Type Reconstruction and Polymorphism

Week 9

November 20

Martin Odersky

1

Type Checking and Type Reconstruction

We now come to the question of type checking and type reconstruction.

Type checking: Given Γ , t and T, check whether $\Gamma \vdash t : T$

Type reconstruction: Given Γ and t, find a type T such that $\Gamma \vdash t : T$

Type checking and reconstruction seem difficult since parameters in lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can have many types.

Idea: : We construct all type derivations in parallel, reducing type reconstruction to a unification problem.

From Judgements to Equations

```
TP: Judgement 
ightarrow 	extbf{Equations} TP(\Gamma \vdash t:T) = case t of x : \{\Gamma(x) \stackrel{\circ}{=} T\} \lambda x.t' : let \ a,b \ fresh \ in \{(a 
ightarrow b) \stackrel{\circ}{=} T\} \ \cup TP(\Gamma,x:a \vdash t':b) t \ t' : let \ a \ fresh \ in TP(\Gamma \vdash t:a 
ightarrow T) \ \cup TP(\Gamma \vdash t':a)
```

3

Constants

Constants are treated as variables in the initial environment.

However, we have to make sure we create a new instance of their type as follows:

```
newInstance(\forall a_1, \ldots, a_n.S) =
let \ b_1, \ldots, b_n \ fresh \ in
[b_1/a_1, \ldots, b_n/a_n]S
TP(\Gamma \vdash t : T) =
case \ tof
x : \{newInstance(\Gamma(x)) \triangleq T\}
\ldots
```

Soundness and Completeness I

Definition: In general, a type reconstruction algorithm \mathcal{A} assigns to an environment Γ and a term t a set of types $\mathcal{A}(\Gamma, t)$.

The algorithm is sound if for every type $T\in \mathcal{A}(\Gamma,t)$ we can prove the judgement $\Gamma \vdash t:T$.

The algorithm is complete if for every provable judgement $\Gamma \vdash t : T$ we have that $T \in \mathcal{A}(\Gamma, t)$.

5

Theorem: TP is sound and complete. Specifically:

```
\Gamma \vdash t:T iff \exists ar{b}.[T/a]EQNS  \textit{where}  a \text{ is a new type variable}   EQNS = TP(\Gamma \vdash t:a)  \bar{b} = tv(EQNS) \backslash tv(\Gamma)
```

Here, tv denotes the set of free type varibales (of a term, and environment, an equation set).

Type Reconstruction and Unification

Problem:: Transform set of equations

$$\{T_i = U_i\}_{i=1,\ldots,m}$$

into equivalent substitution

$${a_j \triangleq T'_j}_{j=1, ..., n}$$

where type variables do not appear recursively on their right hand sides (directly or indirectly). That is:

$$a_i \notin tv(T'_k)$$
 for $j = 1, \ldots, n, k = j, \ldots, n$

7

Substitutions

A substitution s is an idempotent mapping from type variables to types which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a = T with a not in tv(T).

Substitutions can be generalized to mappings from types to types by definining

$$s(T \to U)$$
 = $sT \to sU$
 $s(K[T_1, \dots, T_n])$ = $K[sT_1, \dots, sT_n]$

Substitutions are idempotent mappings from types to types, i.e. s(s(T)) = s(T). (why?)

The operator denotes composition of substitutions (or other functions): $(f \circ g) x = f(gx)$.

A Unification Algorithm

We present an incremental version of Robinson's algorithm (1965).

```
\begin{array}{lll} mgu & : & (Type \; \hat{=} \; Type) \to Subst \to Subst \\ mgu(T \; \hat{=} \; U) \; s & = & mgu'(sT \; \hat{=} \; sU) \; s \\ mgu'(a \; \hat{=} \; a) \; s & = & s \\ mgu'(a \; \hat{=} \; T) \; s & = & s \cup \{a \; \hat{=} \; T\} \qquad \text{if } a \not \in tv(T) \\ mgu'(T \; \hat{=} \; a) \; s & = & s \cup \{a \; \hat{=} \; T\} \qquad \text{if } a \not \in tv(T) \\ mgu'(T \; \hat{=} \; a) \; s & = & (mgu(T' \; \hat{=} \; U') \circ mgu(T \; \hat{=} \; U)) \; s \\ mgu'(K[T_1, \ldots, T_n] \; \hat{=} \; K[U_1, \ldots, U_n]) \; s \\ & = & (mgu(T_n \; \hat{=} \; U_n) \circ \ldots \circ mgu(T_1 \; \hat{=} \; U_1)) \; s \\ mqu'(T \; \hat{=} \; U) \; s & = & error & \text{in all other cases} \\ \end{array}
```

9

Soundness and Completeness of Unification

Definition: A substitution u is a unifier of a set of equations $\{T_i = U_i\}_{i=1, \ldots, m}$ if $uT_i = uU_i$, for all i. It is a most general unifier if for every other unifier u' of the same equations there exists a substitution s such that $u' = s \circ u$.

