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Readings

You should try to at least look at the reading for a particular
lecture before that lecture.

We’re starting with Chapter 3 of the textbook. Chapter 2 contains
some mathematical preliminaries which we assume you are familiar
with.



Where we’re going

Going Meta...

The functional programming style used in OCaml and Scala is
based on treating programs as data — i.e., on writing functions
that manipulate other functions as their inputs and outputs.

Everything in this course is based on treating programs as
mathematical objects — i.e., we will be building mathematical
theories whose basic objects of study are programs (and whole
programming languages).

Jargon: We will be studying the metatheory of programming
languages.



Warning!

The material in the next couple of lectures is more slippery than it
may first appear.

“I believe it when I hear it” is not a sufficient test of understanding.

A much better test is “I can explain it so that someone else
believes it.”

“You never really misunderstand something
until you try to teach it...”

— Anon.

Basics of Induction (Review)



Induction

Principle of ordinary induction on natural numbers:

Suppose that P is a predicate on the natural numbers.
Then:

If P(0)
and, for all i , P(i) implies P(i + 1),
then P(n) holds for all n.

Example

Theorem: 20 + 21 + ... + 2n = 2n+1 − 1, for every n.
Proof: Let P(i) be “20 + 21 + ... + 2i = 2i+1 − 1.”

I Show P(0):
20 = 1 = 21 − 1

I Show that P(i) implies P(i + 1):

20 + 21 + ... + 2i+1 = (20 + 21 + ... + 2i ) + 2i+1

= (2i+1 − 1) + 2i+1 by IH
= 2 · (2i+1)− 1
= 2i+2 − 1

I The result (P(n) for all n) follows by the principle of
(ordinary) induction.



Shorthand form

Theorem: 20 + 21 + ... + 2n = 2n+1 − 1, for every n.
Proof: By induction on n.

I Base case (n = 0):

20 = 1 = 21 − 1

I Inductive case (n = i + 1):

20 + 21 + ... + 2i+1 = (20 + 21 + ... + 2i ) + 2i+1

= (2i+1 − 1) + 2i+1 IH
= 2 · (2i+1)− 1
= 2i+2 − 1

Complete Induction

Principle of complete induction on natural numbers:

Suppose that P is a predicate on the natural numbers.
Then:

If, for each natural number n,
given P(i) for all i < n
we can show P(n),

then P(n) holds for all n.



Complete versus ordinary induction

Ordinary and complete induction are interderivable — assuming
one, we can prove the other.

Thus, the choice of which to use for a particular proof is purely a
question of style.

We’ll see some other (equivalent) styles as we go along.

Syntax



Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic
expressions:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Terminology:

I t here is a metavariable

Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in
abstract syntax trees.

For this reason, grammars like the one on the previous slide are
sometimes called abstract grammars. An abstract grammar defines
a set of abstract syntax trees and suggests a mapping from
character strings to trees.

We then write terms as linear character strings rather than trees
simply for convenience. If there is any potential confusion about
what tree is intended, we use parentheses to disambiguate.



Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in
abstract syntax trees.

For this reason, grammars like the one on the previous slide are
sometimes called abstract grammars. An abstract grammar defines
a set of abstract syntax trees and suggests a mapping from
character strings to trees.

We then write terms as linear character strings rather than trees
simply for convenience. If there is any potential confusion about
what tree is intended, we use parentheses to disambiguate.

Q: So, are

succ 0
succ (0)
(((succ (((((0))))))))

“the same term”?

What about

succ 0
pred (succ (succ 0))

?



A more explicit form of the definition

The set T of terms is the smallest set such that

1. {true, false, 0} ⊆ T ;

2. if t1 ∈ T , then {succ t1, pred t1, iszero t1} ⊆ T ;

3. if t1 ∈ T , t2 ∈ T , and t3 ∈ T , then
if t1 then t2 else t3 ∈ T .

Inference rules

An alternate notation for the same definition:

true ∈ T false ∈ T 0 ∈ T
t1 ∈ T

succ t1 ∈ T
t1 ∈ T

pred t1 ∈ T
t1 ∈ T

iszero t1 ∈ T
t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

Note that “the smallest set closed under...” is implied (but often
not stated explicitly).

Terminology:

I axiom vs. rule

I concrete rule vs. rule scheme



Terms, concretely

Define an infinite sequence of sets, S0, S1, S2, . . . , as follows:

S0 = ∅
Si+1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

Now let
S =

⋃
i Si

Comparing the definitions

We have seen two different presentations of terms:

1. as the smallest set that is closed under certain rules (T )
I explicit inductive definition
I BNF shorthand
I inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

What does it mean to assert that “these presentations are
equivalent”?
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Induction on Syntax



Why two definitions?

