
Combinator Parsing

– Draft –

Small languages abound on the internet. There are many situations where you need to
whip up a processor for such a language. However, often you are stopped in your tracks by
the problem ofparsingsentences in the language you want to process. Essentially, you have
two choices:

One choice is to roll your own parser (and lexical analyzer). If you are not an expert this
is hard. If you are an expert, it is still time-consuming to do this.

The alternative choice is to use a parser generator such Yacc, Bison, or AntLR, or JavaCC.
You’ll probably also need a scanner generator such as Lex to go with it. This might be the best
solution, except for a couple of inconveniences: You need to learn a new tool, including its –
sometimes obscure – error messages. You also need to figure out how to connect the output
of this tool to your program. This might limit the choice of your programming language, and
complicate your tool chain.

This chapter presents a third alternative: Instead of using the stand-alone domain specific
language of a parser generator you will use anembedded DSLfor the same task. The em-
bedded DSL consists of a library ofparser combinators. These are functions and operators
defined in Scala that are bullding blocks for parsers. The building blocks follow one by one
the constructions of a context-free grammar, so they are very easy to understand.

1 Example: Arithmetic Expressions

Here’s an example: Let’s say you want to construct a parser for arithmetic expressions con-
sisting of integer numbers, parentheses, and the binary operators+, -, *, and/. The first step
is always to write down a grammar for the language to be parsed. For arithmetic expressions,
this grammar reads as follows:

expr ::= term {’+’ term | ’-’ term}.
term ::= factor {’*’ factor | ’/’ factor}.
factor ::= numericLit | ’(’ expr ’)’.

Here, “|” denotes alternative productions.{...} denotes repetition (zero or more times)
whereas[...] denotes an optional occurrence.

Now that you have defined the grammar, what’s next? If you use Scala’s combinator
parsers, you are basically done! You only need to perform some systematic text replacements
and wrap the parser in a class as follows:

1

1 EXAMPLE: ARITHMETIC EXPRESSIONS 2

import scala.util.parsing.combinator1.syntactical.StandardTokenParsers
class Arith extends StandardTokenParsers {

lexical.delimiters ++= List("(", ")", "+", "-", "*", "/")
def expr : Parser[Any] = term ∼ rep("+" ∼ term | "-" ∼ term)
def term : Parser[Any] = factor ∼ rep("*" ∼ factor | "/" ∼ factor)
def factor: Parser[Any] = "(" ∼ expr ∼ ")" | numericLit

}

The parser for arithmetic expressions is a class which inherits from

scala.util.parsing.combinator1.syntactical.StandardTokenParsers.

The latter is a class which provides the machinery to write a standard parser. The class builds
on a standard lexer which recognizes Java-like tokens consisting of strings, integers, and iden-
tifiers. The lexer skips over whitespace and Java-like comments. Both multi-line comments
/* ... */ and single line comments// ... are supported. The lexer still needs to be con-
figured with a set ofdelimiters. These are tokens consisting of special symbols that the lexer
should recognize. In the case of arithmetic expressions, the delimiters are “(”, “)”, “ +”, “ -”,
“*”, and “/”. They are installed by the line:

lexical.delimiters += ("(", ")", "+", "-", "*", "/")

Here,lexical refers to the lexer component inherited from classStandardTokenParsers
anddelimiters is a mutable set in this component. The “+=” operation enters the desired
delimiters into the set.

The next three lines represent the productions for arithmetic expressions. As you can
see, they follow very closely the productions of the context-free grammar. In fact, you could
generate this part automatically from the context-free grammar, by performing a number of
simple text replacements:

1. Every production becomes a method, so you need to prefix it withdef.

2. The result type of each method isParser[Any], so you need to change the “produces”
sign ::= to : Parser[Any] = . You’ll find out below what the typeParser[Any]
signifies, and also how to make it more precise.

3. In the grammar, sequential composition was implicit, but in the program it is expressed
by an explicit operator “∼”. So you need to insert a “∼” between every two consecutive
symbols of a production.