Theorem: Given a set of equations EQNS. If EQNS has a unifier then $mgu\ EQNS$ {} computes the most general unifier of EQNS. If EQNS has no unifier then $mgu\ EQNS$ {} fails.

From Judgements to Substitutions

```
\begin{split} TP: Judgement &\rightarrow Subst \\ TP(\Gamma \ \vdash \ t:T) = \\ & \textbf{case } t \textbf{ of} \\ & x \qquad : \quad & \textbf{mgu}(newInstance(\Gamma x) \triangleq T) \\ & \lambda x.t' \quad : \quad & \textbf{let } t, u \textbf{ fresh in} \\ & \quad & \textbf{mgu}((t \rightarrow u) \triangleq T) \quad \circ \\ & \quad & TP(\Gamma, x:t \ \vdash \ t':u) \\ & t \ t' \quad : \quad & \textbf{let } t \textbf{ fresh in} \\ & \quad & TP(\Gamma \ \vdash \ t:a \rightarrow T) \quad \circ \\ & \quad & TP(\Gamma \ \vdash \ t':a) \end{split}
```

11

Soundness and Completeness II

One can show by comparison with the previous algorithm:

Theorem: *TP* is sound and complete. Specifically:

```
\begin{array}{ccc} \Gamma \ \vdash \ t:T & \text{iff} & T=r(s(t)) \\ & & \textbf{where} \\ & & t \text{ is a new type variable} \\ & & s=TP \ (\Gamma \ \vdash \ t:t) \ \{\} \\ & & r \text{ is a substitution on } tv(s\ t) \backslash tv(s\ \Gamma) \end{array}
```

Strong Normalization

Question: Can Ω be given a type?

```
\Omega = (\lambda x.xx)(\lambda x.xx) :?
```

What about Y?

Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If $\vdash t:T$, then there is a value V such that $t \to^* V$.

Corollary: Simply typed lambda calculus is not Turing complete.

13

Polymorphism

In the simply typed lambda calculus, a term can have many types.

But a variable or parameter has only one type.

Example:

$$(\lambda x.xx)(\lambda y.y)$$

is untypable. But if we substitute actual parameter for formal, we obtain

$$(\lambda y.y)(\lambda y.y): a \to a$$

Functions which can be applied to arguments of many types are called polymorphic.

Polymorphism in Programming

Polymorphism is essential for many program patterns.

```
Example: map

def map f xs =
   if (isEmpty (xs)) nil
   else cons (f (head xs)) (map (f, tail xs))
...
names: List[String]
nums : List[Int]
...
map toUpperCase names
map increment nums
```

Without a polymorphic type for map one of the last two lines is always illegal!

15

Forms of Polymorphism

Polymorphism means "having many forms".

Polymorphism also comes in several forms.

- Universal polymorphism, sometimes also called generic types: The ability to instantiate type variables.
- Inclusion polymorphism, sometimes also called subtyping: The ability to treat a value of a subtype as a value of one of its supertypes.
- Ad-hoc polymorphism, sometimes also called overloading: The ability to define several versions of the same function name, with different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

Explicit Polymorphism

We introduce a polymorphic type $\forall a.T$, which can be used just as any other type.

We then need to make introduction and elimination of \forall 's explicit. Typing rules:

$$(\forall \mathbf{E}) \ \frac{\Gamma \ \vdash \ t : \forall a.T}{\Gamma \ \vdash \ t[U] : [U/a]T} \qquad (\forall \mathbf{I}) \ \frac{\Gamma \ \vdash \ t : T}{\Gamma \ \vdash \ \Lambda a.t : \forall a.T}$$

17

We also need to give all parameter types, so programs become verbose.

Example:

```
def map [a][b] (f: a -> b) (xs: List[a]) =
  if (isEmpty [a] (xs)) nil [a]
  else cons [b] (f (head [a] xs)) (map [a][b] (f, tail [a] xs))
...
names: List[String]
nums : List[Int]
...
map [String] [String] toUpperCase names
map [Int] [Int] increment nums
```

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we have a new syntactic category of type schemes. Syntax:

Type Scheme
$$S ::= T \mid \forall a.S$$

Type schemes are not fully general types; they are used only to type named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its inventors. (The original treatment uses let ... in ... rather than val ...; ...).

