
Mid-term Exam
Foundations of Software

November 16, 2007

Last Name :

First Name :

Section :

Exercise Points Achieved Points

1 10

2 12

3 8

Total 30



Exercise 1 : Equivalence of lambda terms (10 points)

For each of the following pairs of lambda terms, say if they are behaviorally equivalent or not.
If they are not equivalent, write down the arguments for which only one of the terms does not
terminate. You do not need to prove it when they are equivalent. We assume the call-by-value
pure lambda calculus.

λt.λf. t
λt.λf. f

λt.λf. t
λx.λy. (λz.z) x

λx.λy. x y
λx.x

λx.λy. x y
λx.λy. x (λz.z) y

2



Exercise 2 : Linear terms (12 points)

A lambda-term t is said to be linear if, for every sub-term t of the form λx.s the bound variable
x appears exactly once in the body s. For example: λx.x and λx.λy.x y are linear, while λx.x x
and λx.λy.y are not.

Show that all linear terms have a normal form.

Hint:
Think about what happens to the number of lambda abstractions after one reduction step.

3



Exercise 3 : References (8 points)

Consider the simply-typed lambda calculus with references. Design an extension that acts like
free in C or Pascal, that is, given a term that evaluates to a label in the store, it removes it from
the store. There is no need to ensure in the type system that labels that have been removed are
not dereferenced.
The new grammar should look like:

t ::= . . .
free t deallocation

Write down the typing and evaluation rules for the new case. Does preservation still hold? What
about progress? If either of them doesn’t hold, give an example program for which it fails (you
can use let, sequencing and natural numbers in your examples).

4


