSpace be-
fore running a literal or regex parser. The handleWhiteSpace method
skips the longest input sequence that conforms to the whiteSpace regular
expression, which is defined by default as follows:

protected val whiteSpace = """\s+""".r

} // end RegexParsers

If you prefer a different treatment of white space, you can override the
whiteSpace val. For instance, if you want white space not to be skipped at
all, you can override whiteSpace with the empty regular expression:

object MyParsers extends RegexParsers {

override val whiteSpace = "".r

...

}

635

CHAPTER 31 · Combinator Parsing

31.8 Lexing and parsing

The task of syntax analysis is often split into two phases. The lexer phase
recognizes individual words in the input and classifies them into some token
classes. This phase is also called lexical analysis. This is followed by a
syntactical analysis phase that analyzes sequences of tokens. Syntactical
analysis is also sometimes just called parsing, even though this is slightly
imprecise, as lexical analysis can also be regarded as a parsing problem.

The Parsers class as described in the previous section can be used for
either phase, because its input elements are of the abstract type Elem. For
lexical analysis, Elem would be instantiated to Char, meaning the individual
characters that make up a word are being parsed. The syntactical analyzer
would in turn instantiate Elem to the type of token returned by the lexer.

Scala’s parsing combinators provide several utility classes for lexical and
syntactic analysis. These are contained in two sub-packages, one for each
kind of analysis:

scala.util.parsing.combinator.lexical

scala.util.parsing.combinator.syntactical

If you want to split your parser into a separate lexer and syntactical analyzer,
you should consult the ScalaDocs for these packages. But for simple parsers,
the regular expression based approach shown in previously this chapter is
usually sufficient.

31.9 Error reporting

There’s one final topic that was not covered yet: how does the parser issue an
error message? Error reporting for parsers is somewhat of a black art. One
problem is that when a parser rejects some input, it generally has encoun-
tered many different failures. Each alternative parse must have failed, and
recursively so at each choice point. Which of the usually numerous failures
should be emitted as error message to the user?

Scala’s parsing library implements a simple heuristic: among all failures,
the one that occurred at the latest position in the input is chosen. In other
words, the parser picks the longest prefix that is still valid and issues an
error message that describes why parsing the prefix could not be continued
further. If there are several failure points at that latest position, the one that
was visited last is chosen.

636

SECTION 31.9 · Error reporting

For instance, consider running the JSON parser on a faulty address book
which starts with the line:

{ "name": John,

The longest legal prefix of this phrase is { "name": . So the JSON parser
will flag the word John as an error. The JSON parser expects a value at this
point, but John is an identifier, which does not count as a value (presumably,
the author of the document had forgotten to enclose the name in quotation
marks). The error message issued by the parser for this document is:

[1.13] failure: "false" expected but identifier John found

{ "name": John,

ˆ

The part that “false” was expected comes from the fact that "false" is the
last alternative of the production for value in the JSON grammar. So this
was the last failure at this point. Users who know the JSON grammar in detail
can reconstruct the error message, but for non-experts this error message is
probably surprising and can also be quite misleading.

A better error message can be engineered by adding a “catch all” failure
point as last alternative of a value production:

def value: Parser[Any] =

obj | arr | stringLit | floatingPointNumber | "null" | "true" |

"false" | failure("illegal start of value")

This addition does not change the set of inputs that are accepted as valid
documents. What it does is improve the error messages, because now it will
be the explicitly added failure that comes as last alternative and therefore
gets reported:

[1.13] failure: illegal start of value

{ "name": John,

ˆ

The implementation of the “latest possible” scheme of error reporting uses
a field named lastFailure: in class Parsers to mark the failure that oc-
curred at the latest position in the input.

var lastFailure: Option[Failure] = None

637

CHAPTER 31 · Combinator Parsing

The field is initialized to None. It is updated in the constructor of the Failure
class:

case class Failure(msg: String, in: Input)

extends ParseResult[Nothing] {

if (lastFailure.isDefined &&

lastFailure.get.in.pos <= in.pos)

lastFailure = Some(this)
}

The field is read by the phrase method, which emits the final error message
if the parser failed. Here is the implementation of phrase in class Parsers:

def phrase[T](p: Parser[T]) = new Parser[T] {

lastFailure = None

def apply(in: Input) = p(in) match {

case s @ Success(out, in1) =>

if (in1.atEnd) s

else Failure("end of input expected", in1)

case f : Failure =>

lastFailure

}

}

The phrase method runs its argument parser p. If p succeeds with a com-
pletely consumed input, the success result of p is returned. If p succeeds
but the input is not read completely, a failure with message “end of input
expected” is returned. If p fails, the failure or error stored in lastFailure
is returned. Note that the treatment of lastFailure is non-functional; it is
updated as a side effect by the constructor of Failure and by the phrase
method itself. A functional version of the same scheme would be possible,
but it would require threading the lastFailure value though every parser
result, no matter whether this result is a Success or a Failure.

Putting it all together

The last two methods in class Parsers run a given parser on an input. They
are implemented as follows:

def parse[T](p: Parser[T], in: Input): ParseResult[T] =

638

SECTION 31.10 · Backtracking versus LL(1)

p(in)

def parseAll[T](p: Parser[T], in: Input): ParseResult[T] =

parse(phrase(p), in)

The parse method parses some prefix of the given input in with the given
parser p. To do that, it simply applies the parser to the input. The parseAll
method parses all of the given input in with the given parser p. To do that it
runs phrase(p) on the input.