4. Repetition is expressedrep(...) instead of{...}. Analogously (not shown in the
example), option is expressedopt(...) instead of[...].

5. The point “.” at the end of each production is omitted – you can however write a semi-
colon “;” if you like.

That’s it! You have a parser for arithmetic expressions. As you can see, the combinator
parsing framework gives you a fast path to construct your own parsers. In part this is due to
the fact that a lot of functionality is “pre-canned” in theStandardTokenParsers class. But
the parsing framework as a whole is also easy to adapt to other scenarious. For instance, it is

2 RUNNING YOUR PARSER 3

quite bossible to configure the framework to use a different lexer (including one you write).
In fact, you will find out that the lexer itself can be written with the same combinator parsers
that underlie the parser for arithmetic expressions.

2 Running Your Parser

You can test your parser with the following a small program:

object ArithTest extends Arith {
def main(args: Array[String]) {

val tokens = new lexical.Scanner(args(0))
println("input: "+args(0))
println(phrase(expr)(tokens))

}
}

TheArithTest object defines amain method which parses the first command line argument
that’s passed to it. It first creates aScanner object that reads the first input argument and
converts it to a token sequence namedtokens. It then prints the original input argument, and
finally prints its parsed version. Parsing is done by the expression

phrase(expr)(tokens)

This expression applies the parserphrase(expr) to the token sequencetokens. Thephrase
method is a special parser. It takes another parser as argument, applies this parser to an input
sequence, and at the same time makes sure that after parsing the input sequence is completely
read. Sophrase(expr) is like expr, except thatexpr is can parse parts of input sequences,
whereasphrase(expr) succeeds only if the input sequence is parsed from beginning to end.

You can run the arithmetic parser with the following command:

scala ArithTest "2 * (3 + 7)"
input: 2 * (3 + 7)
[1.12] parsed: ((2 ∼ List((* ∼ (((∼ ((3 ∼ List()) ∼ List((+ ∼ (7 ∼
List()))))) ∼))))) ∼ List())

The output tells you that the parser successfully analyzed the input string up to position [1.12].
That means the first line and the twelfth column, or, otherwise put, all the input string was
parsed. Ignore for the moment the result after “parsed:” – it is not very useful, and you will
find out later how to get more specific parser results.

You can also try to introduce some input string which is not a legal expression. For in-
stance, you could write one closing parenthesis too many:

java ArithTest "2 * (3 + 7))"
input: 2 * (3 + 7))
[1.12] failure: end of input expected

2 * (3 + 7))
ˆ

3 ANOTHER EXAMPLE: JSON 4

Here, theexpr parser parsed everything until the final closing parenthesis, which does not
form part of the arithmetic expression. Thephrase parser then issued an error message which
said that it expected the input to end at the point of the closing parenethesis.

3 Another Example: JSON

Let’s try another example. JSON, the JavaScript Object Notation is a popular data interchange
format. You’ll now find out how to write a parser for it. Here is the syntax of JSON:

value = obj | arr | stringLit | numericLit | "null" | "true" | "false"
obj = "{" [members] "}"
arr = "[" [values] "]"
members = member {"," member}
member = stringLit ":" value
values = value {"," value}

A JSON value is an object, or an array, or a string, or a number, or one of the three reserved
wordsnull, true, or false. A JSON object is a (possible empty) sequence of members
separated by commas and enclosed in braces. Each member is a string/value pair where the
string and the value are separated by a colon. Finally, a JSON array is a sequence of values
separated by commas and enclosed in brackets.

