Foundations of Software Winter Semester 2007

Week 3

Recall: Simple Arithmetic Expressions

The set \mathcal{T} of terms is defined by the following abstract grammar:
t $::=$
true
false
if t then t else t
0
succ t
pred t
iszero t
terms constant true constant false conditional constant zero successor predecessor zero test

Review (and more details)

Recall: Inference Rule Notation
More explicitly: The set \mathcal{T} is the smallest set closed under the following rules.

$$
\begin{gathered}
\text { true } \in \mathcal{T} \quad \text { false } \in \mathcal{T}^{\mathrm{t}_{1} \in \mathcal{T}} \begin{array}{c}
\frac{\mathrm{t}_{1} \in \mathcal{T}}{\text { succ } \mathrm{t}_{1} \in \mathcal{T}} \quad \begin{array}{c}
0 \in \mathcal{T} \\
\text { pred } \mathrm{t}_{1} \in \mathcal{T}
\end{array} \frac{\mathrm{t}_{1} \in \mathcal{T}}{\text { iszero } \mathrm{t}_{1} \in \mathcal{T}} \\
\frac{\mathrm{t}_{1} \in \mathcal{T} \quad \mathrm{t}_{2} \in \mathcal{T}}{\text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3} \in \mathcal{T}}
\end{array}
\end{gathered}
$$

Generating Functions

Each of these rules can be thought of as a generating function that, given some elements from \mathcal{T}, generates some other element of \mathcal{T}. Saying that \mathcal{T} is closed under these rules means that \mathcal{T} cannot be made any bigger using these generating functions - it already contains everything "justified by its members."

$$
\begin{array}{ccc}
\text { true } \in \mathcal{T} & \text { false } \in \mathcal{T} & 0 \in \mathcal{T} \\
\frac{\mathrm{t}_{1} \in \mathcal{T}}{\text { succ } \mathrm{t}_{1} \in \mathcal{T}} \quad \frac{\mathrm{t}_{1} \in \mathcal{T}}{\text { pred } \mathrm{t}_{1} \in \mathcal{T}} \quad \frac{\mathrm{t}_{1} \in \mathcal{T}}{\text { iszero } \mathrm{t}_{1} \in \mathcal{T}} \\
\frac{\mathrm{t}_{1} \in \mathcal{T}}{\text { if } \mathrm{t}_{1}} \quad \begin{array}{l}
\mathrm{t}_{2} \in \mathcal{T} \\
\text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3} \in \mathcal{T}
\end{array}
\end{array}
$$

If we now define a generating function for the whole set of inference rules (by combining the generating functions for the individual rules),
$F(U)=F_{1}(U) \cup F_{2}(U) \cup F_{3}(U) \cup F_{4}(U) \cup F_{5}(U) \cup F_{6}(U) \cup F_{7}(U)$
then we can restate the previous definition of the set of terms \mathcal{T} like this:

Definition:

- A set U is said to be "closed under F " (or "F-closed") if $F(U) \subseteq U$.
- The set of terms \mathcal{T} is the smallest F-closed set. (I.e., if \mathcal{O} is another set such that $F(\mathcal{O}) \subseteq \mathcal{O}$, then $\mathcal{T} \subseteq \mathcal{O}$.)

Let's write these generating functions explicitly.

```
F
F
F
F4(U)}={\operatorname{succ}\mp@subsup{\textrm{t}}{1}{}|\mp@subsup{\textrm{t}}{1}{}\inU
F5}(U)={\mathrm{ pred tot | t t }\inU
F}(U)={\mathrm{ iszero tot | t t 
F
```

Each one takes a set of terms U as input and produces a set of "terms justified by U " as output.

Our alternate definition of the set of terms can also be stated using the generating function F :

$$
\begin{array}{ll}
\mathcal{S}_{0} & =\emptyset \\
\mathcal{S}_{i+1} & =F\left(\mathcal{S}_{i}\right) \\
\mathcal{S} & =\bigcup_{i} \mathcal{S}_{i}
\end{array}
$$

Compare this definition of \mathcal{S} with the one we saw last time:

$$
\begin{aligned}
& \mathcal{S}_{0}=\emptyset \\
& \mathcal{S}_{i+1}=\quad\{\text { true, false, } 0\} \\
& \cup\left\{\text { succ } \mathrm{t}_{1} \text {, pred } \mathrm{t}_{1} \text {, iszero } \mathrm{t}_{1} \mid \mathrm{t}_{1} \in \mathcal{S}_{i}\right\} \\
& \cup\left\{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \mid t_{1}, t_{2}, t_{3} \in \mathcal{S}_{i}\right\} \\
& \mathcal{S}=\bigcup_{i} \mathcal{S}_{i} \\
& \text { We have "pulled out" } F \text { and given it a name. }
\end{aligned}
$$

Note that our two definitions of terms characterize the same set from different directions:

- "from above," as the intersection of all F-closed sets;
- "from below," as the limit (union) of a series of sets that start from \emptyset and get "closer and closer to being F-closed."