The two ways of defining the set of terms are both useful:

1. the definition of terms as the smallest set with a certain
closure property is compact and easy to read

2. the definition of the set of terms as the limit of a sequence
gives us an induction principle for proving things about
terms...

Induction on Terms

Definition: The depth of a term t is the smallest i such that
t ∈ Si .

From the definition of S, it is clear that, if a term t is in Si , then
all of its immediate subterms must be in Si−1, i.e., they must have
strictly smaller depths.

This observation justifies the principle of induction on terms.
Let P be a predicate on terms.

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.



Inductive Function Definitions

The set of constants appearing in a term t, written Consts(t), is
defined as follows:

Consts(true) = {true}
Consts(false) = {false}
Consts(0) = {0}
Consts(succ t1) = Consts(t1)
Consts(pred t1) = Consts(t1)
Consts(iszero t1) = Consts(t1)
Consts(if t1 then t2 else t3) = Consts(t1) ∪ Consts(t2)

∪Consts(t3)

Simple, right?

First question:

Normally, a “definition” just assigns a convenient name to a
previously-known thing. But here, the “thing” on the
right-hand side involves the very name that we are “defining”!

So in what sense is this a definition??



Second question:

Suppose we had written this instead...

The set of constants appearing in a term t, written BadConsts(t),
is defined as follows:

BadConsts(true) = {true}
BadConsts(false) = {false}
BadConsts(0) = {0}
BadConsts(0) = {}
BadConsts(succ t1) = BadConsts(t1)
BadConsts(pred t1) = BadConsts(t1)
BadConsts(iszero t1) = BadConsts(iszero (iszero t1))

What is the essential difference between these two definitions?
How do we tell the difference between well-formed inductive
definitions and ill-formed ones?
What, exactly, does a well-formed inductive definition mean?

What is a function?

Recall that a function f from A (its domain) to B (its co-domain)
can be viewed as a two-place relation (called the “graph” of the
function) with certain properties:

I It is total: Every element of its domain occurs at least once in
its graph. More precisely:

For every a ∈ A, there exists some b ∈ B such that
(a, b) ∈ f .

I It is deterministic: every element of its domain occurs at most
once in its graph. More precisely:

If (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2.



We have seen how to define relations inductively. E.g....
Let Consts be the smallest two-place relation closed under the
following rules:

(true, {true}) ∈ Consts

(false, {false}) ∈ Consts

(0, {0}) ∈ Consts

(t1, C ) ∈ Consts

(succ t1, C ) ∈ Consts

(t1, C ) ∈ Consts

(pred t1, C ) ∈ Consts

(t1, C ) ∈ Consts

(iszero t1, C ) ∈ Consts

(t1, C1) ∈ Consts (t2, C2) ∈ Consts (t3, C3) ∈ Consts

(if t1 then t2 else t3, C1 ∪ C2 ∪ C3) ∈ Consts

This definition certainly defines a relation (i.e., the smallest one
with a certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!



This definition certainly defines a relation (i.e., the smallest one
with a certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!

Theorem:

The relation Consts defined by the inference rules a couple of
slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that
(t, C ) ∈ Consts.

Proof:

By induction on t.
To apply the induction principle for terms, we must show, for an
arbitrary term t, that if

for each immediate subterm s of t, there is exactly one set of
terms Cs such that (s, Cs) ∈ Consts

then

there is exactly one set of terms C such that (t, C ) ∈ Consts.
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Proceed by cases on the form of t.

I If t is 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C ) ∈ Consts.

I If t is succ t1, then the induction hypothesis tells us that
there is exactly one set of terms C1 such that
(t1, C1) ∈ Consts. But then it is clear from the definition of
Consts that there is exactly one set C (namely C1) such that
(t, C ) ∈ Consts.

Similarly when t is pred t1 or iszero t1.

Proceed by cases on the form of t.

I If t is 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C ) ∈ Consts.
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there is exactly one set of terms C1 such that
(t1, C1) ∈ Consts. But then it is clear from the definition of
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Proceed by cases on the form of t.

I If t is 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C ) ∈ Consts.

I If t is succ t1, then the induction hypothesis tells us that
there is exactly one set of terms C1 such that
(t1, C1) ∈ Consts. But then it is clear from the definition of
Consts that there is exactly one set C (namely C1) such that
(t, C ) ∈ Consts.

Similarly when t is pred t1 or iszero t1.