Here is an example of a JSON object:

{ "address book": {
"name": "John Smith",
"address": {

"street": "10 Market Street",
"city" : "San Francisco, CA",
"zip" : 94111

},
"phone numbers": [

"408 338-4238",
"408 111-6892"

]
}

}

Parsing JSON data is straightforward when using Scala’s parser combinators. Here is the
complete parser:

import scala.util.parsing.combinator1.syntactical.StandardTokenParsers
class JSON extends StandardTokenParsers {

lexical.delimiters += ("{", "}", "[", "]", ":", ",")
lexical.reserved += ("null", "true", "false")

def value : Parser[Any] = obj | arr | stringLit | numericLit |
"null" | "true" | "false"

def obj : Parser[Any] = "{" ∼ repsep(member, ",") ∼ "}"

3 ANOTHER EXAMPLE: JSON 5

def arr : Parser[Any] = "[" ∼ repsep(value, ",") ∼ "]"
def member: Parser[Any] = stringLit ∼ ":" ∼ value

}

This parser follows the same structure as the arithmetic expression parser. The delimiters
of JSON are"{", "}", "[", "]", ":", ",". There are also somereserved words: null,
true, false. Reserved words are tokens which follow the syntax of identifiers, but which are
reserved. Reserved words are communicated to the lexer by entering them into itsreserved
table:

lexical.reserved += ("null", "true", "false")

The rest of the parser is made up of the productions of the JSON grammar. The productions
use one shortcut which simplifies the grammar: Therepsep combinator parses a (possibly
empty) sequence of terms which are separated by a given separator string. For instance, in
the example above,repsep(member, ",") parses a comma-separated sequence ofmember
terms. Otherwise, the productions in the parser correspond exactly to the productions in the
grammer, just like it was the case for the arithmetic expression parsers.

To test the JSON parsers, let’s change the framework a bit, so that the parser operates on a
file instead of on the command line:

import scala.util.parsing.input.StreamReader
object JSONTest extends JSON {

def main(args: Array[String]) {
val reader = StreamReader(new java.io.FileReader(args(0)))
val tokens = new lexical.Scanner(reader)
println(phrase(value)(tokens))

}
}

Themain method in this program first creates aStreamReader object. This object represents
an input stream of characters with positions; for every character that’s read one can query
its line and column numbers (both lines and columns start at 1). It then creates aScanner
over this stream reader. Finally the tokens returned from the scanner are parsed; they need
to conform to thevalue production of the JSON grammar. If you store the “address book”
object above into a file namedaddress-book.json and run the test program on it you should
get:

java JSONTest address-book.json
[14.1] parsed: (({ ∼ List(((address book ∼ :) ∼ (({ ∼ List(((name ∼
:) ∼ John Smith), ((address ∼ :) ∼ (({ ∼ List(((street ∼ :) ∼ 10 Market
Street), ((city ∼ :) ∼ San Francisco, CA), ((zip ∼ :) ∼ 94111))) ∼ })),
((phone numbers ∼ :) ∼ (([∼ List(408 338-4238, 408 111-6892)) ∼]))))
∼ })))) ∼ })

4 PARSER OUTPUT 6

4 Parser Output

The test run above succeeded; the JSON address book was succesfully parsed. However, the
parser output looks strange – it seems to be a sequence composed of bits and pieces of the
input glued together with lists and “∼” combinations. This parser output is not very useful. It
is certaily less readable for humans than the input, but it is also too disorganized to be easily
analyzable by a computer. It’s time to do something about this.

To figure out what to do, you need to know first what the indvidual parsers in the combi-
nator frameworks return as a result (provided they succeed in parsing the input). Here are the
rules:

1. Each parser written as a string (such as:"{" or ":" or "null") returns the parsed string
itself.

2. Each of the single-token parsersstringLit, numericLit, andident also returns the
parsed string itself.

3. A sequential compositionP ∼ Q returns the results of bothP and ofQ. These results are
returned in an instance of a case class which is also written “∼”. So if P returns"true"
andQ returns",", then the sequential compositionP ∼ Q returns∼("true", ","),
which prints as(true ∼ ,).

4. An alternative compositonP | Q returns the result of eitherP andQ (whichever one
succeeds).

5. A repetitionrep(P) or repsep(P, separator) returns the results of all runs ofP as
elements of a list.

6. An optionopt(P) returns an instance of Scala’sOption type. It returns theSome(R) if
P succeeds with resultR andNone if P fails.