31.10 Backtracking versus LL(1)

The parser combinators employ backtracking to choose between different
parsers in an alternative. In an expression P | Q, if P fails, then Q is run on
the same input as P. This happens even if P has parsed some tokens before
failing. In this case the same tokens will be parsed again by Q.

Backtracking imposes only a few restrictions on how to formulate a
grammar so that it can be parsed. Essentially, you just need to avoid left-
recursive productions. A production such as:

expr ::= expr "+" term | term.

will always fail because expr immediately calls itself and thus never pro-
gresses any further.2 On the other hand, backtracking is potentially costly
because the same input can be parsed several times. Consider for instance
the production:

expr ::= term "+" expr | term.

What happens if the expr parser is applied to an input such as (1 + 2) * 3
which constitutes a legal term? The first alternative would be tried, and
would fail when matching the “+” sign. Then the second alternative would
be tried on the same term and this would succeed. In the end the term ended
up being parsed twice.

It is often possible to modify the grammar so that backtracking can be
avoided. For instance, in the case of arithmetic expressions, either one of the
following productions would work:

2There are ways to avoid stack overflows even in the presence of left-recursion, but this
requires a more refined parsing combinator framework, which to date has not been imple-
mented.

639

CHAPTER 31 · Combinator Parsing

expr ::= term ["+" expr].
expr ::= term {"+" term}.

Many languages admit so-called “LL(1)” grammars.3 When a combinator
parser is formed from such a grammar, it will never backtrack, i.e., the input
position will never be reset to an earlier value. For instance, the grammars
for arithmetic expressions and JSON terms earlier in this chapter are both
LL(1), so the backtracking capabilities of the parser combinator framework
are never exercised for inputs from these languages.

The combinator parsing framework allows you to express the expectation
that a grammar is LL(1) explicitly, using a new operator ~!. This operator is
like sequential composition ~ but it will never backtrack to “un-read” input
elements that have already been parsed. Using this operator, the productions
in the arithmetic expression parser could alternatively be written as follows:

def expr : Parser[Any] =

term ~! rep("+" ~! term | "-" ~! term)

def term : Parser[Any] =

factor ~! rep("*" ~! factor | "/" ~! factor)

def factor: Parser[Any] =

"(" ~! expr ~! ")" | floatingPointNumber

One advantage of an LL(1) parser is that it can use a simpler input technique.
Input can be read sequentially, and input elements can be discarded once they
are read. That’s another reason why LL(1) parsers are usually more efficient
than backtracking parsers.

31.11 Conclusion

You have now seen all the essential elements of Scala’s combinator parsing
framework. It’s surprisingly little code for something that’s genuinely useful.
With the framework you can construct parsers for a large class of context-
free grammars. The framework lets you get started quickly, but it is also
customizable to new kinds of grammars and input methods. Being a Scala
library, it integrates seamlessly with the rest of the language. So it’s easy to
integrate a combinator parser in a larger Scala program.

3Aho, et. al., Compilers: Principles, Techniques, and Tools. [?]

640

SECTION 31.11 · Conclusion

One downside of combinator parsers is that they are not very efficient, at
least not when compared with parsers generated from special purpose tools
such as Yacc or Bison. There are two reasons for this. First, the backtracking
method used by combinator parsing is itself not very efficient. Depending on
the grammar and the parse input, it might yield an exponential slow-down
due to repeated backtracking. This can be fixed by making the grammar
LL(1) and by using the committed sequential composition operator, ~!.

The second problem affecting the performance of combinator parsers
is that they mix parser construction and input analysis in the same set of
operations. In effect, a parser is generated anew for each input that’s parsed.

This problem can be overcome, but it requires a different implementation
of the parser combinator framework. In an optimizing framework, a parser
would no longer be represented as a function from inputs to parse results.
Instead, it would be represented as a tree, where every construction step was
represented as a case class. For instance, sequential composition could be
represented by a case class Seq, alternative by Alt, and so on. The “outer-
most” parser method, phrase, could then take this symbolic representation
of a parser and convert it to highly efficient parsing tables, using standard
parser generator algorithms.

What’s nice about all this is that from a user perspective nothing changes
compared to plain combinator parsers. Users still write parsers in terms of
ident, floatingPointNumber, ~, |, and so on. They need not be aware
that these methods generate a symbolic representation of a parser instead of a
parser function. Since the phrase combinator converts these representations
into real parsers, everything works as before.

The advantage of this scheme with respect to performance is two-fold.
First, you can now factor out parser construction from input analysis. If you
were to write:

val jsonParser = phrase(value)

and then apply jsonParser to several different inputs, the jsonParser
would be constructed only once, not every time an input is read.

Second, the parser generation can use efficient parsing algorithms such
as LALR(1).4 These algorithms usually lead to much faster parsers than
parsers that operate with backtracking.

4Aho, et. al., Compilers: Principles, Techniques, and Tools. [?]

641

CHAPTER 31 · Combinator Parsing

At present, such an optimizing parser generator has not yet been written
for Scala. But it would be perfectly possible to do so. If someone contributes
such a generator, it will be easy to integrate into the standard Scala library.
Even postulating that such a generator will exist at some point in the fu-
ture, however, there are reasons for keeping the current parser combinator
framework around. It is much easier to understand and to adapt than a parser
generator, and the difference in speed would often not matter in practice,
unless you want to parse very large inputs.

642