Proposition 3.2.6 in the book shows that these two definitions actually define the same set.

Structural Induction

The principle of structural induction on terms can also be re-stated using generating functions:

Suppose T is the smallest F-closed set.
If, for each set U,
from the assumption " $P(u)$ holds for every $u \in U$ " we can show " $P(v)$ holds for any $v \in F(U)$,"
then $P(t)$ holds for all $t \in T$.

Warning: Hard hats on for the next slide!

Structural Induction

The principle of structural induction on terms can also be re-stated using generating functions:

Suppose T is the smallest F-closed set.
If, for each set U,
from the assumption " $P(u)$ holds for every $u \in U$ " we can show " $P(v)$ holds for any $v \in F(U)$,"
then $P(t)$ holds for all $t \in T$.
Why?

Structural Induction

Why? Because:

- We assumed that T was the smallest F-closed set, i.e., that $T \subseteq O$ for any other F-closed set O.
- But showing
for each set U,
given $P(u)$ for all $u \in U$
we can show $P(v)$ for all $v \in F(U)$
amounts to showing that "the set of all terms satisfying P " (call it O) is itself an F-closed set.
- Since $T \subseteq O$, every element of T satisfies P.

Recall, from the definition of \mathcal{S}, it is clear that, if a term t is in \mathcal{S}_{i}, then all of its immediate subterms must be in \mathcal{S}_{i-1}, i.e., they must have strictly smaller depths. Therefore:

If, for each term s,
given $P(r)$ for all immediate subterms r of s we can show $P(s)$,
then $P(t)$ holds for all t.

Slightly more explicit proof:

- Assume that for each term s, given $P(r)$ for all immediate subterms of s , we can show $P(\mathrm{~s})$.
- Then show, by induction on i, that $P(\mathrm{t})$ holds for all terms t with depth i.
- Therefore, $P(\mathrm{t})$ holds for all t .

Structural Induction

Compare this with the structural induction principle for terms from last lecture:

If, for each term s,

given $P(r)$ for all immediate subterms r of s
we can show $P(s)$,
then $P(t)$ holds for all t.

Operational Semantics and Reasoning

Recall: Abstract Machines

An abstract machine consists of:

- a set of states
- a transition relation on states, written \longrightarrow

For the simple languages we are considering at the moment, the term being evaluated is the whole state of the abstract machine.

Recall: Operational Semantics for Booleans

The evaluation relation $t \longrightarrow t^{\prime}$ is the smallest relation closed under the following rules:

$$
\begin{aligned}
& \text { if true then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \text { (E-IFTRUE) } \\
& \text { if false then } t_{2} \text { else } t_{3} \longrightarrow t_{3} \text { (E-IFFALSE) }
\end{aligned}
$$

$\frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \longrightarrow \text { if } t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}}($ E-IF $)$
if true then t_{2} else $t_{3} \longrightarrow t_{2}$ (E-IFTRUE)
if false then t_{2} else $t_{3} \longrightarrow t_{3}$ (E-IFFALSE)
t_{1} then t_{2} else $t_{3} \longrightarrow$ if t_{1}^{\prime} then t_{2} else $t_{3}(E-1 F)$

Recall: Syntax for Booleans

Terms and values		
$\mathrm{t}::=$	terms	
	true	constant true
	false	constant false conditional
	if t then t else t	
$\mathrm{v}::=$		values
	true	true value
	false	false value

Derivations

We can record the "justification" for a particular pair of terms that are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

- These trees are called derivation trees (or just derivations).
- The final statement in a derivation is its conclusion.
- We say that the derivation is a witness for its conclusion (or a proof of its conclusion) - it records all the reasoning steps that justify the conclusion.