I If t is if s1 then s2 else s3, then the induction
hypothesis tells us

I there is exactly one set of terms C1 such that (t1, C1) ∈ Consts
I there is exactly one set of terms C2 such that (t2, C2) ∈ Consts
I there is exactly one set of terms C3 such that (t3, C3) ∈ Consts

But then it is clear from the definition of Consts that there is
exactly one set C (namely C1 ∪ C2 ∪ C3) such that
(t, C ) ∈ Consts.



How about the bad definition?

(true, {true}) ∈ BadConsts

(false, {false}) ∈ BadConsts

(0, {0}) ∈ BadConsts

(0, {}) ∈ BadConsts

(t1, C ) ∈ BadConsts

(succ t1, C ) ∈ BadConsts

(t1, C ) ∈ BadConsts

(pred t1, C ) ∈ BadConsts

(iszero (iszero t1), C ) ∈ BadConsts

(iszero t1, C ) ∈ BadConsts

This set of rules defines a perfectly good relation — it’s just that
this relation does not happen to be a function!

Just for fun, let’s calculate some cases of this relation...

I For what values of C do we have (false, C ) ∈ BadConsts?

I For what values of C do we have (succ 0, C ) ∈ BadConsts?

I For what values of C do we have
(if false then 0 else 0, C ) ∈ BadConsts?

I For what values of C do we have
(iszero 0, C ) ∈ BadConsts?
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This set of rules defines a perfectly good relation — it’s just that
this relation does not happen to be a function!

Just for fun, let’s calculate some cases of this relation...

I For what values of C do we have (false, C ) ∈ BadConsts?

I For what values of C do we have (succ 0, C ) ∈ BadConsts?

I For what values of C do we have
(if false then 0 else 0, C ) ∈ BadConsts?

I For what values of C do we have
(iszero 0, C ) ∈ BadConsts?

Another Inductive Definition

size(true) = 1
size(false) = 1
size(0) = 1
size(succ t1) = size(t1) + 1
size(pred t1) = size(t1) + 1
size(iszero t1) = size(t1) + 1
size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1



Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts(t)| ≤ size(t).

Proof:

By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:

Case: t is a constant

Immediate: |Consts(t)| = |{t}| = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, |Consts(t1)| ≤ size(t1). We now
calculate as follows:
|Consts(t)| = |Consts(t1)| ≤ size(t1) < size(t).
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Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts(t)| ≤ size(t).

Proof: By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:

Case: t is a constant

Immediate: |Consts(t)| = |{t}| = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, |Consts(t1)| ≤ size(t1). We now
calculate as follows:
|Consts(t)| = |Consts(t1)| ≤ size(t1) < size(t).

Case: t = if t1 then t2 else t3

By the induction hypothesis, |Consts(t1)| ≤ size(t1),
|Consts(t2)| ≤ size(t2), and |Consts(t3)| ≤ size(t3). We now
calculate as follows:

|Consts(t)| = |Consts(t1) ∪ Consts(t2) ∪ Consts(t3)|
≤ |Consts(t1)|+ |Consts(t2)|+ |Consts(t3)|
≤ size(t1) + size(t2) + size(t3)
< size(t).



Operational Semantics

Abstract Machines

An abstract machine consists of:

I a set of states

I a transition relation on states, written −→

We read “t −→ t′” as “t evaluates to t′ in one step”.

A state records all the information in the machine at a given
moment. For example, an abstract-machine-style description of a
conventional microprocessor would include the program counter,
the contents of the registers, the contents of main memory, and
the machine code program being executed.



Abstract Machines

For the very simple languages we are considering at the moment,
however, the term being evaluated is the whole state of the
abstract machine.

Nb. Often, the transition relation is actually a partial function:
i.e., from a given state, there is at most one possible next state.
But in general there may be many.

Operational semantics for Booleans

Syntax of terms and values

t ::= terms
true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value



Evaluation relation for Booleans

The evaluation relation t −→ t′ is the smallest relation closed
under the following rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

Terminology

Computation rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

Congruence rule:

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

Computation rules perform “real” computation steps.
Congruence rules determine where computation rules can be
applied next.



Evaluation, more explicitly

−→ is the smallest two-place relation closed under the following
rules:

((if true then t2 else t3), t2) ∈ −→

((if false then t2 else t3), t3) ∈ −→

(t1, t′1) ∈ −→
((if t1 then t2 else t3), (if t′1 then t2 else t3)) ∈ −→

The notation t −→ t′ is short-hand for (t, t′) ∈ −→.


