
Mid-term Exam
Foundations of Software

November 14, 2008

Last Name :

First Name :

Section :

Exercise Points Achieved Points

1 10

2 10

3 10

4 6

Total 36

Exercise 1 : Progress and Preservation (10 points)

Recall the following properties of the language of numbers and booleans (typed arithmetic ex-
pressions, see reference page at the end of the assignment):

• Progress: If Γ ` t : T, then either t is a value or else t→ t’.

• Preservation: If Γ ` t : T and t→ t’, then Γ ` t’ : T.

Each part of this exercise suggests a different way of changing the language of typed arithmetic
and boolean expressions. Note that these changes are not cumulative: each part starts from the
original language. In each part, for each property, indicate whether the property remains true
or becomes false after the suggested change. If a property becomes false, give a counterexample.
In the last part (and only in the last part), show using a suitable inductive proof that preservation
remains true.

1. Suppose we add the following typing axiom: pred 0 : Bool

Solution: Progress holds. Preservation does not hold: pred 0 : Bool→ 0 : Nat

2. Suppose we add the following typing rule:

T-FUNNY1
t1 : Nat

if true then t1 else t2 : Nat
Solution: Progress holds. Preservation holds.

3. Suppose we add the following typing rule:

T-FUNNY2
t : Bool

pred t : Bool

Solution: Progress does not hold: pred true : Bool, but it is not a value and cannot
take a step. Preservation holds.

4. Suppose we add a type Foo and the following two typing rules:

T-FOO1
t : Nat

pred t : Foo
T-FOO2

t : Foo

succ t : Nat

Solution: Progress holds. Preservation does not hold: pred 0 : Foo, but pred 0 →
0 : Nat

5. Suppose we add a type Bar and the following two typing rules:

T-BAR1
t : Nat

succ t : Bar
T-BAR2

t : Bar

pred t : Nat

Show using a suitable inductive proof that preservation remains true.

Solution:

(a) case t = succ t1 and T-Bar1 is the last rule used in the typing derivation. Since
t → t′ we have t′ = succ t′

1 with t1 → t′
1 (by E-Succ) and by IH t′

1 : Nat. By
T-Bar1, succ t′

1 : Bar.
(b) case t = pred t1 and T-Bar2 is the last rule used in the typing derivation. We have

two sub cases for t→ t′:
i. pred t1 → pred t′

1 (E-Pred) and t1 → t′
1. By IH, t′

1 : Bar. By T-Bar2,
pred t′

1 : Nat.
ii. pred (succ nv)→ nv. By inversion of T-Bar1, nv : Nat

2

Exercise 2 : Typings (10 points)

For each of the following lambda terms either find a possible type or indicate that the term is
not typable.
Note that the lambda calculus that we consider here contains a primitive type Bool as well as
a conditional term if t1 then t2 else t3 with the usual typing.

1. λx. λy. λz. (x y) z

Solution: (a→ b→ c)→ a→ b→ c

2. λx. λy. λz. x (y z)

Solution: (a→ b)→ (c→ a)→ (c→ b)

3. λx. λy. x (y x)

Solution: (a→ b)→ ((a→ b)→ a)→ b

4. λx. x (λy. y x)

Solution: not typable

5. λx. λy. λz. if (x y) then y else z

Solution: (a→ Bool)→ a→ a→ a

6. λx. λy. λz. x (if (y z) then (z x) else true)

Solution: (Bool→ a)→ (((Bool→ a)→ Bool)→ Bool)→ ((Bool→ a)→ Bool)→ a

3

Exercise 3 : Simply Typed Lambda Calculus (10 points)

Consider the Simply Typed Lambda Calculus (STLC) you have seen in the course. We add the
following evaluation rule:

(λx:T. t x)→ t if x not free in t

Show that progress and preservation still hold. You don’t need to repeat the whole proof for
STLC, but you should mention which cases are not treated by your proof because their proof
holds unchanged.
Solution:

• Progress. If t is a well-typed term, it can either take a step or it is a value.

Progress still holds because we add one more evaluation rule, and don’t remove any of the
old ones.

• Preservation. If Γ ` t : T and t→ t′ then Γ ` t′ : T .

Proof. We prove this by induction on typing derivations. The original proof needs to be
adjusted in case T-ABS

T-Abs
Γ, x : T ` t1 : T1

Γ ` λx : T.t1 : T → T1

We need to treat the additional case t1 = t x, which triggers the new evaluation rule.

T-Abs

T-App
Γ, x : T ` t : T2 → T1 Γ, x : T ` x : T

Γ, x : T ` (t x) : T1

Γ ` λx : T.(t x) : T → T1
x free in t

Since t is well-typed, we conclude that T2 = T , and since x is free in t

Γ, x : T ` t : T2 → T1 implies Γ ` t : T → T1.

(λx : T.t x : T → T1)→ t and we just showed that Γ ` t : T → T1.

4

Exercise 4 : Behavioral equivalence (6 points)

Find two terms in untyped lambda calculus which are:

• behaviorally equivalent when using call-by-value but not when using call-by-name.

• behaviorally equivalent when using call-by-name but not when using call-by-value.

Solution: Let
Ω = λx.(x x) λx.(x x)
tru = λx.λy.x
fls = λx.λy.y

1. Equivalent in CBV but not in CBN
tru Ω
fls Ω

Under CBV, both term diverge, trying to reduce Ω to a value before applying it. Under
CBN, the first one reduces to Ω and then diverges, while the second reduces to λy.y.

2. Equivalent in CBN, but not in CBV

fls λx.Ω
fls (λx.Ω x)

Under CBN, both reduce to λy.y. Under CBV, the first one reduces to λy.y, while the
second one diverges evaluating the argument to fls.

5

For reference: typed arithmetic expressions

Syntax for arithmetic expressions (TAPL, p.91):

t ::= terms : v ::= values :
| true constant true | true true value
| false constant false | false false value
| if t then t else t condition | nv numeric value
| 0 constant zero
| succ t successor nv ::= numeric values :
| pred t predecessor | 0 zero value
| iszero t zero test | succ nv successor value

Evaluation rules (TAPL, p.41):

(E-PredZero) pred 0 −→ 0 (E-PredSucc) pred (succ nv1) −→ nv1

(E-Succ)
t1 −→ t′1

succ t1 −→ succ t′1
(E-Pred)

t1 −→ t′1
pred t1 −→ pred t′1

(E-IsZeroZero) iszero 0 −→ true (E-IsZeroSucc) iszero (succ nv1) −→ false

(E-IsZero)
t1 −→ t′1

iszero t1 −→ iszero t′1
(E-If)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-IfTrue) if true then t2 else t3 −→ t2 (E-IfFalse) if false then t2 else t3 −→ t3

Typing rules (TAPL, p.93):

(T-True) true : Bool (T-False) false : Bool

(T-If)
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-Zero) 0 : Nat

(T-Succ)
t1 : Nat

succ t1 : Nat
(T-Pred)

t1 : Nat

pred t1 : Nat

(T-IsZero)
t1 : Nat

iszero t1 : Bool

6

