Foundations of Software
Winter Semester 2007

Week 7
October 30

October 39, 2007 - version 1.0

Plan
PREVIOUSLY: unit, sequencing, let, pairs, tuples

TODAY:
1. options, variants
2. recursion
3. state

NEXT: exceptions?
NEXT: polymorphic (not so simple) typing

Records

t = .. terms
{1;=t; '€} record
t.1 projection

v o= L values
{1;=v; €1} record value

T = .. types
{1;:T; '€} type of records

Evaluation rules for records

{1i=v; “"}.1; — v; (E-ProJRcD)

(E-PrOJ)

’ . E-Rcp
{1i=Vi /'61..j71’1j=.tj’lk=tk kEj\l.,n} ()

{1/=V/ i€l..j—1 ,lj=t_; 71k=tk ij\l..n}

Typing rules for records

foreach/ [Ft;:T;

, . (T-Rcp)
MN={1;=t; €&} . {1;:T; '<*"}

M=tq @ {1;:T; '€}
M+ t1.1; 0 T

(T-ProJ)

Sums and variants

Sums — motivating example

PhysicalAddr = {firstlast:String, addr:String}

VirtualAddr = {name:String, email:String}
Addr = PhysicalAddr + VirtualAddr
inl : “PhysicalAddr — PhysicalAddr+VirtualAddr”
inr : “VirtualAddr — PhysicalAddr+VirtualAddr”

getName = Aa:Addr.
case a of
inl x = x.firstlast
| inr y = y.name;

New syntactic forms

t n= .. terms
inl t tagging (left)
inr t tagging (right)

case t of inl x=t | inr x=t case

v o= values
inl v tagged value (left)
inr v tagged value (right)
T = .. types
T+T sum type

T1+T5 is a disjoint union of T; and T (the tags inl and inr
ensure disjointness)

New evaluation rules t—t/ New typing rules lrN-+:T
case (inl vq) — [x1 — vo]tl(T+t : T
E-CASEINL) 1+
f inl x1=t i =t T-INL
of inl x;=t; | inr x=t» [Finl t1 : T1+To ()
case (inr vp) — [x2 — vota
.) E-CASEINR .
of inl x;=t; | inr xp,=t» () - FEty: T'l? - (T—INR)
inr tq : T1+T>
to — tg
- 0 o (E-CASE)
case tg of inl x;=t; | inr x,=t» MEtg : T1+To
— case ty of inl x;=t; | inr xp,=t; Moxy:TyFty:T Mxp:Tobty: T (T-Case)
-CASE
, [+ case tg of inl x1=t1 | inr xp=to : T
t1— 1t
; (E-INL)
inl t; — inl tj
t t]
5 - = ; (E-INR)
inr t; — inr t;
Sums and Uniqueness of Types New syntactic forms
Problem: t = terms. o
If t has type T, then inl t has type T+U for every U. }nl E as g Eaggllng ge 2;1)1:)
inr t as agging (rig
l.e., we've lost uniqueness of types.
Possible solutions: VorE o values
o ' _ _ inl v as T tagged value (left)
> “Infer” U as needed during typechecking inr v as T tagged value (right)

> Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we'll see next) — OCaml's solution

» Annotate each inl and inr with the intended sum type.

For simplicity, let's choose the third.

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

New typing rules

Mt :Tq

[inl t1 as T1+To : T1+T»

[ty :To

[+ inr t1 as T1+To : T1+T»

Evaluation rules ignore annotations:

case (inl vg as Tp)
of inl x1=t; | inr x>=1t)
— [x1 — volt1

case (inr vg as Tp)
of inl x1=t; | inr x>=1t)

— [X2 — Vo]t2

t] — t)

inl t; as Tp — inl t] as T

t] — t)

inr t; as Tp — inr t] as T

(E-CASEINL)

(E-CASEINR)

(E-INL)

(E-INR)

Variants

Just as we generalized binary products to labeled records, we can

generalize binary sums to labeled variants.

New syntactic forms

t o= .. terms
<l=t> as T tagging
case t of <l;=x;>=t; €" case
T = .. types
<1;:T; "€tm> type of variants

New evaluation rules t—t

case (<1;=v;> as T) of <1l;=x;>=t; "

(E-CASEVARIANT)
— [x = vt

to — tg

. E-CASE
case tg of <1;=x;>=-t; €" ()

— case t6 of <1;=x;>=t; €t

tj — t

: (E-VARIANT)
<li=t;> as T—<1;=t}> as T

New typing rules M=t :T

([tj : Tj
r }7 <lj=tj> as <1,.:T,, r'Cl..n> : <l/:T/ i€1..n

N (T-VARIANT)

r }7 tO : <1/:Ti /'E].,n>
foreach i [, x;:T;jFt;:T
[F case tg of <1;=x;>=t; i€l.n . T

(T-CASE)

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;

getName = Aa:Addr.
case a of
<physical=x> = x.firstlast
| <virtual=y> = y.name;

Options
Just like in OCaml...
OptionalNat = <none:Unit, some:Nat>;
Table = Nat—OptionalNat;

emptyTable = An:Nat. <none=unit> as OptionalNat;

extendTable =
At:Table. Am:Nat. Av:Nat.
An:Nat.
if equal n m then <some=v> as OptionalNat
else t n;

x = case t(5) of
<none=u> = 999
| <some=v> = v;

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>;

nextBusinessDay = \w:Weekday.
case w of <monday=x> = <tuesday=unit> as Weekday
| <tuesday=x> = <wednesday=unit> as Weekday
| <wednesday=x> = <thursday=unit> as Weekday
| <thursday=x> = <friday=unit> as Weekday
| <friday=x> = <monday=unit> as Weekday;

