Type Systems
Winter Semester 2006
Week 9
December 13
December 13, 2006 - vesios 1.0

Plan

PREVIOUSLY: unit, sequencing, let, pairs, sums
TODAY:

1. recursion
2. state
3. ???

NEXT: exceptions?
NEXT: polymorphic (not so simple) typing

Recursion

Recursion in λ

- In $\lambda_{\rightarrow \text {, }}$, all programs terminate. (Cf. Chapter 12.)
- Hence, untyped terms like omega and fix are not typable.
- But we can extend the system with a (typed) fixed-point operator...

Example

$\mathrm{ff}=\lambda \mathrm{ie}: \mathrm{Nat} \rightarrow$ Bool.
入x:Nat.
if iszero x then true
else if iszero (pred x) then false else ie (pred (pred x));
iseven $=$ fix ff;
iseven 7;

New syntactic forms

```
t \(::=\ldots\) terms
```


fix t

New evaluation rules
fixed point of t

$$
\begin{array}{cr}
\begin{array}{c}
\text { fix }\left(\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}\right) \\
\longrightarrow\left[\mathrm{x} \mapsto\left(\mathrm{fix}\left(\lambda \mathrm{x}: \mathrm{T}_{1} \cdot \mathrm{t}_{2}\right)\right)\right] \mathrm{t}_{2}
\end{array} & (\mathrm{E}-\mathrm{FIxBETA}) \\
\frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\mathrm{fix}_{1} \longrightarrow \mathrm{fix}_{1}^{\prime}} & \\
\hline \tag{E-FIX}
\end{array}
$$

New typing rules \qquad

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{1}}{\Gamma \vdash \mathrm{fix}_{\mathrm{t}}: \mathrm{T}_{1}} \tag{T-Fix}
\end{equation*}
$$

A more convenient form

```
letrec x:T}\mp@subsup{T}{1}{}=\mp@subsup{t}{1}{}\mathrm{ in }\mp@subsup{t}{2}{}\stackrel{\mathrm{ def }}{=}\mathrm{ let }\textrm{x}=\textrm{fix}(\lambda\textrm{x}:\mp@subsup{T}{1}{}.\mp@subsup{\textrm{t}}{1}{})\mathrm{ in }\mp@subsup{\textrm{t}}{2}{
```

 letrec iseven : Nat \(\rightarrow\) Bool \(=\)
 \(\lambda \mathrm{x}\) :Nat.
 if iszero \(x\) then true
 else if iszero (pred \(x\)) then false
 else iseven (pred (pred x))
 in
iseven 7;

References

Mutability

- In most programming languages, variables are mutable - i.e., a variable provides both
- a name that refers to a previously calculated value, and
- the possibility of overwriting this value with another (which will be referred to by the same name)
- In some languages (e.g., OCaml), these features are separate:
- variables are only for naming - the binding between a variable and its value is immutable
- introduce a new class of mutable values (called reference cells or references)
- at any given moment, a reference holds a value (and can be dereferenced to obtain this value)
- a new value may be assigned to a reference

We choose OCaml's style, which is easier to work with formally. So a variable of type T in most languages (except OCaml) will correspond to a Ref T (actually, a Ref (Option T)) here.

Basic Examples

```
r = ref 5
!r
r := 7
(r:=succ(!r); !r)
(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !r)
```


Aliasing

A value of type Ref T is a pointer to a cell holding a value of type T.

If this value is "copied" by assigning it to another variable, the cell pointed to is not copied.

So we can change r by assigning to s :

$$
(s:=6 ; \quad!r)
$$

The difficulties of aliasing

The possibility of aliasing invalidates all sorts of useful forms of reasoning about programs, both by programmers...

The function

$$
\lambda r: R e f \text { Nat. } \lambda s: R e f \text { Nat. } \quad(r:=2 ; s:=3 ;!r)
$$

always returns 2 unless r and s are aliases.
...and by compilers:
Code motion out of loops, common subexpression elimination, allocation of variables to registers, and detection of uninitialized variables all depend upon the compiler knowing which objects a load or a store operation could reference.
High-performance compilers spend significant energy on alias analysis to try to establish when different variables cannot possibly refer to the same storage.

Aliasing all around us

Reference cells are not the only language feature that introduces the possibility of aliasing.

- object references
- explicit pointers in C
- arrays
- communication channels
- I/O devices (disks, etc.)

