
Featherweight Scala

Week 14

1

Today

Previously: Featherweight Java

Today: Featherweight Scala

• Live research, unlike what you have seen so far.

• Focus today on path-dependent types

• Plan:

1. Rationale

2. Examples

3. Formal syntax and type checking

2

Based on...

This presentation is based on the slides of the talk:

Martin Odersky, François Garillot, Vincent Cremet, and
Serguëı Lenglet. “A Core Calculus for Scala Type
Checking.” Mathematical Foundations of Computer
Science (MFCS), 2006.

3

Component Software – State of the Art

In principle, software should be constructed from re-usable parts
(“components”).

In practice, software is still most often written “from scratch”,
more like a craft than an industry.

Programming languages share part of the blame.

Most existing languages offer only limited support for components.

This holds in particular for statically typed languages such as Java
and C#.

4

How To Do Better?

Hypothesis 1: Languages for components need to be scalable;
the same concepts should describe small as well as large parts.

Hypothesis 2: Scalability can be achieved by unifying and
generalizing functional and object-oriented programming
concepts.

5

Why Unify FP and OOP?

Both have complementary strengths for composition:

Functional programming: Makes it easy to build interesting things
from simple parts, using

• higher-order functions,

• algebraic types and pattern matching,

• parametric polymorphism.

Object-oriented programming: Makes it easy to adapt and extend
complex systems, using

• subtyping and inheritance,

• dynamic configurations,

• classes as partial abstractions.

6

An Experiment

To validate our hypotheses we have designed and implemented a
concrete programming language, Scala.

An open-source distribution of Scala has been available since Jan
2004.

Currently: ≈ 4000 downloads per month.

Version 2 of the language has been released Jan 2006.

A language by itself proves little; its applicability can only be
validated by practical, serious use.

7

Scala

Scala is an object-oriented and functional language which is
completely interoperable with Java and .NET.

It removes some of the more arcane constructs of these
environments and adds instead:

(1) a uniform object model,

(2) pattern matching and higher-order functions,

(3) novel ways to abstract and compose programs.

8

Example: Peano Numbers

To give a feel for the language, here’s a Scala implementation of
natural numbers that does not resort to a primitive number type.

trait Nat {

def isZero: Boolean;

def pred: Nat;

def succ: Nat = new Succ(this);

def + (x: Nat): Nat = if (x.isZero) this else succ + x.pred;

def - (x: Nat): Nat = if (x.isZero) this else pred - x.pred;

}

9

Example: Peano Numbers...

trait Nat {

def isZero: Boolean;

def pred: Nat;

def succ: Nat = new Succ(this);

def + (x: Nat): Nat = if (x.isZero) this else succ + x.pred;

def - (x: Nat): Nat = if (x.isZero) this else pred - x.pred;

}

class Succ(n: Nat) extends Nat {

def isZero: Boolean = false;

def pred: Nat = n

}

10

Example: Peano Numbers...

trait Nat {

def isZero: Boolean;

def pred: Nat;

def succ: Nat = new Succ(this);

def + (x: Nat): Nat = if (x.isZero) this else succ + x.pred;

def - (x: Nat): Nat = if (x.isZero) this else pred - x.pred;

}

object Zero extends Nat {

def isZero: Boolean = true;

def pred: Nat =

throw new Error("Zero.pred");

}

11

Interoperability

Scala is completely interoperable with Java (and with some
qualifications also to C#).

A Scala component can:

• access all methods and fields of a Java component,

• create instances of Java classes,

• inherit from Java classes and implement Java interfaces,

• be itself instantiated and called from a Java component.

None of this requires glue code or special tools.

This makes it very easy to mix Scala and Java components in one
application.

12

Components

A component is a program part, to be combined with other parts in
larger applications.

Requirement: Components should be reusable.

To be reusable in new contexts, a component needs interfaces
describing its provided as well as its required services.

Most current components are not very reusable.

Most current languages can specify only provided services, not
required services.

Note: Component 6= API !

13

No Statics!

A component should refer to other components not by hard links,
but only through its required interfaces.

Another way of expressing this is:

All references of a component to others should be via its
members or parameters.

In particular, there should be no global static data or methods that
are directly accessed by other components.

This principle is not new.

But it is surprisingly difficult to achieve, in particular when we
extend it to classes.