Observation

Lemma: Suppose we are given a derivation tree \mathcal{D} witnessing the pair (t, t^{\prime}) in the evaluation relation. Then either

1. the final rule used in \mathcal{D} is E-IfTruE and we have $t=$ if true then t_{2} else t_{3} and $t^{\prime}=t_{2}$, for some t_{2} and t_{3}, or
2. the final rule used in \mathcal{D} is E-IfFALSE and we have $t=$ if false then t_{2} else t_{3} and $t^{\prime}=t_{3}$, for some t_{2} and t_{3}, or
3. the final rule used in \mathcal{D} is E-IF and we have
$\mathrm{t}=\mathrm{if} \mathrm{t}_{1}$ then t_{2} else t_{3} and
$t^{\prime}=$ if t_{1}^{\prime} then t_{2} else t_{3}, for some $t_{1}, t_{1}^{\prime}, t_{2}$, and t_{3}; moreover, the immediate subderivation of \mathcal{D} witnesses $\left(\mathrm{t}_{1}, \mathrm{t}_{1}^{\prime}\right) \in \longrightarrow$.

Induction on Derivations - Example

Theorem: If $t \longrightarrow t^{\prime}$, i.e., if $\left(t, t^{\prime}\right) \in \longrightarrow$, then $\operatorname{size}(t)>\operatorname{size}\left(t^{\prime}\right)$.
Proof: By induction on a derivation \mathcal{D} of $t \longrightarrow t^{\prime}$.

1. Suppose the final rule used in \mathcal{D} is E-IfTrue, with $t=$ if true then t_{2} else t_{3} and $t^{\prime}=t_{2}$. Then the result is immediate from the definition of size.
2. Suppose the final rule used in \mathcal{D} is E-IfFALSE, with $t=$ if false then t_{2} else t_{3} and $t^{\prime}=t_{3}$. Then the result is again immediate from the definition of size.
3. Suppose the final rule used in \mathcal{D} is $\mathrm{E}-\mathrm{IF}$, with $t=$ if t_{1} then t_{2} else t_{3} and $t^{\prime}=$ if t_{1}^{\prime} then t_{2} else t_{3}, where $\left(t_{1}, t_{1}^{\prime}\right) \in \longrightarrow$ is witnessed by a derivation \mathcal{D}_{1}. By the induction hypothesis, $\operatorname{size}\left(\mathrm{t}_{1}\right)>\operatorname{size}\left(\mathrm{t}_{1}^{\prime}\right)$. But then, by the definition of size, we have $\operatorname{size}(\mathrm{t})>\operatorname{size}\left(\mathrm{t}^{\prime}\right)$.

Induction on Derivations

We can now write proofs about evaluation "by induction on derivation trees."

Given an arbitrary derivation \mathcal{D} with conclusion $t \longrightarrow t^{\prime}$, we assume the desired result for its immediate sub-derivation (if any) and proceed by a case analysis (using the previous lemma) of the final evaluation rule used in constructing the derivation tree.

Normal forms

A normal form is a term that cannot be evaluated any further i.e., a term t is a normal form (or "is in normal form") if there is no t^{\prime} such that $t \longrightarrow t^{\prime}$.

A normal form is a state where the abstract machine is halted i.e., it can be regarded as a "result" of evaluation.

Normal forms

A normal form is a term that cannot be evaluated any further i.e., a term t is a normal form (or "is in normal form") if there is no t^{\prime} such that $t \longrightarrow t^{\prime}$.

A normal form is a state where the abstract machine is halted i.e., it can be regarded as a "result" of evaluation.

Recall that we intended the set of values (the boolean constants true and false) to be exactly the possible "results of evaluation." Did we get this definition right?

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form.

Proof:

The \Longrightarrow direction is immediate from the definition of the evaluation relation.
For the \Longleftarrow direction,

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form.

Proof:

The \Longrightarrow direction is immediate from the definition of the evaluation relation.

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form.

Proof:

The \Longrightarrow direction is immediate from the definition of the evaluation relation.
For the \Longleftarrow direction, it is convenient to prove the contrapositive: If t is not a value, then it is not a normal form

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form.

Proof:

The \Longrightarrow direction is immediate from the definition of the evaluation relation.
For the \Longleftarrow direction, it is convenient to prove the contrapositive: If t is not a value, then it is not a normal form. The argument goes by induction on t.
Note, first, that t must have the form if t_{1} then t_{2} else t_{3} (otherwise it would be a value). If t_{1} is true or false, then rule E-IfTrue or E-IfFalSe applies to t, and we are done.
Otherwise, t_{1} is not a value and so, by the induction hypothesis, there is some t_{1}^{\prime} such that $t_{1} \longrightarrow t_{1}^{\prime}$. But then rule E-IF yields
if t_{1} then t_{2} else $t_{3} \longrightarrow$ if t_{1}^{\prime} then t_{2} else t_{3} i.e., t is not in normal form.