19

Hindley/Milner Typing rules

$$(\text{VAR}) \quad \Gamma, x : S, \Gamma' \vdash x : S \qquad (x \notin dom(\Gamma'))$$

$$(\forall \text{E}) \quad \frac{\Gamma \vdash t : \forall a.T}{\Gamma \vdash t : [U/a]T} \qquad (\forall \text{I}) \quad \frac{\Gamma \vdash t : T \qquad a \notin tv(\Gamma)}{\Gamma \vdash t : \forall a.T}$$

$$(\text{LET}) \quad \frac{\Gamma \vdash t : S \qquad \Gamma, x : S \vdash t' : T}{\Gamma \vdash let \ x = t \ in \ t' : T}$$

The other two rules are as in simply typed lambda calculus:

$$(\rightarrow \mathbf{I}) \ \frac{\Gamma, x: T \vdash t: U}{\Gamma \vdash \lambda x.t: T \rightarrow U} (\rightarrow \mathbf{E}) \ \frac{\Gamma \vdash M: T \rightarrow U \quad \Gamma \vdash N: T}{\Gamma \vdash M \ N: U}$$

Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner system.

```
let map = \lambda f. \lambda xs in if (isEmpty (xs)) nil else cons (f (head xs)) (map (f, tail xs)) ... // names: List[String] // nums : List[Int] // map : \forall a. \forall b. (a \rightarrow b) \rightarrow List[a] \rightarrow List[b] ... map toUpperCase names map increment nums
```

21

Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic. I.e.

$$(\lambda x.xx)(\lambda y.y)$$

is still ill-typed, even though the following is well-typed:

let
$$id = \lambda y.y$$
 in id id

With explicit polymorphism the expression could be completed to a well-typed term:

$$(\Lambda a.\lambda x: (\forall a: a \to a).x[a \to a](x[a]))(\Lambda b.\lambda y.y)$$

The Essence of let

We regard

let
$$x = t$$
 in t'

as a shorthand for

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM' be the type system that results if we replace rule (Let) from the Hindley/Milner system HM by:

(Let')
$$\frac{\Gamma \vdash t : T \qquad \Gamma \vdash [t/x]t' : U}{\Gamma \vdash \mathbf{let} \ x = t \ \mathbf{in} \ t' : U}$$

23

Theorem: $\Gamma \vdash_{HM} t : S \text{ iff } \Gamma \vdash_{HM'} t : S$

The theorem establishes the following connection between the Hindley/Milner system and the simply typed lambda calculus F_1 :

Corollary: Let t^* be the result of expanding all let's in t according to the rule

let
$$x = t$$
 in $t' \rightarrow [t/x]t'$

Then

$$\Gamma \vdash_{HM} t: T \ \Rightarrow \ \Gamma \vdash_{F_1} t^*: T$$

Furthermore, if every *let*-bound name is used at least once, we also have the reverse:

$$\Gamma \vdash_{F_1} t^* : T \Rightarrow \Gamma \vdash_{HM} t : T$$

Principal Types

Definition: A type T is a generic instance of a type scheme $S = \forall \alpha_1 \dots \forall \alpha_n. T'$ if there is a substitution s on $\alpha_1, \dots, \alpha_n$ such that T = sT'. We write in this case $S \leq T$.

Definition: A type scheme S' is a generic instance of a type scheme S iff for all types T

$$S' \le T \implies S \le T$$

We write in this case $S \leq S'$.

25

Definition: A type scheme S is principal (or: most general) for Γ and t iff

- $\Gamma \vdash t : S$
- $\bullet \ \Gamma \ \vdash \ t:S' \ \text{implies} \ S \leq S'$

Definition: A type system TS has the principal typing property iff, whenever $\Gamma \vdash_{TS} t : S$ then there exists a principal type scheme for Γ and t.

Theorem:

- 1. HM' without **let** has the p.t.p.
- 2. HM' with **let** has the p.t.p.
- 3. *HM* has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed lambda calculus. (2.): Expand all let's and apply (1.). (3.): Use equivalence between HM and HM'.

These observations could be used to come up with a type reconstruction algorithm for HM. But in practice one takes a more direct approach.

27

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply typed lambda calculus. We only have to add a clause for *let* expressions:

```
TP: Judgement 
ightarrow Subst 
ightarrow Subst TP(\Gamma \vdash t:T) \ s =  \textit{case } t \ \textit{of}  ...  \textit{let } x = t_1 \ \textit{in} \ t_2 \ : \ \textit{let } a, b \ \textit{fresh in}   \textit{let } s_1 = TP \ (\Gamma \vdash t_1:a) \ \textit{in}   TP \ (\Gamma, x: \textit{gen}(s_1 \ \Gamma, s_1 \ a) \ \vdash \ t_2:b) \ s_1  where \textit{gen}(\Gamma, T) \ = \ \forall tv(T) \backslash tv(\Gamma).T.
```