The difficulties of side effects

The order of operations now matters.
f (r := 1) (r := 2)

The benefits of aliasing
The problems of aliasing have led some language designers simply to disallow it (e.g., Haskell).
But there are good reasons why most languages do provide constructs involving aliasing:

- efficiency (e.g., arrays)
- "action at a distance" (e.g., symbol tables)
- dependency-driven data flow (e.g., in GUI's)
- shared resources (e.g., locks) in concurrent systems
- etc.

```
let newcounter =
```

let newcounter =
\lambda_:Unit.
\lambda_:Unit.
let c = ref O in
let c = ref O in
let incc = \lambdax:Unit. (c := succ (!c); !c) in
let incc = \lambdax:Unit. (c := succ (!c); !c) in
let decc = \lambdax:Unit. (c := pred (!c); !c) in
let decc = \lambdax:Unit. (c := pred (!c); !c) in
let O = {i = incc, d = decc} in
let O = {i = incc, d = decc} in
o

```
    o
```


Typing Rules

$$
\begin{gather*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1}}{\Gamma \vdash \mathrm{ref} \mathrm{t}_{1}: \operatorname{Ref} \mathrm{T}_{1}} \tag{T-REF}\\
\frac{\Gamma \vdash \mathrm{t}_{1}: \operatorname{Ref} \mathrm{T}_{1}}{\Gamma \vdash!\mathrm{t}_{1}: \mathrm{T}_{1}} \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \operatorname{Ref} \mathrm{T}_{1} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{1}}{\Gamma \vdash \mathrm{t}_{1}:=\mathrm{t}_{2}: \text { Unit }} \\
\text { (T-DEREF) } \\
\text { (T-AsSIGN) }
\end{gather*}
$$

Final example

NatArray $=\operatorname{Ref}(\mathrm{Nat} \rightarrow$ Nat);
newarray $=\lambda_{-}$:Unit. ref ($\lambda \mathrm{n}:$ Nat. 0) ;
$:$ Unit \rightarrow NatArray
lookup $=\lambda$ a:NatArray. $\lambda \mathrm{n}$:Nat. (!a) n ;
$:$ NatArray \rightarrow Nat \rightarrow Nat
update $=\lambda \mathrm{a}:$ NatArray. $\lambda \mathrm{m}:$ Nat. $\lambda \mathrm{v}:$ Nat.
let oldf = !a in
a := ($\lambda \mathrm{n}$:Nat. if equal $m \mathrm{n}$ then v else oldf n); $:$ NatArray \rightarrow Nat \rightarrow Nat \rightarrow Unit

Evaluation

What is the value of the expression ref 0 ?

Evaluation

What is the value of the expression ref 0 ?
Crucial observation: evaluating ref 0 must do something.
Otherwise,
r = ref 0
$\mathrm{s}=$ ref 0
and
r = ref 0
$s=r$
would behave the same.

Evaluation

What is the value of the expression ref 0 ?
Crucial observation: evaluating ref 0 must do something.
Otherwise,
$r=r e f 0$
$s=r e f 0$
and

```
r = ref 0
```

$\mathrm{s}=\mathrm{r}$
would behave the same.
Specifically, evaluating ref 0 should allocate some storage and yield a reference (or pointer) to that storage.

Evaluation

What is the value of the expression ref 0 ?
Crucial observation: evaluating ref 0 must do something.
Otherwise,

$$
\begin{aligned}
& r=r e f \quad 0 \\
& s=r e f \quad 0 \\
& r
\end{aligned}
$$

and
would behave the same.
Specifically, evaluating ref 0 should allocate some storage and yield a reference (or pointer) to that storage.
So what is a reference?

The Store

A reference names a location in the store (also known as the heap or just the memory).

What is the store?

The Store

A reference names a location in the store (also known as the heap or just the memory).

What is the store?

- Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

The Store

A reference names a location in the store (also known as the heap or just the memory).
What is the store?

- Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
- More abstractly: an array of values

Locations

Syntax of values:
v $::=$ unit $\lambda \mathrm{x}: \mathrm{T} . \mathrm{t}$ 1

values

 unit constant abstraction value store location
The Store

A reference names a location in the store (also known as the heap or just the memory).

What is the store?

- Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
- More abstractly: an array of values
- Even more abstractly: a partial function from locations to values.

Syntax of Terms

$\mathrm{t}::=$
unit
x
$\lambda \mathrm{x}: \mathrm{T} . \mathrm{t}$
t t
ref t
! t
$\mathrm{t}:=\mathrm{t}$
I

terms

unit constant variable abstraction application reference creation
dereference
assignment
store location

Aside

Does this mean we are going to allow programmers to write explicit locations in their programs??
No: This is just a modeling trick. We are enriching the "source language" to include some run-time structures, so that we can continue to formalize evaluation as a relation between source terms.

