Mid-term Exam

Type Systems
December 20, 2006

Last Name :
First Name :
Section :
Exercise | Points | Achieved Points
1 10
2 10
3 10
Total 30

Exercice 1 : Normal Forms (10 points)

Let V be the set of variables and A the set of A-terms.

Let A C A be the set of normal forms (N ={t € A |} € A:t —t'}).
We define inductively the subset A of A:

x €V (ABS)er te N’ (APP)er treN” . t,eN
x N’ x.te N/ " xty--t, €N

(VAR) neN,n>0

Show that NV = N.

Hint: Show that if ¢ € A then t € N7 by induction on ¢t € A and that if t € N’ then t € N by
induction on the derivation t € N”.

Exercice 2 : Typed Arithmetic Expressions (10 points)

We first recall the syntax for arithmetic expressions (TAPL, p.91):

t = terms: | v = values :
| true constant true | true true value
| false constant false | false false value
| if tthent elset condition | no numeric value
| 0 constant zero
| succt successor | nv = numeric values :
| predt predecessor | 0 zero value
| iszerot zero test | succ nv successor value

and the evaluation rules for numbers (TAPL, p.41):
t1 — 1]
(E-Succ) ! L
succ ty — succ ty
(E-PREDZERO) pred 0 — 0 (E-ISZEROZERO) iszero 0 — true

(E-PrREDSUCC) pred (succ nvy) — nv1 (E-ISZEROSUCC) iszero (succ nvi) — false

tp — t] t1 — t]

(E-PRED) (E-ISZERO) -

pred t; — pred t) iszero ty — iszero t}

Suppose we remove the E-PREDZERO rule.
Does progress still hold 7 What about preservation ?

Change the definition of values in the modified language such that both progress and preservation
hold. However, you are not allowed to reintroduce E-PREDZERO or to add another reduction
rule for terms of the form pred(z).

Exercice 3 : Option Types (10 points)

We extend the syntax for the simply typed A-calculus (TAPL, p.103) with option types in a
similar way as in Scala, e.g.

(\o: option Nat. o match {
case some X => X
case none => 0

}) some (succ 0)

The meaning of the above is that when o is an instance of some, the first branch is selected
and x takes the value carried inside 0. When o is an instance of none, the second branch is
evaluated. As a rule of thumb, the evaluation rules should match Scala’s behavior, like call-by-
value evaluation order and the usual meaning for match. The language should also allow you to
create values of both kinds.

Formalize this extension. Your solution should include a grammar extension (for terms, values
and types), evaluation rules and typing rules for the new terms. Typing rules should peserve
type safety and make it impossible to find two different types for the same term (uniqueness of
types). (There is no need to prove these properties).