Numbers

New syntactic forms		
t : $:=$...	terms
	0	constant zero
	succ t	successor
	pred t	predecessor
	iszero t	zero test
v : $:=$	\ldots	values
	nv	numeric value
nv : $=$		numeric values
	0	zero value
	succ nv	successor value

```
t ::= ... terms
    onstant zero
    predecessor
    zero test
    values
    numeric values
    successor value
```


Values are normal forms

Our observation a few slides ago that all values are in normal form still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form still holds for the extended language.

Is the converse true? I.e., is every normal form a value?
No: some terms are stuck.
Formally, a stuck term is one that is a normal form but not a value. What are some examples?

Stuck terms model run-time errors.

Multi-step evaluation.

The multi-step evaluation relation, \longrightarrow^{*}, is the reflexive, transitive closure of single-step evaluation.
I.e., it is the smallest relation closed under the following rules:

$$
\begin{array}{r}
\begin{array}{c}
t \longrightarrow t^{\prime} \\
t \longrightarrow t^{\prime} \\
t \longrightarrow{ }^{*} t \\
t \longrightarrow t^{*} t^{\prime} \mathrm{t}^{\prime \prime}
\end{array} \\
\frac{t}{} \mathrm{t}^{\prime \prime}
\end{array}
$$

Termination of evaluation

Theorem: For every t there is some normal form t^{\prime} such that $t \longrightarrow{ }^{*} t^{\prime}$.
Proof:

Termination of evaluation

Theorem: For every t there is some normal form t^{\prime} such that $t \longrightarrow{ }^{*} t^{\prime}$

Proof:

- First, recall that single-step evaluation strictly reduces the size of the term:

$$
\text { if } t \longrightarrow t^{\prime}, \text { then } \operatorname{size}(t)>\operatorname{size}\left(t^{\prime}\right)
$$

- Now, assume (for a contradiction) that

$$
t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots
$$

is an infinite-length sequence such that

$$
t_{0} \longrightarrow t_{1} \longrightarrow t_{2} \longrightarrow t_{3} \longrightarrow t_{4} \longrightarrow \cdots .
$$

- Then

$$
\operatorname{size}\left(t_{0}\right)>\operatorname{size}\left(t_{1}\right)>\operatorname{size}\left(t_{2}\right)>\operatorname{size}\left(t_{3}\right)>\ldots
$$

- But such a sequence cannot exist - contradiction!

Termination Proofs

Most termination proofs have the same basic form:
Theorem: The relation $R \subseteq X \times X$ is terminating -
i.e., there are no infinite sequences x_{0}, x_{1}, x_{2}, etc. such
that $\left(x_{i}, x_{i+1}\right) \in R$ for each i.

Proof:

1. Choose

- a well-founded set $(W,<)$-i.e., a set W with a partial order < such that there are no infinite descending chains $w_{0}>w_{1}>w_{2}>\ldots$ in W
a function f from X to W

2. Show $f(x)>f(y)$ for all $(x, y) \in R$
3. Conclude that there are no infinite sequences x_{0}, x_{1}, x_{2}, etc. such that $\left(x_{i}, x_{i+1}\right) \in R$ for each i, since, if there were, we could construct an infinite descending chain in W.

The lambda-calculus

- If our previous language of arithmetic expressions was the simplest nontrivial programming language, then the lambda-calculus is the simplest interesting programming language...
- Turing complete
- higher order (functions as data)
- Indeed, in the lambda-calculus, all computation happens by means of function abstraction and application.
- The e. coli of programming language research
- The foundation of many real-world programming language designs (including ML, Haskell, Scheme, Lisp, ...)

The Lambda Calculus

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ (succ x))."

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ $(\operatorname{succ}(\operatorname{succ} x))$."
Q: What is plus3 itself?

