
Mid-term Exam
Type Systems

December 20, 2006

Last Name :

First Name :

Section :

Exercise Points Achieved Points

1 10

2 10

3 10

Total 30

Exercice 1 : Normal Forms (10 points)

Let V be the set of variables and Λ the set of λ-terms.

Let N ⊂ Λ be the set of normal forms (N = {t ∈ Λ | @t′ ∈ Λ : t → t′}).
We de�ne inductively the subset N ′ of Λ:

(Var)
x ∈ V
x ∈ N ′ (Abs)

x ∈ V t ∈ N ′

λx.t ∈ N ′ (Appn)
x ∈ V t1 ∈ N ′ · · · tn ∈ N ′

x t1 · · · tn ∈ N ′ n ∈ N, n > 0

Show that N ′ = N .

Hint: Show that if t ∈ N then t ∈ N ′ by induction on t ∈ Λ and that if t ∈ N ′ then t ∈ N by

induction on the derivation t ∈ N ′.

2

Exercice 2 : Typed Arithmetic Expressions (10 points)

We �rst recall the syntax for arithmetic expressions (TAPL, p.91):

t ::= terms : v ::= values :
| true constant true | true true value
| false constant false | false false value
| if t then t else t condition | nv numeric value
| 0 constant zero
| succ t successor nv ::= numeric values :
| pred t predecessor | 0 zero value
| iszero t zero test | succ nv successor value

and the evaluation rules for numbers (TAPL, p.41):

(E-Succ)
t1 −→ t′

1

succ t1 −→ succ t′
1

(E-PredZero) pred 0 −→ 0 (E-IsZeroZero) iszero 0 −→ true

(E-PredSucc) pred (succ nv1) −→ nv1 (E-IsZeroSucc) iszero (succ nv1) −→ false

(E-Pred)
t1 −→ t′

1

pred t1 −→ pred t′
1

(E-IsZero)
t1 −→ t′

1

iszero t1 −→ iszero t′
1

Suppose we remove the E-PredZero rule.

Does progress still hold ? What about preservation ?

Change the de�nition of values in the modi�ed language such that both progress and preservation

hold. However, you are not allowed to reintroduce E-PredZero or to add another reduction

rule for terms of the form pred(x).

3

Exercice 3 : Option Types (10 points)

We extend the syntax for the simply typed λ-calculus (TAPL, p.103) with option types in a

similar way as in Scala, e.g.

(\o: option Nat. o match {

case some x => x

case none => 0

}) some (succ 0)

The meaning of the above is that when o is an instance of some, the �rst branch is selected

and x takes the value carried inside o. When o is an instance of none, the second branch is

evaluated. As a rule of thumb, the evaluation rules should match Scala's behavior, like call-by-

value evaluation order and the usual meaning for match. The language should also allow you to

create values of both kinds.

Formalize this extension. Your solution should include a grammar extension (for terms, values

and types), evaluation rules and typing rules for the new terms. Typing rules should peserve

type safety and make it impossible to �nd two di�erent types for the same term (uniqueness of

types). (There is no need to prove these properties).

4