Aside: If we formalize evaluation in the big-step style, then we can add locations to the set of values (results of evaluation) without adding them to the set of terms.

Evaluation

The result of evaluating a term now depends on the store in which it is evaluated. Moreover, the result of evaluating a term is not just a value - we must also keep track of the changes that get made to the store.
I.e., the evaluation relation should now map a term and a store to a reduced term and a new store.

$$
\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}
$$

We use the metavariable μ to range over stores.

A term of the form ref t_{1} first evaluates inside t_{1} until it becomes a value...

$$
\begin{equation*}
\frac{\mathrm{t}_{1}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{\text { ref } \mathrm{t}_{1}\left|\mu \longrightarrow \operatorname{ref} \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}} \tag{E-REF}
\end{equation*}
$$

... and then chooses (allocates) a fresh location I, augments the store with a binding from / to v_{1}, and returns /:

$$
\begin{equation*}
\frac{I \notin \operatorname{dom}(\mu)}{\mathrm{ref} \mathrm{v}_{1}|\mu \longrightarrow I|\left(\mu, I \mapsto \mathrm{v}_{1}\right)} \tag{E-REFV}
\end{equation*}
$$

A term ! t_{1} first evaluates in t_{1} until it becomes a value...

$$
\begin{equation*}
\frac{\mathrm{t}_{1}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{!\mathrm{t}_{1}\left|\mu \longrightarrow!\mathrm{t}_{1}^{\prime}\right| \mu^{\prime}} \tag{E-Deref}
\end{equation*}
$$

... and then looks up this value (which must be a location, if the original term was well typed) and returns its contents in the current store:

$$
\begin{gathered}
\mu(I)=\mathrm{v} \\
!/|\mu \longrightarrow \mathrm{v}| \mu
\end{gathered}
$$

(E-DerefLoc)

Aside: garbage collection

Note that we are not modeling garbage collection - the store just grows without bound.

Evaluation rules for function abstraction and application are augmented with stores, but don't do anything with them directly.

$$
\begin{gathered}
\frac{\mathrm{t}_{1}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime}\right| \mu^{\prime}}{\mathrm{t}_{1} \mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}\right| \mu^{\prime}} \quad(\mathrm{E}-\mathrm{APP} 1) \\
\frac{\mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{t}_{2}^{\prime}\right| \mu^{\prime}}{\mathrm{v}_{1} \mathrm{t}_{2}\left|\mu \longrightarrow \mathrm{v}_{1} \mathrm{t}_{2}^{\prime}\right| \mu^{\prime}} \\
\left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \quad \mathrm{v}_{2}\left|\mu \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}\right| \mu(\mathrm{E}-\mathrm{APPABS})
\end{gathered}
$$

Aside: pointer arithmetic

We can't do any!

Store Typings

Typing Locations

Q: What is the type of a location?
A: It depends on the store!
E.g., in the store ($/ 1 \mapsto$ unit, $/ 2 \mapsto$ unit), the term $!/ 2$ has type Unit.
But in the store ($/ I_{1} \mapsto$ unit, $I_{2} \mapsto \lambda \mathrm{x}:$ Unit. x), the term $!/ 2$ has type Unit \rightarrow Unit.

Typing Locations
Q: What is the type of a location?

Typing Locations - first try
Roughly:

$$
\frac{\Gamma \vdash \mu(I): \mathrm{T}_{1}}{\Gamma \vdash /: \operatorname{Ref} \mathrm{T}_{1}}
$$

Typing Locations — first try

Roughly:

$$
\frac{\Gamma \vdash \mu(I): \mathrm{T}_{1}}{\Gamma \vdash I: \operatorname{Ref} \mathrm{T}_{1}}
$$

More precisely:

$$
\frac{\Gamma \mid \mu \vdash \mu(I): \mathrm{T}_{1}}{\Gamma \mid \mu \vdash /: \operatorname{Ref} \mathrm{T}_{1}}
$$

l.e., typing is now a four-place relation (between contexts, stores, terms, and types).

