Exercice 1 : Normal Forms (10 points)

Let \mathcal{V} be the set of variables and Λ the set of λ-terms.
Let $\mathcal{N} \subset \Lambda$ be the set of normal forms ($\left.\mathcal{N}=\left\{t \in \Lambda \mid \nexists t^{\prime} \in \Lambda: t \rightarrow t^{\prime}\right\}\right)$.
We define inductively the subset \mathcal{N}^{\prime} of Λ :

$$
\text { (VAR) } \frac{x \in \mathcal{V}}{x \in \mathcal{N}^{\prime}} \quad \text { (ABS) } \frac{x \in \mathcal{V} \quad t \in \mathcal{N}^{\prime}}{\lambda x . t \in \mathcal{N}^{\prime}} \quad\left(\operatorname{APP}_{n}\right) \frac{x \in \mathcal{V} \quad t_{1} \in \mathcal{N}^{\prime} \quad \cdots \quad t_{n} \in \mathcal{N}^{\prime}}{x t_{1} \cdots t_{n} \in \mathcal{N}^{\prime}} n \in \mathbb{N}, n>0
$$

Show that $\mathcal{N}^{\prime}=\mathcal{N}$.
Hint: Show that if $t \in \mathcal{N}$ then $t \in \mathcal{N}^{\prime}$ by induction on $t \in \Lambda$ and that if $t \in \mathcal{N}^{\prime}$ then $t \in \mathcal{N}$ by induction on the derivation $t \in \mathcal{N}^{\prime}$.

Answer:

We first prove $\mathcal{N}^{\prime} \subset \mathcal{N}$ and then prove $\mathcal{N} \subset \mathcal{N}^{\prime}$:

- let $t \in \mathcal{N}^{\prime}$ and we prove that $t \in \mathcal{N}$ by induction.
- $t=x$ then clearly $t \in \mathcal{N}$ because variables are normal forms.
$-t=\lambda x . t^{\prime}$. By ABS $t^{\prime} \in \mathcal{N}^{\prime}$ and by induction hypothesis $t^{\prime} \in \mathcal{N}$. Then clearly t can't take any reduction steps so $t \in \mathcal{N}$
$-t=x t_{1} \ldots t_{n}$. By $\operatorname{APp}_{n} x \in \mathcal{V}$ and $t_{1} \ldots t_{n} \in \mathcal{N}^{\prime}$. By induction hypothesis $t_{1} \ldots t_{n} \in$ \mathcal{N}^{\prime} are also in \mathcal{N}. Since none of the applications contains any redexes, t can't take a reduction step and therefore $t \in \mathcal{N}$
- let $t \in \mathcal{N}$ and we prove that $t \in \mathcal{N}^{\prime}$ by induction on the structure of t
$-t=x$ and by rule Var $t \in \mathcal{N}^{\prime}$
$-t=\lambda x . t^{\prime}$. Since $t \in \mathcal{N}$ we have that also t^{\prime} can't contain any redexes, so $t^{\prime} \in \mathcal{N}$. By induction hypothesis we have $t^{\prime} \in \mathcal{N}^{\prime}$ and by ABS we have $t \in \mathcal{N}$.
$-t=t_{1} t_{2}$. Since $t \in \mathcal{N}$ and is a normal form, we have that t_{1}, t_{2} are also normal forms, therefore $t_{1}, t_{2} \in \mathcal{N}$. By induction hypothesis we have that $t_{1}, t_{2} \in \mathcal{N}^{\prime}$:
* $t_{1}=x$, we have $t=x t_{2}$ and $t \in \mathcal{N}^{\prime}$ by APP ${ }_{1}$.
* $t_{1}=\lambda x . t_{1}^{\prime}$. Impossible, since then $t=\lambda x . t_{1}^{\prime} t_{2}$ and that is a redex, but $t \in \mathcal{N}$.
* $t_{1}=x t_{11} \ldots t_{1 n}$. We have $t=x t_{11} \ldots t_{1 n} t_{2}$ and by $\operatorname{APP}_{n+1} t \in \mathcal{N}^{\prime}$.

Exercice 2 : Typed Arithmetic Expressions (10 points)

We first recall the syntax for arithmetic expressions (TAPL, p.91):

```
\(t::=\)
\(|\)\begin{tabular}{l} 
true \\
false \\
if \(t\) then t else \(t\) \\
0 \\
succ \(t\) \\
pred \(t\) \\
iszero \(t\)
\end{tabular}
```

terms :	v
constant true	
constant false	
condition	
constant zero	
successor	n
predecessor	
zero test	

$|$| v | $::=$ |
| :--- | :--- |
| $n v$ | $:$ |
| | |
| | |
| | |
| | |

true
false
nv numeric value
numeric values:
0
succ nv
true value
false value
zero value
successor value
values:
and the evaluation rules for numbers (TAPL, p.41):

$$
(\mathrm{E}-\mathrm{SuCC}) \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { succ } t_{1} \longrightarrow \text { succ } t_{1}^{\prime}}
$$

