Foundations of Software
Winter Semester 2007

Week 7
October 30

October 39, 2007 - version 1.0

Plan
PREVIOUSLY:: unit, sequencing, let, pairs, tuples

TODAY:
1. options, variants
2. recursion
3. state

NEXT: exceptions?
NEXT: polymorphic (not so simple) typing

Records

t = .. terms
{1;=t; €} record
t.1 projection
v o= .. values
{1;=v; '€} record value
T = .. types
{1;:T; '€t-"%} type of records

Evaluation rules for records

{1,=v; €1}, lj — v (E—PROJRCD)

t] — t]

: (E-ProJ)
tl . 1 — tl . 1

/
tj — tj
{1i=v; €81 1=t , 1=t “SHn}
— {1;=v; €11 :1j=tj' , 1=t ke

(E-RcD)

Typing rules for records

foreachi THt;:T;
r l_ {1i=ti iEl..n} . {li:Ti i€14.n}

(T-Rcb)

M=tq {li:Ti i€l..n}
Fktl.lj 2 T

(T-Proy)

Sums and variants

Sums — motivating example

PhysicalAddr

{firstlast:String, addr:String}
VirtualAddr {name:String, email:String}

Addr PhysicalAddr + VirtualAddr

inl : “PhysicalAddr — PhysicalAddr+VirtualAddr”
inr : “VirtualAddr — PhysicalAddr+VirtualAddr”

getName = la:Addr.
case a of
inl x = x.firstlast
| inr y = y.name;

New syntactic forms

t = .. terms
inl t tagging (left)
inr t tagging (right)

case t of inl x=t | inr x=t case

v o= L values
inl v tagged value (left)
inr v tagged value (right)
T = .. types
T+T sum type

T1+T5 is a disjoint union of T and T, (the tags inl and inr
ensure disjointness)

New evaluation rules t — t

case (inl vo) — = voltt g et
of inl x;=>t; | inr xo=t

case (inr vp) — [x2 = volta (E-CASEINR)
of inl x;=t; | inr x)=t,

tg — tg

_ . (E-CASE)
case tg of inl x;=t7 | inr x,=ts
— case t{ of inl x;=t; | inr xo=t;
t1 — t]
: - Y (E-INL)
inl t; — inl t3
ty — t]
: : - ; (E-INR)
inr t; — 1nr tj
New typing rules -t : T
[-t1: Ty
(T-InL)
[1inl t1 : T1+T>
I R T
(T-INR)
[Finr t1 : T1+T
[F1tg : T1+T
[x1:T1Ht1 : T [x0:TobHty : T
’ . S (T-CASE)
[+ case tg of inl x1=t; | inr xp=to : T

Sums and Uniqueness of Types

Problem:
If t has type T, then inl t has type T+U for every U.

l.e., we've lost uniqueness of types.

Possible solutions:
» “Infer” U as needed during typechecking

» Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we'll see next) — OCaml's solution

» Annotate each inl and inr with the intended sum type.

For simplicity, let's choose the third.

New syntactic forms

t o= .. terms
inl t as T tagging (left)
inr t as T tagging (right)
v on= L values
inl v as T tagged value (left)
inr v as T tagged value (right)

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

New typing rules =t :T

[Ht1: Ty
(T-InL)
[Finl t; as T1+Ty : T1+T>
Ft1: T
(T-INR)
[+ inr t; as T1+Ty : T1+T»
Evaluation rules ignore annotations: t — t/

case (inl vg as Tp)
of inl x1=t1 | inr x,=t, (E-CASsEINL)
— [Xl — Vo]tl

case (inr vg as Tp)
of inl x;=t; | inr x,=t> (E-CASEINR)
— [X2 — Vo]t2

t; — t!
= . (E-INL)
inl t; as Tp — inl t; as T
t] — t)
(E-INR)

inr t; as To — inr t} as T»

Variants

Just as we generalized binary products to labeled records, we can
generalize binary sums to labeled variants.

New syntactic forms

t o= .. terms
<l=t> as T tagging
case t of <1;=x;>=t; € case

T = . types

<1;:T; ‘€t-"> type of variants

New evaluation rules t —t/

case (<1:=v;> as T) of <1l.,=x;>=t; ‘€l-n
T Y ' (E-CASEVARIANT)

tg — t!
: ’ (E-CASE)

case to of <1I=Xl>:>t, i€l..n
— case tfj of <1l;=x;>=-t; €1

tj — t!

; (E-VARIANT)
<1,'=t,'> as T — <1i=t,'> as T

New typing rules rFt:T

[+ tj : Tj
M+ <lj=tj> as <1;:T; €1-"> : <1;:T; '€">

(T-VARIANT)

M=to @ <1;:T; '€t->
foreach i [, x;:TjFt;:T

: T-CASE
[+ case tg of <1;=x;>=t; " : T ()

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;

getName = Aa:Addr.
case a of
<physical=x> = x.firstlast
| <virtual=y> = y.name;

Options
Just like in OCaml...
OptionalNat = <none:Unit, some:Nat>;
Table = Nat—O0OptionalNat;

emptyTable = An:Nat. <none=unit> as OptionalNat;

extendTable =
At:Table. Am:Nat. Av:Nat.
An:Nat.
if equal n m then <some=v> as OptionalNat
else t n;

x = case t(5) of
<none=u> — 999
| <some=v> = v;

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>;

nextBusinessDay = A\w:Weekday.
case w of <monday=x> = <tuesday=unit> as Weekday
| <tuesday=x> = <wednesday=unit> as Weekday
| <wednesday=x> = <thursday=unit> as Weekday
| <thursday=x> = <friday=unit> as Weekday
| <friday=x> = <monday=unit> as Weekday;