Problem

However, this rule is not completely satisfactory. For one thing, it can make typing derivations very large!
E.g., if

$$
\begin{aligned}
& \text { (} \mu=I_{1} \mapsto \lambda \mathrm{x} \text { : Nat. 999, } \\
& I_{2} \mapsto \lambda \mathrm{x} \text { :Nat. ! } / I_{1}\left(!/_{1} \mathrm{x}\right) \\
& I_{3} \mapsto \lambda \mathrm{x} \text { :Nat. ! } / 2(!/ 2 \mathrm{x}) \text {, } \\
& I_{4} \mapsto \lambda \mathrm{x}: \text { Nat. ! } / 3(!/ 3 \mathrm{x}) \text {, } \\
& / 5 \mapsto \lambda \mathrm{x} \text { :Nat. ! } / 4 \mathrm{l}(!/ 4 \mathrm{x}) \text {), }
\end{aligned}
$$

then how big is the typing derivation for $!/ 5$?

Problem!

But wait... it gets worse. Suppose

$$
\begin{aligned}
&\left(\mu=l_{1} \mapsto \lambda \mathrm{x}: \text { Nat. } \quad!l_{2} \mathrm{x},\right. \\
&\left.l_{2} \mapsto \lambda \mathrm{x}: \text { Nat. }!I_{1} \mathrm{x}\right),
\end{aligned}
$$

Now how big is the typing derivation for $!l_{2}$?

Store Typings

Observation: The typing rules we have chosen for references guarantee that a given location in the store is always used to hold values of the same type.

These intended types can be collected into a store typing - a partial function from locations to types.
E.g., for

$$
\begin{aligned}
\mu=\left(I_{1}\right. & \mapsto \lambda \mathrm{x}: \text { Nat. } 999 \\
I_{2} & \mapsto \lambda \mathrm{x}: \text { Nat. }!/_{1}\left(!/_{1} \mathrm{x}\right) \\
I_{3} & \mapsto \lambda \mathrm{x}: \text { Nat. }!/_{2}\left(!/_{2} \mathrm{x}\right) \\
I_{4} & \mapsto \lambda \mathrm{x}: \text { Nat. }!/_{3}\left(!/_{3} \mathrm{x}\right) \\
I_{5} & \left.\mapsto \lambda \mathrm{x}: \text { Nat. }!/_{4}\left(!/_{4} \mathrm{x}\right)\right)
\end{aligned}
$$

A reasonable store typing would be

$$
\begin{aligned}
\Sigma=\left(I_{1}\right. & \mapsto \text { Nat } \rightarrow \text { Nat }, \\
I_{2} & \mapsto \text { Nat } \rightarrow \text { Nat }, \\
I_{3} & \mapsto \text { Nat } \rightarrow \mathrm{Nat}, \\
I_{4} & \mapsto \text { Nat } \rightarrow \mathrm{Nat}, \\
I_{5} & \mapsto \text { Nat } \rightarrow \mathrm{Nat})
\end{aligned}
$$

Final typing rules

$$
\begin{gather*}
\frac{\Sigma(I)=\mathrm{T}_{1}}{\Gamma \mid \Sigma \vdash I: \operatorname{Ref} \mathrm{T}_{1}} \tag{T-LOC}\\
\frac{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}: \mathrm{T}_{1}}{\Gamma \mid \Sigma \vdash \operatorname{ref} \mathrm{t}_{1}: \operatorname{Ref} \mathrm{T}_{1}} \tag{T-REF}\\
\frac{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}: \operatorname{Ref} \mathrm{T}_{11}}{\Gamma \mid \Sigma \vdash!\mathrm{t}_{1}: \mathrm{T}_{11}}
\end{gather*}
$$

(T-DEREF)

$$
\frac{\Gamma\left|\Sigma \vdash \mathrm{t}_{1}: \operatorname{Ref} \mathrm{T}_{11} \quad \Gamma\right| \Sigma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}:=\mathrm{t}_{2}: \text { Unit }}
$$

(T-ASSIGN)

Now, suppose we are given a store typing Σ describing the store μ in which we intend to evaluate some term t. Then we can use Σ to look up the types of locations in t instead of calculating them from the values in μ.

$$
\begin{equation*}
\frac{\Sigma(I)=\mathrm{T}_{1}}{\Gamma \mid \Sigma \vdash /: \operatorname{Ref} \mathrm{T}_{1}} \tag{T-LOC}
\end{equation*}
$$

l.e., typing is now a four-place relation between between contexts, store typings, terms, and types.

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit locations, so we can use an empty store typing.
So, when a new location is created during evaluation,

$$
\begin{equation*}
\frac{I \notin \operatorname{dom}(\mu)}{\mathrm{ref} \mathrm{v}_{1}|\mu \longrightarrow I|\left(\mu, I \mapsto \mathrm{v}_{1}\right)} \tag{E-REFV}
\end{equation*}
$$

we can extend the "current store typing" with the type of v_{1}.