14

Functors

One established language abstraction for components are SML
functors.

Here,

Component =̂ Functor or Structure

Interface =̂ Signature

Required Component =̂ Functor Parameter

Composition =̂ Functor Application

Sub-components are identified via sharing constraints.

15

Functors...

Functors have shortcomings, however:

• No recursive references between components

• No inheritance with overriding

• Structures are not first class.

16

Modules are Objects
In Scala:

Component =̂ Class

Interface =̂ Abstract Class, or Trait

Required Component =̂ Abstract Member or “Self”

Composition =̂ Modular Mixin Composition

Advantages:

• Components instantiate to objects, which are first-class values.

• Recursive references between components are supported.

• Inheritance with overriding is supported.

• Sub-components are identified by name
⇒ no explicit “wiring” is needed.

17

Language Constructs for Components

Scala has three concepts which are particularly interesting in
component systems.

• Abstract type members allow to abstract over types that are
members of objects.

• Self-type annotations allow to abstract over the type of “self”.

• Modular mixin composition provides a flexible way to compose
components and component types.

Theoretical foundations: νObj calculus [Odersky et al., ECOOP03],
Featherweight Scala [Odersky et al., MFCS06].

Scala’s concepts subsume SML modules.

More precisely, (generative) SML modules can be encoded in νObj,
but not vice versa.

18

Component Abstraction

There are two principal forms of abstraction in programming
languages:

parameterization (functional)

abstract members (object-oriented)

Scala supports both styles of abstraction for types as well as values.

Both types and values can be parameters, and both can be abstract
members.

(In fact, Scala works with the functional/OO duality in that
parameterization can be expressed by abstract members).

19

Abstract Types
Here is a type of “cells” using object-oriented abstraction.

trait AbsCell {

type T

val init: T

private var value: T = init

def get: T = value

def set(x: T): Unit = { value = x } }

The AbsCell class has an abstract type member T and an abstract
value member init. Instances of that class can be created by
implementing these abstract members with concrete definitions.

val cell = new AbsCell { type T = Int; val init = 1 }

cell.set(cell.get * 2)

The type of cell is AbsCell { type T = Int }.

20

Path-dependent Types

You can also use AbsCell without knowing the specific cell type:

def reset(c: AbsCell): Unit = c.set(c.init);

Why does this work?

• c.init has type c.T

• The method c.set has type c.T => Unit.

• So the formal parameter type and the argument type coincide.

c.T is an instance of a path-dependent type.


In general, such a type has the form x0.xn.t, where

• x0 is an immutable value

• x1, . . . , xn are immutable fields, and

• t is a type member of xn.


21

22

Safety Requirement

Path-dependent types rely on the immutability of the prefix path.

Here is an example where immutability is violated.

var flip = false

def f(): AbsCell = {

flip = !flip

if (flip) new AbsCell { type T = Int; val init = 1 }

else new AbsCell { type T = String; val init = "" } }

f().set(f().get) // illegal!

Scala’s type system does not admit the last statement, because the
computed type of f().get would be f().T.

This type is not well-formed, since the method call f() is not a
path.

23

Example: Symbol Tables

As an example, let’s look at extensible components of real
compilers.

• Compilers need to model symbols and types.

• Each aspect depends on the other.

• Both aspects require substantial pieces of code.

The first attempt of writing a Scala compiler in Scala defined two
global objects, one for each aspect:

24

First Attempt: Global Data

object Symbols { object Types {

class Symbol { class Type {

def tpe: Types.Type def sym: Symbols.Symbol

... ...

} }

// static data for // static data

// symbols} // for types

} }

Problems:

1. Symbols and Types contain hard references to each other.
Hence, impossible to adapt one while keeping the other.

2. Symbols and Types contain static data—not reentrant.

25

Second Attempt: Nesting

Static data can be avoided by nesting the Symbols and Types

objects in a common enclosing class:

class SymbolTable {

object Symbols {

class Symbol { def tpe: Types.Type; ... }

}

object Types {

class Type {def sym: Symbols.Symbol; ... }

}

}

This solves the re-entrancy problem.

But we gave up separate compilation, and did not solve the reuse
problem. There are still hard references to types.

26

Third Attempt: A Component-Based Solution

Question: How can one express the required services of a
component?