(E-PredZero) pred $0 \longrightarrow 0$
(E-IsZEROZERO) iszero $0 \longrightarrow$ true
(E-PREDSUCC) pred $\left(\right.$ succ $\left.n v_{1}\right) \longrightarrow n v_{1} \quad(E-I S Z E R O S U C C)$ iszero $\left(\right.$ succ $\left.n v_{1}\right) \longrightarrow$ false

$$
(\mathrm{E}-\mathrm{PRED}) \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { pred } t_{1} \longrightarrow \text { pred } t_{1}^{\prime}}
$$

$$
(\mathrm{E}-\mathrm{IsZERO}) \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { iszero } t_{1} \longrightarrow \text { iszero } t_{1}^{\prime}}
$$

Suppose we remove the E-PredZERO rule.
Does progress still hold? What about preservation ?
Change the definition of values in the modified language such that both progress and preservation hold. However, you are not allowed to reintroduce E-PREDZERO or to add another reduction rule for terms of the form $\operatorname{pred}(x)$.

Answer:
Progress does not hold: pred 0 : Nat is a well-typed term which is not a value and is stuck.
Preservation still holds because removing one evaluation rule just makes the original proof shorter (one less case to prove).

We change the syntax for numeric values:

$n v$::=	pos	positive
		$n e g$	negative
pos	$:=$	0	zero
		succ pos	successor
$n e g$: $=$	0	zero
		pred neg	predecessor

We need to add a rule to deal with successors of negative numbers, one for iszero with negative numbers, and also update rules that worked on $n v$ to work on positives or negatives.:

$$
\text { E-SuccPRED } \overline{\text { succ }\left(\text { pred } n e g_{1}\right) \rightarrow n e g_{1}}
$$

E-PREDSUCC $\overline{\text { pred }\left(\text { succ } \text { pos }_{1}\right) \rightarrow \operatorname{pos}_{1}}$

$$
\text { E-IsZERoPRED } \overline{\text { iszero }\left(\text { pred } n e g_{1}\right) \rightarrow \text { false }}
$$

E-ISZEROSUCC $\overline{\text { iszero }\left(\text { succ } \text { pos }_{1}\right) \rightarrow \text { false }}$

Exercice 3: Option Types (10 points)

We extend the syntax for the simply typed λ-calculus (TAPL, p.103) with option types in a similar way as in Scala, e.g.

```
(\o: option Nat. o match {
    case some x => x
    case none => 0
}) some (succ 0)
```

The meaning of the above is that when o is an instance of some, the first branch is selected and x takes the value carried inside o. When o is an instance of none, the second branch is evaluated. As a rule of thumb, the evaluation rules should match Scala's behavior, like call-byvalue evaluation order and the usual meaning for match. The language should also allow you to create values of both kinds.

Formalize this extension. Your solution should include a grammar extension (for terms, values and types), evaluation rules and typing rules for the new terms. Typing rules should peserve type safety and make it impossible to find two different types for the same term (uniqueness of types). (There is no need to prove these properties).

Answer:
We propose the following syntax:

Terms

```
    t::= .. terms
                some t some
                none as T none: T
                t match "{" case some x => t case none => t "}" match
```

Values
$v::=\ldots$
$\begin{array}{ll}\text { none as T } & \text { none values } \\ \text { some v } & \text { some values }\end{array}$
Types
$T::=\ldots$
Option T
option types

Evaluation rules:

E-MATCHSOME $\xlongequal[{\text { some } v \text { match }\left\{\text { case some } x=>t_{1} \text { case none }=>t_{2}\right\} \rightarrow[x \mapsto v] t_{1}}]{ }$

E-MatchNone $\xlongequal[\text { none as } T \text { match }\left\{\text { case some } x=>t_{1} \text { case none }=>t_{2}\right\} \rightarrow t_{2}]{ }$

$$
\begin{gathered}
\text { E-MATCH } \frac{t \rightarrow t^{\prime}}{\text { match }\left\{\text { case some } x=>t_{1} \text { case none }=>t_{2}\right\} \rightarrow} \\
t^{\prime} \text { match }\left\{\text { case some } x=>t_{1} \text { case none }=>t_{2}\right\}
\end{gathered}
$$

$$
\text { E-Some } \frac{t \rightarrow t^{\prime}}{\text { some } t \rightarrow \text { some } t^{\prime}}
$$

Typing rules:

T-Some $\frac{\Gamma \vdash t: T}{\Gamma \vdash \text { some } t: \text { Option } T} \quad$ T-None $\frac{T=\text { Option } S}{\Gamma \vdash \text { none as } T: T}$

T-Match $\frac{\Gamma \vdash t: \text { Option } T \quad \Gamma, x: T \vdash t_{1}: T_{1} \quad \Gamma \vdash t_{2}: T_{1}}{t \text { match }\left\{\text { case some } x=>t_{1} \text { case none }=>t_{2}\right\}: T_{2}}$