Preservation

First attempt: just add stores and store typings in the appropriate places.

Theorem (?): If $\Gamma \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}$, then $\Gamma \mid \Sigma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.

Preservation

First attempt: just add stores and store typings in the appropriate places.

Theorem (?): If $\Gamma \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}$, then $\Gamma \mid \Sigma \vdash t^{\prime}: T$. Wrong!

Why is this wrong?
Because Σ and μ here are not constrained to have anything to do with each other!
(Exercise: Construct an example that breaks this statement of preservation.)

Preservation

A store μ is said to be well typed with respect to a typing context Γ and a store typing Σ, written $\Gamma \mid \Sigma \vdash \mu$, if $\operatorname{dom}(\mu)=\operatorname{dom}(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(I): \Sigma(I)$ for every $I \in \operatorname{dom}(\mu)$.

Next attempt:

$$
\begin{aligned}
& \text { Theorem (?): If } \\
& \qquad \begin{array}{l}
\mid \Sigma \vdash \mathrm{t}: \mathrm{T} \\
\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime} \\
\quad \Gamma \mid \Sigma \vdash \mu
\end{array}
\end{aligned}
$$

$$
\text { then } \Gamma \mid \Sigma \vdash t^{\prime}: T \text {. }
$$

Preservation

A store μ is said to be well typed with respect to a typing context
Γ and a store typing Σ, written $\Gamma \mid \Sigma \vdash \mu$, if $\operatorname{dom}(\mu)=\operatorname{dom}(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(I): \Sigma(/)$ for every $I \in \operatorname{dom}(\mu)$.

Preservation

A store μ is said to be well typed with respect to a typing context Γ and a store typing Σ, written $\Gamma \mid \Sigma \vdash \mu$, if $\operatorname{dom}(\mu)=\operatorname{dom}(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(I): \Sigma(/)$ for every $I \in \operatorname{dom}(\mu)$.

Next attempt:
Theorem (?): If
$\Gamma \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$
$\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}$
$\Gamma \mid \Sigma \vdash \mu$
then $\Gamma \mid \Sigma \vdash t^{\prime}: T$.
What's wrong now?

Preservation

A store μ is said to be well typed with respect to a typing context
Γ and a store typing Σ, written $\Gamma \mid \Sigma \vdash \mu$, if $\operatorname{dom}(\mu)=\operatorname{dom}(\Sigma)$
and $\Gamma \mid \Sigma \vdash \mu(I): \Sigma(I)$ for every $I \in \operatorname{dom}(\mu)$.
Next attempt:

```
Theorem (?): If
    \Gamma| \Sigma\vdasht:T
    t | \mu\longrightarrow t' | | '
    \Gamma| \Sigma\vdash\mu
then 「| \Sigma\vdash t' : T.
```

Still wrong!

Creation of a new reference cell. .

$$
\begin{equation*}
\frac{I \notin \operatorname{dom}(\mu)}{\mathrm{ref} \mathrm{v}_{1}|\mu \longrightarrow I|\left(\mu, I \mapsto \mathrm{v}_{1}\right)} \tag{E-REFV}
\end{equation*}
$$

... breaks the correspondence between the store typing and the store.

Preservation (correct version)

Theorem: If
$\Gamma \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$
$\Gamma \mid \Sigma \vdash \mu$
$\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}$
then, for some $\Sigma^{\prime} \supseteq \Sigma$,
$\Gamma \mid \Sigma^{\prime} \vdash \mathrm{t}^{\prime}: \mathrm{T}$
$\Gamma \mid \Sigma^{\prime} \vdash \mu^{\prime}$.
Proof: Easy extension of the preservation proof for λ_{\rightarrow}.

Preservation (correct version)

Theorem: If
$\Gamma \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$
$\Gamma \mid \Sigma \vdash \mu$
$\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}$
then, for some $\Sigma^{\prime} \supseteq \Sigma$,
$\Gamma \mid \Sigma^{\prime} \vdash \mathrm{t}^{\prime}: \mathrm{T}$
$\Gamma \mid \Sigma^{\prime} \vdash \mu^{\prime}$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\emptyset \mid \Sigma \vdash \mathrm{t}: \mathrm{T}$ for some T and Σ). Then either t is a value or else, for any store μ such that $\emptyset \mid \Sigma \vdash \mu$, there is some term t' and store μ^{\prime} with $\mathrm{t}\left|\mu \longrightarrow \mathrm{t}^{\prime}\right| \mu^{\prime}$.

