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Plan

PREVIOUSLY:

1. type safety as progress and preservation

2. typed arithmetic expressions

3. simply typed lambda calculus (STLC)

TODAY:

1. Equivalence of lambda terms

2. Preservation for STLC

3. Extensions to STLC

NEXT: state, exceptions
NEXT: polymorphic (not so simple) typing



Equivalence of Lambda Terms

Representing Numbers

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z
c1 = λs. λz. s z
c2 = λs. λz. s (s z)
c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?
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The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))
−→ λs. λz. s ((λs. λz. s (s z)) s z)
6= λs. λz. s (s (s z))
= c3



The naive approach... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))
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A better approach

Recall the intuition behind the church numeral representation:

I a number n is represented as a term that “does something n
times to something else”

I scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.



scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w
−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w
−→(λz. v ((λs. λz. s (s z)) v z)) w
−→v ((λs. λz. s (s z)) v w)
−→v ((λz. v (v z)) w)
−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w
−→(λz. v (v (v z))) w
−→v (v (v w)))

A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?



Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.
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Examples

tru = λt. λf. t
tru’ = λt. λf. (λx.x) t
fls = λt. λf. f
omega = (λx. x x) (λx. x x)
poisonpill = λx. omega
placebo = λx. tru
Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?
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Examples
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Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

tru = λt. λf. t
tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)
Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f
poisonpill = λx. omega
placebo = λx. tru



Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?

Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.



Proving behavioral inequivalence

Example:

I the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit
= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit
diverges

Proving behavioral inequivalence

Example:

I the argument sequence (λx. x) poisonpill (λx. x)
demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)
−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)
−→∗ poisonpill (λx. x), which diverges



Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?

Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t
tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

I For the case where the sequence has just one element (i.e.,
n = 1), note that both tru v1 and tru′ v1 reach normal
forms after one reduction step.

I For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce (in two steps) to
v1 v3 ... vn. So either both normalize or both diverge.



Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)
Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.

Preservation for STLC



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh.
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The “Substitution Lemma”

Lemma: Types are preserved under substitition.
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Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.
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The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-App: t = t1 t2

Γ, x:S ` t1 : T2→T1

Γ, x:S ` t2 : T2

T = T1

By the induction hypothesis, Γ ` [x 7→ s]t1 : T2→T1 and
Γ ` [x 7→ s]t2 : T2. By T-App, Γ ` [x 7→ s]t1 [x 7→ s]t2 : T, i.e.,
Γ ` [x 7→ s](t1 t2) : T.

The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Var: t = z
with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7→ s]z = s. The required
result is then Γ ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7→ s]z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1

Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
Γ, y:T2 ` s : S. Now, by the induction hypothesis,
Γ, y:T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ ` [x 7→ s]λy:T2. t1 : T2→T1.

Summary: Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Lemmas to prove:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Review: Type Systems

To define and verify a type system, you must:

1. Define types

2. Specify typing rules

3. Prove soundness: progress and preservation

Two Typing Topics



Erasure

erase(x) = x
erase(λx:T1. t2) = λx. erase(t2)
erase(t1 t2) = erase(t1) erase(t2)

Intro vs. elim forms

An introduction form for a given type gives us a way of
constructing elements of this type.
An elimination form for a type gives us a way of using elements of
this type.



The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

I “law of the excluded middle” — P ∨ ¬P — not recognized.

A proof of P ∧ Q is a pair of evidence for P and evidence for Q.

A proof of P ⊃ Q is a procedure for transforming evidence for P
into evidence for Q.

Propositions as Types

Logic Programming languages

propositions types
proposition P ⊃ Q type P→Q
proposition P ∧ Q type P× Q
proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)

proof simplification

evaluation

(a.k.a. “cut elimination”)



Propositions as Types

Logic Programming languages

propositions types
proposition P ⊃ Q type P→Q
proposition P ∧ Q type P× Q
proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)
proof simplification evaluation

(a.k.a. “cut elimination”)

Extensions to STLC



Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding
them to the syntax of types, extending the syntax of terms with
associated constants (zero) and operators (succ, etc.) and
adding appropriate typing and evaluation rules. We can do this for
as many base types as we like.

For more theoretical discussions (as opposed to programming) we
can often ignore the term-level inhabitants of base types, and just
treat these types as uninterpreted constants.
E.g., suppose B and C are some base types. Then we can ask
(without knowing anything more about B or C) whether there are
any types S and T such that the term

(λf:S. λg:T. f g) (λx:B. x)

is well typed.

The Unit type

t ::= ... terms
unit constant unit

v ::= ... values
unit constant unit

T ::= ... types
Unit unit type

New typing rules Γ ` t : T

Γ ` unit : Unit (T-Unit)



Sequencing

t ::= ... terms
t1;t2

t1 −→ t′
1

t1;t2 −→ t′
1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)
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Derived forms

I Syntatic sugar

I Internal language vs. external (surface) language

Sequencing as a derived form

t1;t2
def
= (λx:Unit.t2) t1

where x /∈ FV(t2)



Equivalence of the two definitions

[board]

Ascription

New syntactic forms

t ::= ... terms
t as T ascription

New evaluation rules t −→ t′

v1 as T −→ v1 (E-Ascribe)

t1 −→ t′
1

t1 as T −→ t′
1 as T

(E-Ascribe1)

New typing rules Γ ` t : T

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)



Ascription as a derived form

t as T
def
= (λx:T. x) t

Let-bindings

New syntactic forms

t ::= ... terms
let x=t in t let binding

New evaluation rules t −→ t′

let x=v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

t1 −→ t′
1

let x=t1 in t2 −→ let x=t′
1 in t2

(E-Let)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2
(T-Let)



Pairs

t ::= ... terms
{t,t} pair
t.1 first projection
t.2 second projection

v ::= ... values
{v,v} pair value

T ::= ... types
T1× T2 product type

Evaluation rules for pairs

{v1,v2}.1 −→ v1 (E-PairBeta1)

{v1,v2}.2 −→ v2 (E-PairBeta2)

t1 −→ t′
1

t1.1 −→ t′
1.1

(E-Proj1)

t1 −→ t′
1

t1.2 −→ t′
1.2

(E-Proj2)

t1 −→ t′
1

{t1,t2} −→ {t′
1,t2}

(E-Pair1)

t2 −→ t′
2

{v1,t2} −→ {v1,t′
2}

(E-Pair2)



Typing rules for pairs

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1× T2
(T-Pair)

Γ ` t1 : T11× T12

Γ ` t1.1 : T11
(T-Proj1)

Γ ` t1 : T11× T12

Γ ` t1.2 : T12
(T-Proj2)

Tuples

t ::= ... terms
{ti

i∈1..n} tuple
t.i projection

v ::= ... values
{vi

i∈1..n} tuple value

T ::= ... types
{Ti

i∈1..n} tuple type



Evaluation rules for tuples

{vi
i∈1..n}.j −→ vj (E-ProjTuple)

t1 −→ t′
1

t1.i −→ t′
1.i

(E-Proj)

tj −→ t′
j

{vi
i∈1..j−1,tj,tk

k∈j+1..n}
−→ {vi

i∈1..j−1,t′
j,tk

k∈j+1..n}

(E-Tuple)

Typing rules for tuples

for each i Γ ` ti : Ti

Γ ` {ti
i∈1..n} : {Ti

i∈1..n}
(T-Tuple)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj
(T-Proj)


