
Mid-term Exam – solution
Foundations of Software

November 16, 2007

Last Name :

First Name :

Section :

Exercise Points Achieved Points

1 10

2 12

3 8

Total 30

Exercise 1 : Equivalence of lambda terms (10 points)

For each of the following pairs of lambda terms, say if they are behaviorally equivalent or not.
If they are not equivalent, write down the arguments for which only one of the terms does not
terminate. You do not need to prove it when they are equivalent. We assume the call-by-value
pure lambda calculus.

λt.λf. t
λt.λf. f
Not equivalent:

(λt . λ f . t) λx . omega λx . x λx . x
→ (λ f . λx . omega) λx . x λx . x
→ λx . omega λx . x
→ omega → d iv e r g e s

and

(λt . λ f . f) λx . omega λx . x λx . x
→ (λ f . f) λx . x λx . x
→ λx . x λx . x
→ λx . x

λt.λf. t
λx.λy. (λz.z) x
Equivalent.

λx.λy. x y
λx.x
Equivalent.

λx.λy. x y
λx.λy. x (λz.z) y
Not equivalent:

(λx . λy . x y) (λt . λ f . t) λx . omega λx . x λx . x
→ (λy . (λt . λ f . t) y) λx . omega λx . x λx . x
→ (λt . λ f . t) λx . omega λx . x λx . x
→ (λ f . λx . omega) λx . x λx . x
→ λx . omega λx . x
→ omega → d iv e r g e s

and

(λx . λy . x (λz . z) y) (λt . λ f . t) λx . omega λx . x λx . x
→ (λy . (λt . λ f . t) (λz . z) y) λx . omega λx . x λx . x
→ (λt . λ f . t) (λz . z) λx . omega λx . x λx . x
→ (λ f . λz . z) λx . omega λx . x λx . x
→ λz . z λx . x λx . x
→ λx . x λx . x
→ λx . x

2

Exercise 2 : Linear terms (12 points)

A lambda-term t is said to be linear if, for every sub-term t of the form λx.s the bound variable
x appears exactly once in the body s. For example: λx.x and λx.λy.x y are linear, while λx.x x
and λx.λy.y are not.

Show that all linear terms have a normal form.

Hint:
Think about what happens to the number of lambda abstractions after one reduction step.

Proof. We define the size of terms to be the number of lambda abstractions a term has. More
precisely, it is:

size(t) =


0 if t is a variable
1 + size(t1) if t = λx.t1

size(t1) + size(t2) if t = t1 t2

We show by induction on evaluation derivations that if t → t′ then size(t′) < size(t).

• E-App1 We have: t = t1 t2, t′ = t′
1 t2 and t1 → t′

1 Then:

size(t) = size(t1) + size(t2)
size(t′) = size(t′

1) + size(t2)

by using the Induction Hypothesis, we have size(t′
1) < size(t1). By using this in the above

equation, we get

size(t′) < size(t1) + size(t2)
size(t′) < size(t)

• E-App2 idem

• E-AppAbs We have: t = (λx.t1) t2, t′ = [x 7→ t2]t1

size(t) = 1 + size(t1) + size(t2)
size(t′) = size([x 7→ t2]t1)

But we know that x appears exactly once in t1, therefore size([x 7→ t2]t1 = size(t1) +
size(t2). It follows that size(t′) < size(t).

We can use size to map any infinite sequence of reduction steps to an infinite decreasing sequence
of natural numbers. Since this is impossible, we conclude there are no infinite sequences of
reductions, for any linear lambda term.

3

Exercise 3 : References (8 points)

Consider the simply-typed lambda calculus with references. Design an extension that acts like
free in C or Pascal, that is, given a term that evaluates to a label in the store, it removes it from
the store. There is no need to ensure in the type system that labels that have been removed are
not dereferenced.
The new grammar should look like:

t ::= . . .
free t deallocation

Write down the typing and evaluation rules for the new case. Does preservation still hold? What
about progress? If either of them doesn’t hold, give an example program for which it fails (you
can use let, sequencing and natural numbers in your examples).

Answer:

T-Free
Γ,Σ ` t : Ref T

Γ,Σ ` free t : unit

E-Cong
t|µ → t′|µ′

free t|µ → free t′|µ′ E-Red
free l|µ → unit|µ \ {l}

Preservation still holds: the new rules can be easily added to the existing proof.
Progress does not hold anymore. Consider the following program:

l e t x = r e f 0 in
(\ a : Ref Nat .\b : Ref Nat . f r e e a ; ! b) x x

The code is well typed, but the evaluation gets stuck trying to dereference b, after it has been
freed.

4