With these rules you can now figurewhy the parser output was as shown in the example
above. However, the output is still not very convenient. It would be much better to map a
JSON object into an internal Scala representation that represents themeaningof the JSON
value. A representation which is natural would be as follows:

• A JSON object is represented as a Scala map of typeMap[String, Any]. Every mem-
ber is represented as a key/value binding in the map.

• A JSON array is represented as a Scala list of typeList[Any].

• A JSON string is represented as a ScalaString.

• A JSON numeric literal is represented as a ScalaInt.

• The valuestrue, false andnull are represented in as the Scala values with the same
names.

4 PARSER OUTPUT 7

To produce to this representation, we need to make use of two more combination forms for
parsers, “̂ˆ” and “ˆˆˆ”.

The “̂ ˆ” operatortransformsthe result of a parser. Expressions using this operator have
the form P ˆˆ f whereP is a parser andf is a function.P ˆˆ f parses the same sentences
as justP. WheneverP returns with some resultR, the result ofP ˆˆ f is @f(R)@.

The “̂ ˆˆ” operatorreplacesthe result of a parser. Expressions using this operator have
the form P ˆˆˆ v whereP is a parser andv is a value. But wheneverP returns with some
resultR, the result ofP ˆˆ v is v instead ofR. So “̂ ˆˆ” is related to “̂ ˆ” by the equality

P ˆˆˆ v = P ˆˆ (x => v) .

As an example, here is the JSON parser that parses a numeric literal and converts it to a Scala
integer:

numericLit ˆˆ (_.toInt)

And here is the JSON parser that parses the string"true" and returns Scala’strue value:

"true" ˆˆˆ true

Now for more advanced transformations. Here’s the new version of a parser for JSON objects
which returns a ScalaMap:

def obj: Parser[Map[String, Any]] =
"{" ∼ repsep(member, ",") ∼ "}" ˆˆ { case "{" ∼ ms ∼ "}" => Map() ++ ms }

Remember that the “∼” operator produces as result an instance of a case class with the same
name, “∼”. This is no coincidence. It is designed that way so that you can match parser
results with patterns that follow the same structure as the parsers themselves. For instance,
the pattern"{" ∼ ms ∼ "}" matches a result string"{" followed by a result variablems,
which is followed in turn by a result string"}". This the pattern corresponds exactly to what
is returned by the parser on the left of the “ˆˆ”. In its desugared versions where the “∼”
operator comes first, the same pattern reads:

∼(∼("{", ms), "}") .

The purpose of the pattern in the code above was to “strip off” the braces so that one can get
at the list of members resulting from therepsep(member, ",") parser.

In cases like these there is also an alternative, which avoids producing the unnecessary
parser results which are then discarded by the pattern match. The alternative makes use of the
“∼>” and “<∼” parser combinators. Both express sequential compositon just like “∼”, but
“∼>” keeps only the result of its right operand, whereas “<∼” keeps only the result of its left
operand. So a shorter way to express the JSON object parser would be this:

def obj: Parser[Map[String, Any]] =
"{" ∼> repsep(member, ",") <∼ "}" ˆˆ (Map() ++ _)

Here is a full JSON parser that returns meaningful results:

4 PARSER OUTPUT 8

class JSON extends StandardTokenParsers {
lexical.delimiters += ("{", "}", "[", "]", ":", ",")
lexical.reserved += ("null", "true", "false")

def obj: Parser[Map[String, Any]] =
"{" ∼> repsep(member, ",") <∼ "}" ˆˆ (Map() ++ _)

def arr: Parser[List[Any]] =
"[" ∼> repsep(value, ",") <∼ "]"

def member: Parser[(String, Any)] =
stringLit ∼ ":" ∼ value ˆˆ { case name ∼ ":" ∼ value => (name, value) }

def value: Parser[Any] =
obj | arr | stringLit | numericLit ˆˆ (_.toInt)
"null" ˆˆˆ null | "true" ˆˆˆ true | "false" ˆˆˆ false