Answer: By abstracting over them!

Two forms of abstraction: parameterization and abstract members.

Only abstract members can express recursive dependencies, so we
will use them.

trait Symbols { trait Types {

type Type type Symbol

class Symbol { def tpe: Type } class Type { def sym: Symbol }

} }

Symbols and Types are now classes that each abstract over the
identity of the “other type”. How can they be combined?

27

Modular Mixin Composition

Here’s how:

class SymbolTable extends Symbols with Types

Instances of the SymbolTable class contain all members of Symbols
as well as all members of Types.

Concrete definitions in either base class override abstract
definitions in the other.

Modular mixin composition generalizes the single inheritance + inter-

faces concept of Java and C#.

It is similar to traits [Schaerli et al, ECOOP 2003], but is more flexible

since base classes may contain state.


28

Fourth Attempt: Mixins + Self-Types

The last solution modeled required types by abstract types.

This is limiting, because one cannot instantiate or inherit an
abstract type.

A more general approach also makes use of self-types:

class Symbols { this: Symbols with Types =>

class Symbol { def tpe: Type }

}

class Types { this: Types with Symbols =>

class Type { def sym: Symbol }

}

class SymbolTable extends Symbols with Types

Self-types declare all of a components requirements.

29

Self-Types

• In a class declaration

class C { this: T => ... }

T is called a self-type of class C.

• If a self-type is given, it is taken as the type of this inside the
class.

• Without an explicit type annotation, the self-type is taken to
be the type of the class itself.

• Instead of this, you can also use another name for “self”.

30

Self-Types and Safety

• The self-type of a class must be a subtype of the self-types of
all its base classes.

• When instantiating a class in a new expression, it is checked
that the self-type of the class is a supertype of the type of the
object being created.

31

Benefits

1. The presented scheme is very general – any combination of
static modules can be lifted to a assembly of components.

2. Components have documented interfaces for required as well as
provided services.

3. Components can be multiply instantiated

⇒ Re-entrancy is no problem.

4. Components can be flexibly extended and adapted.

32

Foundations

A language like Scala is complicated.

How can we convince ourselves that types are sound... and can be
computed?!

Featherweight Scala is a small calculus capturing:

• abstract type members

• path types

• mixins

• plus the usual OO dynamic dispatch

33

FS: Syntax

Alphabets x, y, z, ϕ Variable
a Value label
A Type label

Member decl M, N ::= val a : T = t Field decl / def
def a

`
y : S

´
: T = t Method decl / def

type A = T Type decl / def
trait A extends T

˘
ϕ |M

¯
Class def

Term s, t, u ::= x Variable
t.a Field selection
s.a

`
t
´

Method call
val x = new T ; t Object creation

Path p ::= x | p.a

Type S, T, U ::= p.A Type selection
p.type Singleton type
T

˘
ϕ |M

¯
Type signature

34

Example: Peano Numbers revisited

trait Nat extends { this0 =>
def isZero(): Boolean
def pred(): Nat
trait Succ extends Nat { this1 =>
def isZero(): Boolean = false
def pred(): Nat = this0

}
def succ(): Nat = (val result = new this0.Succ; result)
def +(other: Nat): Nat =
if (this0.isZero()) other else this0.pred().+(other.succ())

def -(other: Nat): Nat =
if (other.isZero()) this0 else this0.pred().-(other.pred())

}
val zero = new Nat { this0 =>
def isZero(): Boolean = true
def pred(): Nat = error("zero.pred")

}

35

Example: Generic Lists
trait List extends Any { this0 =>

type Elem

type ListOfElem = List { this1 => type Elem = this0.Elem }

def isEmpty(): Boolean

def head(): this0.Elem

def tail(): this0.ListOfElem

}

trait Nil extends List { this0 => trait Cons extends List { this0 =>

def isEmpty(): Boolean = true val hd: this0.Elem

def head(): this0.Elem = val tl: this0.ListOfElem

error("Nil.head") def isEmpty(): Boolean = false

def tail(): this0.ListOfElem = def head(): this0.Elem = hd

error("Nil.tail") def tail(): this0.ListOfElem = tl

} }

val list2 = new Cons { this0 =>

type Elem = Nat

val hd: Nat = zero.succ().succ()

val tl: this0.ListOfElem = new Nil { type Elem = Nat }

}

36

Type Assignment

x : T ∈ Γ

Γ ` x : T
(path-var)