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ $(\operatorname{succ}(\operatorname{succ} x)) . "$
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

$$
\text { plus3 }=\lambda x \cdot \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

This function exists independent of the name plus3.

$$
\lambda \mathrm{x} . \mathrm{t} \text { is written "fun } \mathrm{x} \rightarrow \mathrm{t} \text { " in OCaml and " } \mathrm{x} \Rightarrow \mathrm{t} \text { " in Scala. }
$$

So plus3 (succ 0) is just a convenient shorthand for "the function that, given x, yields succ (succ $(\operatorname{succ} x)$), applied to succ 0."

plus3 (succ 0)
=
$(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))(\operatorname{succ} 0)$

Abstractions over Functions

Consider the λ-abstraction

```
g = \lambdaf. f (f (succ 0))
```

Note that the parameter variable f is used in the function position in the body of g. Terms like g are called higher-order functions. If we apply g to an argument like plus3, the "substitution rule" yields a nontrivial computation:

g plus3

$=(\lambda f . f(f(\operatorname{succ} 0)))(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$
i.e. $(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$

$$
((\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))(\operatorname{succ} 0))
$$

i.e. $(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$
(succ (succ (succ (succ 0))))
i.e. $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ} 0)))))$

Example

```
    double plus3 0
= (\lambdaf. \lambday.f (f y))
            (\lambdax. succ (succ (succ x)))
            0
i.e. ( }\lambda\textrm{y}.(\lambda\textrm{x}.\operatorname{succ}(\operatorname{succ}(\operatorname{succ}\textrm{x}))
            ((\lambdax. succ (succ (succ x))) y))
            0
i.e. (\lambdax. succ (succ (succ x)))
            ((\lambdax. succ (succ (succ x))) 0)
i.e. (\lambdax. succ (succ (succ x)))
            (succ (succ (succ 0)))
i.e. succ (succ (succ (succ (succ (succ 0)))))
```


Abstractions Returning Functions

Consider the following variant of g :

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

I.e., double is the function that, when applied to a function f, yields a function that, when applied to an argument y , yields f (f y).

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and application, we can throw away all the other language primitives and still have left a rich and powerful programming language.
In this language - the "pure lambda-calculus" - everything is a function.

- Variables always denote functions
- Functions always take other functions as parameters
- The result of a function is always a function

Formalities

Syntactic conventions

Since λ-calculus provides only one-argument functions, all multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to read and write:

- Application associates to the left

$$
\text { E.g., } t \text { u veans }(t u) v \text {, not } t \text { (} u \text { v) }
$$

- Bodies of λ - abstractions extend as far to the right as possible

$$
\begin{aligned}
& \text { E.g., } \lambda x . \lambda y . x \text { y means } \lambda x .(\lambda y . x y) \text {, not } \\
& \lambda x .(\lambda y . x) y
\end{aligned}
$$

Syntax

t : $:=$
x
$\lambda \mathrm{x} . \mathrm{t}$
t t

Terminology:

- terms in the pure λ-calculus are often called λ-terms
- terms of the form $\lambda \mathrm{x}$. t are called λ-abstractions or just abstractions

Scope

The λ-abstraction term $\lambda \mathrm{x}$.t binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.
Test:

$$
\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \mathrm{y} \mathbf{z}
$$

Scope

The λ-abstraction term $\lambda \mathrm{x}$. t binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.
Test:

$$
\begin{gathered}
\lambda x \cdot \lambda y \cdot x y y \\
\lambda x \cdot(\lambda y \cdot z y) y
\end{gathered}
$$

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

(E-AppABS)
Notation: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{2}."

Values

v ::=
$\lambda \mathrm{x} . \mathrm{t}$
values abstraction value

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
$$

Notation: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{2}."

Congruence rules:

$$
\begin{aligned}
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1}^{\prime} t_{2}} \\
& \frac{t_{2} \longrightarrow t_{2}^{\prime}}{v_{1} t_{2} \longrightarrow v_{1} t_{2}^{\prime}}
\end{aligned}
$$

Terminology

A term of the form ($\lambda \mathrm{x} . \mathrm{t}$) v - that is, a λ-abstraction applied to a value - is called a redex (short for "reducible expression").

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure, call-by-value lambda-calculus.

The evaluation strategy we have chosen - call by value - reflects standard conventions found in most mainstream languages.
Some other common ones:

- Call by name (cf. Haskell)
- Normal order (leftmost/outermost)
- Full (non-deterministic) beta-reduction

Classical Lambda Calculus

Full beta reduction

The classical lambda calculus allows full beta reduction.

- The argument of a β-reduction to be an arbitrary term, not just a value.
- Reduction may appear anywhere in a term.

Full beta reduction

The classical lambda calculus allows full beta reduction.