}

If you run this parser on theaddress-book.json file, you get the following result (after
adding some newlines and indentation):

java JSON1Test address-book.json
[14.1] parsed: Map(

address book -> Map(
name -> John Smith,
address -> Map(

street -> 10 Market Street,
city -> San Francisco, CA,
zip -> 94111),

phone numbers -> List(408 338-4238, 408 111-6892)
)

)

Summary: Using Combinator Parsers

This is all you need to know in order to get started writing your own parsers. As an aide to
memory, the following table lists all parser combinators that were discussed so far.

ident identifier
"if" keyword or special symbol
numericLit integer number
stringLit string literal
P ∼ Q sequential composition
P <∼ Q, P ∼> Q sequential composition; keep left/right only
P | Q alternative
opt(P) option
rep(P) repetition
repsep(P, Q) interleaved repetition
P ˆˆ f result conversion
P ˆˆˆ v constant result

5 IMPLEMENTING COMBINATOR PARSERS 9

5 Implementing Combinator Parsers

The previous sections have shown that Scala’s combinator parsers provide a convenient means
for constructing your own parsers. Since they are nothing more than a Scala library, they fit
seamlessly into your Scala programs. So it’s very easy to combine a parser with some code
that processes the results it delivers, or to rig a parser so that it takes its input from some
specific source (say, a file, a string, or a character array).

How is this achieved? In the rest of this chapter you’ll take a look “under the hood”
of the combinator parser library. You’ll see what a parser is, and how the primitive parsers
and parser combinators encountered in previous sections are implemented. You can safely
skip these parts if all you want is write some simple combinator parsers. On the other hand,
reading the rest of this chapter should give you a deeper understanding of combinator parsers
in particular, and of the design principles of a combinator DSL in general.

The core of Scala’s combinator parsing framework is all contained in a class

scala.util.parsing.combinator.Parsers.

This class defines theParser type as well as all fundamental combinators. Except where
stated explicitly otherwise, the definitions explained in the following two sub-sections all re-
side in this class.

TheStandardTokenParsers class from which all previous example parsers inherited is
itself a subclass ofParsers. StandardTokenParsers fixes some of the things that are left
open inParsers.

A Parser is in essence just a function from some input type to a parse result. As a first
approximation, the type could be written as follows:

type Parser[T] = Input => ParseResult[T]

Parser Input

Here, the type of parser inputs is fixed by the definition

type Input = Reader[Elem]

The classReader comes from the packagescala.util.parsing.input. It is similar to a
Stream but it also keeps track of the positions of all the elements it reads. The typeElem
represents individual input elements. It is an abstract type member of theParsers class.

type Elem

This means that subclasses ofParsers need to instantiate classElem to the type of input
elements that are being parsed. For instance, the classStandardTokenParsers fixes Elem
to be the Java-like word-tokens that we have encountered so far. So for every class inheriting
from StandardTokenParsers, typeElem is an alias of classToken which itself is defined as
an abstract class:

type Elem = Token
abstract class Token { def chars: String }

5 IMPLEMENTING COMBINATOR PARSERS 10

Here, thechars method returns the characters making up the token as aString. ClassToken
has four standard subclasses:

case class Keyword (override val chars: String) for keywords,

case class NumericLit(override val chars: String) for numbers,

case class StringLit (override val chars: String) for strings,

case class Identifier(override val chars: String) for identifiers.