Γ ` t : S Γ ` S 3 val a : T = u

Γ ` t.a : T

(select)

Γ ` p : T

Γ ` p : p.type
(singleton)

Γ ` s : S

Γ ` t : T ′ Γ ` T ′ <: T

Γ ` S 3 def a
`
x : T

´
: U = u

Γ ` s.a
`
t
´

: U

(method)

Γ, x : T ` t : S x 6∈ fn(S)

Γ ` T ≺ϕ Mc Γ ` T wf

Γ ` val x = new T ; t : S

(new)

37

Expansion and Membership

∀ i, Γ ` Ti ≺ϕ Ni

Γ ` T
{
ϕ |M

}
≺ϕ

(⊎
i Ni

)
]M

(≺-signature)

Γ ` p.type 3 type A = T

Γ ` T ≺ϕ M

Γ ` p.A ≺ϕ M

(≺-type)

Γ ` p.type 3 trait A extends S

Γ ` S ≺ϕ N

Γ ` p.A ≺ϕ N

(≺-class)

Γ ` p : T

Γ ` T ≺ϕ M

Γ ` p.type 3 [p/ϕ]Mi

(3-singleton)

Γ ` T ≺ϕ M

ϕ /∈ fn(Mi)

Γ ` T 3 Mi

(3-other)

38

Subtyping is reflexive, transitive, and obeys:

Γ ` p : T

Γ ` p.type <: T

(singleton-<:)

Γ ` p.type 3 type A = S

Γ ` p.A <: S

(type-<:)

Γ ` p.type 3 trait A extends S

Γ ` p.A <: S

(class-<:)

Γ ` T
{
ϕ |M

}
<: Ti

(sig-<:)

Γ ` p : q.type

Γ ` q.type <: p.type
(<:-singleton)

Γ ` p.type 3 type A = S

Γ ` S <: p.A

(<:-type)

∀i, Γ ` S <: Ti Γ ` S ≺ϕ M

Γ, ϕ : T
{
ϕ |N

}
` M � N

Γ ` S <: T
{
ϕ |N

}
(<:-sig)

39

Left out ...

This is not the whole formalism. In the paper there is also:

• Judgements for member subtyping � and well-formedness wf.

• An operational semantics.

• An algorithmic formulation of the calculus, with the following
differences:

– A notion of used definitions was added to the rules which
act as locks to prevent cycles in typing derivations.

– Some judgement forms have been split.

– Transitivity has been eliminated in the subtyping rules

• A proof of the decidability of typing and subtyping in
Algorthmic FS

40

Future Work

1. Soundness proof for operational semantics (hopefully finished
soon)

2. The lock-free version of the calculus is more expressive than the
algorithmic one. There are programs that type-check lock-free but
fail due to a cycle in the locking version.

• Can we refine locks so that the two versions become equivalent?

3. Extensions of the calculus, with

• Polymorphic methods

• Type bounds

• Abstract inheritance/higher-order polymorphism

4. A call-by-value version of the calculus

41

Relationship between Scala and Other Languages
Main influences on the Scala design:

• Java, C# for their syntax, basic types, and class libraries,

• Smalltalk for its uniform object model,

• Beta for systematic nesting,

• ML, Haskell for many of the functional aspects.

• OCaml, OHaskell, PLT-Scheme, as other combinations of FP
and OOP.

• Pizza, Multi-Java, Nice as other extensions of Java with
functional ideas.

(Too many influences in details to list them all)

In the other direction, Scala has its own influence. C# 3.0 has
comprehensions, closures.... and “=>” :-)

42

Related Language Research

Mixin composition: Bracha (linear), Duggan, Hirschkowitz
(mixin-modules), Schaerli et al. (traits), Flatt et al. (units, Jiazzi),
Zenger (Keris).

Abstract type members: Even more powerful are virtual classes
(Cook, Ernst, Ostermann)

Explicit self-types: Vuillon and Rémy (OCaml)

43

Conclusion

• Despite 10+ years of research, there are still interesting things
to be discovered at the intersection of functional and
object-oriented programming.

• Be ready to modify the techniques you have seen in this class.

• Theory and practice feed each other....

44