- The argument of a β-reduction to be an arbitrary term, not just a value.
- Reduction may appear anywhere in a term.

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{t}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
$$

Substitution revisited

Remember: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{2}."

This is trickier than it looks! For example:

$$
\begin{array}{ll}
& (\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x})) \mathrm{y} \\
\longrightarrow \quad & {[\mathrm{x} \mapsto \mathrm{y}] \lambda \mathrm{y} \cdot \mathrm{x}} \\
= & ? ? ?
\end{array}
$$

Full beta reduction

The classical lambda calculus allows full beta reduction.

- The argument of a β-reduction to be an arbitrary term, not just a value.
- Reduction may appear anywhere in a term.

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \quad \mathrm{t}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
$$

Congruence rules:

$$
\begin{gather*}
\frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1}^{\prime} t_{2}} \\
\frac{t_{2} \longrightarrow t_{2}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1} t_{2}^{\prime}} \\
\frac{t \longrightarrow t^{\prime}}{\lambda \mathrm{x} \cdot \mathrm{t} \longrightarrow \lambda \cdot \mathrm{t}^{\prime}} \tag{E-ABS}
\end{gather*}
$$

Substitution revisited

Remember: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{2}."

This is trickier than it looks! For example:

$$
\begin{aligned}
& (\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x})) \mathrm{y} \\
\longrightarrow & {[\mathrm{x} \mapsto \mathrm{y}] \lambda \mathrm{y} \cdot \mathrm{x} } \\
= & ? ? ?
\end{aligned}
$$

Solution:
need to rename bound variables before performing the substitution.

$$
\begin{aligned}
& (\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x})) \mathrm{y} \\
= & (\lambda \mathrm{x} \cdot(\lambda \mathrm{z} \cdot \mathrm{x})) \mathrm{y} \\
\longrightarrow & {[\mathrm{x} \mapsto \mathrm{y}] \lambda \mathrm{z} \cdot \mathrm{x} } \\
= & \lambda \mathrm{z} \cdot \mathrm{y}
\end{aligned}
$$

Alpha conversion

Renaming bound variables is formalized as α-conversion.
Conversion rule:

$$
\frac{\mathrm{y} \notin \mathrm{fv}(\mathrm{t})}{\lambda \mathrm{x} . \mathrm{t}={ }_{\alpha} \lambda \mathrm{y} \cdot[\mathrm{x} \mapsto \mathrm{y}] \mathrm{t}}
$$

Equivalence rules:

$$
\begin{aligned}
& \frac{t_{1}={ }_{\alpha} \mathrm{t}_{2}}{\mathrm{t}_{2}={ }_{\alpha} \mathrm{t}_{1}} \\
& \frac{\mathrm{t}_{1}={ }_{\alpha} \mathrm{t}_{2} \quad \mathrm{t}_{2}={ }_{\alpha} \mathrm{t}_{3}}{\mathrm{t}_{1}={ }_{\alpha} \mathrm{t}_{3}}(\alpha \text {-SYMM }) \\
& \hline
\end{aligned}(\alpha \text {-TRANS })
$$

Congruence rules: the usual ones.

Confluence

Full β-reduction makes it possible to have different reduction paths.

Q: Can a term evaluate to more than one normal form?
The answer is no; this is a consequence of the following
Theorem [Church-Rosser]
Let t, t_{1}, t_{2} be terms such that $t \longrightarrow{ }^{*} t_{1}$ and $t \longrightarrow{ }^{*} t_{2}$. Then there exists a term t_{3} such that $\mathrm{t}_{1} \longrightarrow{ }^{*} \mathrm{t}_{3}$ and $\mathrm{t}_{2} \longrightarrow{ }^{*} \mathrm{t}_{3}$.

Confluence

Full β-reduction makes it possible to have different reduction paths.

Q: Can a term evaluate to more than one normal form?

Programming in the Lambda-Calculus

Multiple arguments

Consider the function double, which returns a function as an argument.

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

This idiom - a λ-abstraction that does nothing but immediately yield another abstraction - is very common in the λ-calculus.
In general, $\lambda \mathrm{x} . \lambda \mathrm{y}$. t is a function that, given a value v for x , yields a function that, given a value u for y, yields t with v in place of x and u in place of y.
That is, $\lambda \mathrm{x}$. $\lambda \mathrm{y}$. t is a two-argument function.
(Recall the discussion of currying in OCaml.)