Parser Results

A parser might either succeed or fail on some given input. Consequently classParseResult
has two subclasses for representing success and failure:

abstract class ParseResult[+T]
case class Success[T](result: T, in: Input) extends ParseResult[T]
case class Failure(msg: String, in: Input) extends ParseResult[Nothing]

The Success case carries the result returned from the parser in itsresult parameter. The
type of parser results is arbitrary; that’s whySuccess, ParseResult, andParser are all
parameterized with a type parameterT which represents the kinds of results returned by a
given parser.Success also takes a second parameter,in, which refers to the input immediately
following the part which the parser consumed. This field is needed for chaining parsers, so
that one parser can operate after another one. Note that this is a purely functional approach to
parsing. Input is not read as a side effect, but it is kept in a stream. A parser will analyze some
part of the input stream, and return the remaining part as its result.

The other subclass ofParseResult is Failure. This class takes as parameter a message
which describes why the parser has failed. LikeSuccess, Failure also takes the remaining
input stream as a second parameter. This is needed to position the error message at the correct
place in the input stream.

The Parser class

In fact, the previous characterization of parsers as functions from inputs to parse result has
oversimplified a bit. The examples above have shown that parsers also implementmethods
such as “∼” for sequential composition of two parsers and “|” for their alternative composi-
tion. SoParser is in reality a class which inherits from the function typeInput => ParseResult
and which additionally defines these methods:

abstract class Parser[+T] extends (Input => ParseResult[T]) { p =>
/** An unspecified method that defines the behaviour of this parser: */
def apply(in: Input): ParseResult[T]

def ∼ ...
def | ...
...

}

5 IMPLEMENTING COMBINATOR PARSERS 11

Theapply method in classParser itself is abstract. It is implemented in the individual parsers
that inherit fromParser. These parsers will be discussed next.

Single-Token Parsers

ClassParsers defines a generic parserelem that can be used to parse any single token:

def elem(kind: String, p: Elem => Boolean) = new Parser[Elem] {
def apply(in: Input) =

if (p(in.first)) Success(in.first, in.rest)
else Failure(kind+" expected", in)

}

This parser takes two parameters: Akind string describing what kind of token should be
parsed, and a predicatep onElems which indicates whether an element fits the class of tokens
to be parsed.

When applying the parserelem(kind, p) to some inputin, the first element of the
input stream is tested with predicatep. If p returnstrue, the parser succeeeds. Its result is the
element itself, and its remaining input is the input stream starting just after the element that
was parsed. On the other hand, ifp returnsfalse, the parser fails with an error message that
indicates what kind of token was expected.

TheStandardTokenParsers class defines four single-token parsers for the four kinds of
tokens that are supported. Each of these is defined in terms ofelem:

/** A parser which matches a numeric literal */
def numericLit: Parser[String] =

elem("number", _.isInstanceOf[NumericLit]) ˆˆ (_.chars)

/** A parser which matches a string literal */
def stringLit: Parser[String] =

elem("string literal", _.isInstanceOf[StringLit]) ˆˆ (_.chars)

/** A parser which matches an identifier */
def ident: Parser[String] =

elem("identifier", _.isInstanceOf[Identifier]) ˆˆ (_.chars)

/** A parser which matches a given reserved word or delimiter */
implicit def keyword(chars: String): Parser[String] =

elem("‘"+chars+"’", _ == Keyword(chars))

ThenumericLit parser succeeds if the first input token is a numeric literal of typeNumericLit;
if it succeeds it returns the characters making up the literal as a string.

Analogously, theident andstringLit parsers accept identifiers and string literals.
The last of the four parsers iskeyword. This one accepts a given reserved word or delim-

iter. For instancekeyword("+") succeeds if the first token is a “+” and fails otherwise. Or
keyword("true") succeeds if the first token is the reserved wordtrue and fails otherswise.

One pecularity of thekeyword method is that it carries animplicit modifier. This means
that thekeyword method is applied implicitly to an expressione whenevere is a string and
the expected type of the expression is aParser. In that case, the Scala compiler expandse

5 IMPLEMENTING COMBINATOR PARSERS 12

to keyword(e). That’s why we could simply write strings in place of parsers in the examples
at the beginning of this chapter. For instance, the JSON parser term for an object member
stringLit ∼ ":" ∼ value really meansstringLit ∼ keyword(":") ∼ value.