The "Church Booleans"

```
tru = \lambdat. \lambdaf. t
fls = \lambdat. \lambdaf.f
    =(\lambdat.\lambdaf.t) v w by definition
    \longrightarrow(\lambdaf. v) w
                                    reducing the underlined redex
    v
    reducing the underlined redex
    = (\lambdat.\lambdaf.f) v w by definition
    (\lambdaf. f) w
    reducing the underlined redex
    W
        reducing the underlined redex
```


Functions on Booleans

$$
\text { and }=\lambda \mathrm{b} \cdot \lambda \mathrm{c} \cdot \mathrm{~b} \mathrm{c} \mathrm{fl} \mathrm{~s}
$$

That is, and is a function that, given two boolean values v and w , returns w if v is tru and $f 1 s$ if v is $f 1 s$
Thus and v w yields tru if both v and w are tru and $f 1 s$ if either v or w is fl s .

Pairs

```
pair = \lambdaf.\lambdas.\lambdab. b f s
fst = \lambdap. p tru
snd = \lambdap. p fls
```

That is, pair $v \mathrm{w}$ is a function that, when applied to a boolean value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru and w if b is $f l s$, so the first and second projection functions fst and snd can be implemented simply by supplying the appropriate boolean.

Church numerals

Idea: represent the number n by a function that "repeats some action n times."

```
\(\mathbf{c}_{0}=\lambda \mathbf{s} \cdot \lambda \mathbf{z} \cdot \mathbf{z}\)
\(\mathbf{c}_{1}=\lambda \mathbf{s} . \lambda \mathbf{z} . \mathbf{s} \mathbf{z}\)
\(\mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s} \mathbf{z})\)
\(\mathrm{c}_{3}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s}(\mathrm{s} z)\)
```

That is, each number n is represented by a term c_{n} that takes two arguments, s and z (for "successor" and "zero"), and applies s, n times, to z.

Example

Functions on Church Numerals

Successor:

Functions on Church Numerals

Successor:

```
scc = \n. \lambdas. \lambdaz. s (n s z)
```


Functions on Church Numerals

Successor:

$\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathbf{z})$
Addition:
plus $=\lambda m . \lambda n \cdot \lambda s . \lambda z . m s(n s z)$

Functions on Church Numerals
Successor:
$\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$
Addition:

Functions on Church Numerals
Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathbf{z})$
Addition:
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:

Functions on Church Numerals

Successor:

$$
\operatorname{scc}=\lambda n . \lambda s . \lambda z . s(n s z)
$$

Addition:

```
plus = \lambdam. \lambdan. \lambdas. \lambdaz. m s (n s z)
```

Multiplication:

```
times = \lambdam. \lambdan. m(plus n) co
```


Functions on Church Numerals

Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$
Addition:

```
plus = \lambdam. \lambdan. \lambdas. \lambdaz. m s (n s z)
```

Multiplication:

```
times = \lambdam. \lambdan. m(plus n) co
```

Zero test:

Functions on Church Numerals

Successor:

$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \quad \mathrm{z})$
Addition:
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:
times $=\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{m}($ plus n$) \mathrm{c}_{0}$
Zero test:
iszro $=\lambda m . m(\lambda x . f l s)$ tru

Predecessor

```
zz = pair co co
ss = \lambdap. pair (snd p) (scc (snd p))
prd = \lambdam. fst (m ss zz)
```

Recursion and divergence
Recursion and divergence are intertwined, so we need to consider divergent terms.

$$
\text { omega }=(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})
$$

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Recursion in the Lambda-Calculus

Recursion and divergence

Recursion and divergence are intertwined, so we need to consider divergent terms.

$$
\text { omega }=(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})
$$

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.
Being able to write a divergent computation does not seem very useful in itself. However, there are variants of omega that are very useful...

Recall: Normal forms

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?
No, omega is not in normal form.

Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following variant of omega:

$$
Y_{f}=(\lambda x . f(x \quad x))(\lambda x . f(x \mathrm{x}))
$$

Recall: Normal forms

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?
No, omega is not in normal form.
But are there any stuck terms in the pure λ-calculus?

Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following variant of omega:

$$
Y_{f}=(\lambda x \cdot f(x \quad x))(\lambda x \cdot f(x \quad x))
$$

Now the "pattern of divergence" becomes more interesting:

```
\[
\mathrm{Y}_{f}
\]
\[
(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
\]
\[
f((\lambda x \cdot f(x \quad x))(\lambda x \cdot f(x \quad x)))
\]
\[
f(f((\lambda x \cdot f(x x))(\lambda x \cdot f(x x))))
\]
\[
f(f(f(\underline{(\lambda \cdot f(x ~ x))}(\lambda x \cdot f(x \quad x)))))
\]
```

Y_{f} is still not very useful, since (like omega), all it does is diverge.
Is there any way we could "slow it down"?

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit more tightly intertwined:
omegav =

$$
\lambda y \cdot(\lambda x \cdot(\lambda y \cdot x \mathrm{x} y))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{y}
$$

Note that omegav is a normal form. However, if we apply it to any argument v , it diverges:
omegav V
($\lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} \mathrm{y}))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{y}) \mathrm{v}$
($\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{v}$
$(\lambda y .(\lambda x \cdot(\lambda y \cdot x \quad x y))(\lambda x \cdot(\lambda y \cdot x \quad x y)) y) v$ $=$
omegav v

Delaying divergence

$$
\text { poisonpill }=\lambda y . \text { omega }
$$

Note that poisonpill is a value - it it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

Another delayed variant

Suppose f is a function. Define
$z_{f}=\lambda y \cdot(\lambda x \cdot f(\lambda y \cdot x \quad x y))(\lambda x . f(\lambda y \cdot x \quad x y)) y$

This term combines the "added f " from Y_{f} with the "delayed divergence" of omegav.

If we now apply z_{f} to an argument v , something interesting happens:

$$
z_{f} \mathrm{v}
$$

$=$
$\underline{(\lambda y \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x \mathrm{x} y)) y) v}$ $\underline{(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))} V$ $f(\lambda y .(\lambda x . f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y)) y) v$

$$
f z_{f} v
$$

Since z_{f} and v are both values, the next computation step will be the reduction of $f z_{f}$ - that is, before we "diverge," f gets to do some computation.
Now we are getting somewhere.

Recursion

Let

$$
\begin{aligned}
& \mathrm{f}=\quad \lambda \mathrm{fct} . \\
& \lambda \mathrm{n} \\
& \quad \text { if } \mathrm{n}=0 \text { then } 1 \\
& \quad \text { else } \mathrm{n} *(\text { fct }(\text { pred } \mathrm{n}))
\end{aligned}
$$

f looks just the ordinary factorial function, except that, in place of a recursive call in the last time, it calls the function fct, which is passed as a parameter.
N.b.: for brevity, this example uses "real" numbers and booleans, infix syntax, etc. It can easily be translated into the pure lambda-calculus (using Church numerals, etc.).

We can use z to "tie the knot" in the definition of f and obtain a real recursive factorial function:

$$
\begin{aligned}
& z_{f} 3 \\
& \xrightarrow[z_{f}]{ }{ }^{*} 3 \\
& = \\
& \text { (} \lambda \text { fct. } \lambda \text { n. ...) } z_{f} 3 \\
& \text { if } 3=0 \text { then } 1 \text { else } 3 *\left(z_{f}(\operatorname{pred} 3)\right) \\
& \longrightarrow \\
& \left.3 *\left(z_{f}(\operatorname{pred} 3)\right)\right) \\
& 3 *\left(z_{f} 2\right) \\
& \left.3 \text { * (f } z_{f} 2\right)
\end{aligned}
$$

A Generic z

If we define

$$
\mathrm{z}=\lambda \mathrm{f} . \mathrm{z}_{f}
$$

i.e.,

$$
\lambda f \cdot \lambda y \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y)) y
$$

then we can obtain the behavior of z_{f} for any f we like, simply by applying z to f.

$$
\mathrm{zf} \quad \longrightarrow \quad \mathrm{z}_{f}
$$

For example:

$$
\text { fact }=\mathrm{z} \quad(\lambda \mathrm{fct} .
$$

λn.
if $\mathrm{n}=0$ then 1 else n * (fct (pred n)))

Technical Note

The term z here is essentially the same as the fix discussed the book.

$$
\begin{aligned}
& \mathrm{z}= \\
& \quad \lambda \mathrm{f} \cdot \lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y})) \mathrm{y} \\
& \mathrm{fix}= \\
& \quad \lambda \mathrm{f} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))
\end{aligned}
$$

z is hopefully slightly easier to understand, since it has the property that $\mathrm{z} f \mathrm{v} \longrightarrow^{*} \mathrm{f}$ ($\mathrm{z} f$) v , which fix does not (quite) share.