Sequential Composition

All parsers implemented so far consume a single element. To parse more interesting phrases,
we can string parsers together with the sequential composition operator “∼”. As you have
seen before,P ∼ Q is a parser which applies first theP parser to a given input string. Then, if
P succeeds, theQ parser is applied to the input that’s left afterP has done its job.

The “∼” combinator is implemented as a method in classParser. Here is its definition:

abstract class Parser[+T] ... { p =>
...
def ∼ [U](q: => Parser[U]) = new Parser[T ∼ U] {

def apply(in: Input) = p(in) match {
case Success(x, in1) =>

q(in1) match {
case Success(y, in2) => Success(new ∼(x, y), in2)
case failure => failure

}
case failure => failure

}
}

Let’s analyze this method in detail. It is a member of theParser class. Inside this class,p
is specified by thep => part as an alias ofthis, sop designates the left-hand argument (or:
receiver) of “∼”. Its right-hand argument is represented by parameterq. Now, if p ∼ q is
run on some inputin, first p is run onin and the result is analyzed in a pattern match. If
p succeeds,q is run on the remaining inputin1. If q also succeeds, the parser as a whole
succeeds. Its result is a “∼”-object containing bothx, the result ofp, andy, the result ofy. On
the other hand, if eitherp or q fails the result ofp ∼ q is theFailure object returned byp or
q.

The other two sequential composition operators “<∼” and “∼>” can be defined just like
“∼”, with some small adjustment how the result is computed. But a more elegant technique is
to define themin termsof “∼” as follows:

def <∼[U](q: => Parser[U]): Parser[T] = (p ∼ q) ˆˆ { case x ∼ y => x }
def ∼>[U](q: => Parser[U]): Parser[U] = (p ∼ q) ˆˆ { case x ∼ y => y }

Alternative Composition

An alternative compositionP | Q applies eitherP or Q to a given input. It first triesP. If P
succeeds, the whole parser succeeds with the result ofP. Otherwise, ifP fails, thenQ is tried
on the same inputasP. The result ofQ is then the result of the whole parser.

Here is a definition of “|” as a method of classParser.

5 IMPLEMENTING COMBINATOR PARSERS 13

def | (q: => Parser[T]) = new Parser[T] {
def apply(in: Input) = p(in) match {

case s1 @ Success(_, _) => s1
case f1 @ Failure(_, _) => q(in)

}
}

Dealing with Recursion

Note that theq parameter in methods “∼” and “|” is specified to be call-by-name. This means
that the actual parser argument will be evaluated only whenq is needed; and that is the case
onyly afterp has run. This makes it possible to write recursive parsers like the following one
which parses a number enclosed by arbitarily many parentheses:

def parens = numericLit | "(" ∼ parens ∼ ")"

If “ |” and “∼” had taken call-by-value parameters, this definition would immediately cause a
stack overflow without reading anything, because the value ofparens occurs in the middle of
its right-hand side.

Result Conversion

The last two methods of classParser convert a parser’s result. The parser formsP ˆˆ f and
P ˆˆˆ v both succeed exactly whenP succeeds but they change its result.P ˆˆ f transforms
P’s result by applying the functionf to it. Bu contrast,P ˆˆˆ v replacesP’s result with the
valuev.

def ˆˆ [U](f: T => U): Parser[U] = new Parser[U] {
def apply(in: Input) = p(in) match {

case Success(x, in1) => Success(f(x), in1)
case failure => failure

}
}
def ˆˆˆ [U](v: U): Parser[U] = f ˆˆ (x => v)

} // end Parser

Parsers that don’t read any input

There are also two parsers that do not consume any input. The parsersuccess(result) al-
ways succeeds with the givenresult. The parserfailure(msg) always fails with error
messagemsg. Both are implemented as methods in classParsers, the outer class which also
contains classParser:

def success[T](v: T) = new Parser[T] {
def apply(in: Input) = Success(v, in)

}

5 IMPLEMENTING COMBINATOR PARSERS 14

def failure(msg: String) = new Parser[Nothing] {
def apply(in: Input) = Failure(msg, in)

}

Option and repetition

Also defined in classParsers are the option and repetition combinatorsopt, rep, andrepsep.
They are all implemented in terms of sequential composition, alternative, and result conver-
sion:

def opt[T](p: => Parser[T]): Parser[Option[T]] =
p ˆˆ (x => Some(x)) | success(None)

def rep[T](p: Parser[T]): Parser[List[T]] =
p ∼ rep(p) ˆˆ { case x ∼ xs => x :: xs } | success(List())

def repsep[T, U](p: Parser[T], q: Parser[U]): Parser[List[T]] =
p ∼ rep(q ∼> p) ˆˆ { case r ∼ rs => r :: rs } | success(List())

Note that therepsep operator takes two parsers. TheP parser for the “payload” and theQ
parser for the separators. All applications ofrepsep so far have used a string as separator
argument, as inrepsep(member, ","). These applications are compatible with the def-
inition of repsep given here, because of the implicitkeyword conversion for parsers. So
repsep(member, ",") is implicitly expanded torepsep(member, keyword(",")).

Backtracking vs LL(1)

to do

Error reporting

to do

Summary: The combinator parser framework

These are all the essential elements of Scala’s combinator parsing framework. It’s surprisingly
little code for something that’s genuinly useful. With the framework you can construct parsers
for a large class of context-free grammars. The framework lets you get started quickly but
it is also customizable to new kinds of grammars and input methods. Being a Scala library,
it integrates seamlessly with the rest of the language. So it’s easy to integrate a combinator
parser in a larger Scala program.

One downside of combinator parsers is that they are not very efficient, at least not when
compared with parsers generated from special purpose tools such as Yacc or Bison. This has
to do with two effects: First, the backtracking method used by combinator parsing is itself not
very efficient. Depending on the grammar and the parse input, it might yield an exponential
slow-down due to repeated backtracking. This can be fixed by making the grammar LL(1)
using the committed sequential composition operator “∼!”.

6 LEXICAL ANALYSIS 15

The second problem affecting the performance of combinator parsers is that they mix
parser construction and input analysis in the same set of operations. In effect, a parser is
generated anew for each input that’s parsed.

This problem can be overcome, but it requires a different implementation of the parser
combinator framework. In an optimizing framework, a parser would no longer be represented
as a function from inputs to parse results. Instead, it would be represented as a tree, where
every construction step was represented as a case class. For instance, sequential composition
could be represented by a case classSeq, alternative byAlt and so on. The “outermost”
parser methodphrase could then take this symbolic representation of a parser and convert it
to highly efficient parsing tables, using standard parser generator algorithms.

What’s nice about all this is that from a user perspective nothing changes compared to
plain combinator parsers. Users still write parsers in terms ofident, numericLit, “∼”,
“|” and so on. They need not be aware of the fact that these methods generate a symbolic
representation of a parser instead of a parser function. Since thephrase combinator converts
these representations into real parsers, everything works as before.

The advantage of this scheme with respect to performance are two-fold. First, one can
now factor out parser construction from input analysis. If one writes

val jsonParser = phrase(value)

and then appliesjsonParser to several different inputs, thejsonParser is constructed only
once, not everytime an input is read.

Second, the parser generation can use efficient parsing algorithms such as LALR(1). These
algorithms usually lead to much faster parsers than parsers that operate with backtracking.

At present, such an optimizing parser generator has not yet been written. But it would be
perfectly possible to do so. If someone contributes such a generator, it will be easy to integrate
into the standard Scala library.

Even postulating that such a generator will exist at some point in the future, there remain
still reasons for also keeping the current parser combinator framework around because it is
much easier to understand and to adapt than a parser generator. Furthermore, the difference in
speed would often not matter in practice, unless you want to parse very large inputs.

6 Lexical Analysis

to do

